
1

Speeds

15 December 2004

TABLE OF CONTENTS

Section Page

1 PT motion speeds . 5
1.1 Pan and Tilt Speeds . 5
1.2 Intercept domes . 11
1.3 Spectra domes . 16
1.4 Esprit speeds . 30

2 The PMD/UMDM/PUD motion control chips 40
2.1 sin table used with the PUD from the Esprit PG53-0096-0210 41

3 About the Joystick Report . 43
3.1 “Ideal” speeds from sheet 6 of the Joystick Report 44

4 Firmware Functional Specification for the DRD08/14 series of domes 46
4.1 Introduction . 46
4.2 Video . 47
4.3 Firmware Organization . 47
4.4 Configuration . 47
4.5 Reset command . 47
4.6 Motion commands . 47
4.7 Speed Calculation . 48
4.8 Speed Ramping . 48
4.9 Presets . 48
4.10 Screen Refreshing . 49
4.11 Auxiliary outputs . 49
4.12 Zones . 49
4.13 Pattern . 50
4.14 Software Description . 51

5 Speed Calculations for Intercept . 70
5.1 Preset calculations . 71

6 Various PMD calculations . 75
6.1 Fixed point calculations for speed, acceleration and jerk 75
6.2 Example 1 . 76

1$Header: d:/UnitSpeeds/RCS/Speeds.tex,v 1.16 2004-12-15 07:11:08-08 Hamilton Exp Hamilton $
2tocdepth = 2

Confidential PELCO Information – 15 December 2004 – 7:12

2 LIST OF TABLES

6.3 Example 2 . 80
6.4 mtrcalc.c . 84
6.5 MC.c . 89
6.6 SpdCalc.c . 100

APPENDIX A
A Patents . A-1
A.1 United States Patent 6,566,839 . A-1
A.2 United States Patent 6,670,783 . A-1

APPENDIX B

LIST OF FIGURES

Figure Page

1 Intercept DRD08A12u3 R3.06 Pan Speeds . 12
2 Intercept DRD08A12u3 R3.06 Tilt Speeds . 14
3 Spectra I DD5x- PRGSPCTFW106 Pan Speeds 17
4 Spectra I DD5x- PRGSPCTFW106 Tilt Speeds . 18
5 Spectra II PG53-0001-0206 “0206” Pan Speeds“OLD SPEED TABLE” 19
6 Spectra II PG53-0001-0206 “0206” Pan Speeds “non-OLD SPEED TABLE” 21
7 Spectra II PG53-0001-0206 “0206” Tilt Speeds “OLD SPEED TABLE” . . . 23
8 Spectra II PG53-0001-0206 “0206” Tilt Speeds “non-OLD SPEED TABLE” 24
9 Spectra II PG53-0060-0308 “0308” Pan Speeds. Note: that the vertical scaling

has been changed. 25
10 Spectra II PG53-0060-0308 “0308” Tilt Speeds 27
11 Spectra II PG53-0060-0331 “0331” NTSC Tilt Speeds 28
12 Spectra II PG53-0060-0331 “0331” PAL Tilt Speeds 29
13 Esprit PG53-0026-0100 Pan Speeds “NOTEST” 31
14 Esprit PG53-0026-0100 Pan Speeds “not-NOTEST” 32
15 Esprit PG53-0026-0100 Tilt Speeds “OLD SPEED TABLE” 33
16 Esprit PG53-0026-0100 Tilt Speeds “not-OLD SPEED TABLE” 34
17 Esprit PG53-0096-0210 Pan Speeds . 35
18 Esprit PG53-0096-0210 Tilt Speeds . 36
19 ExCite pan speeds, first released version . 37
20 ExCite NTSC tilt speeds, first release . 39
21 PUD sin wave vs. a “real” one . 41
22 Ideal Joystick speeds . 44

LIST OF TABLES

Table Page

Confidential PELCO Information – 15 December 2004 – 7:12

LIST OF TABLES 3

1 Pan speeds Intercept, version DRD08A12u3 R3.06, from the source code 13
2 Tilt speeds Intercept, version DRD08A12u3 R3.06, from the source code 15
3 Pan speeds Spectra I, version DD5x- PRGSPCTFW106, from the source code . . 17
4 Tilt speeds Spectra I, version DD5x- PRGSPCTFW106, from the source code . . 18
5 Pan speeds Spectra II, version PG53-0001-0206, from the source code, first part 20
6 Pan speeds Spectra II, version PG53-0001-0206, from the source code, second

part . 22
7 Tilt speeds Spectra II, version PG53-0001-0206, from the source code, first part 23
8 Tilt speeds Spectra II, version PG53-0001-0206, from the source code, second

part . 24
9 Pan speeds Spectra II, version PG53-0060-0308, from the source code 26
10 Tilt speeds Spectra II, version PG53-0060-0308, from the source code 27
11 Tilt speeds Spectra II, version PG53-0060-0331, from the source code, first part 28
12 Tilt speeds Spectra II, version PG53-0060-0331, from the source code, second

part . 30
13 Pan speeds Esprit, version PG53-0026-0100, from the source code, first part . 31
14 Pan speeds Esprit, version PG53-0026-0100, from the source code, second part 32
15 Tilt speeds Esprit, version PG53-0026-0100, from the source code, first part . 33
16 Tilt speeds Esprit, version PG53-0026-0100, from the source code, second part 34
17 Pan speeds Esprit, version PG53-0096-0210, from the source code 35
18 Tilt speeds Esprit, version PG53-0096-0210, from the source code 36
19 Pan and Tilt speeds for the initial version of the ExCite, from the source code,

first part . 38
20 Pan and Tilt speeds for the initial version of the ExCite, from the source code 39
21 Speed values from sheet 6 of “The Joystick Report”, September 19, 1997 . . . 45

Confidential PELCO Information – 15 December 2004 – 7:12

4 LIST OF TABLES

This page intentionally left blank

Confidential PELCO Information – 15 December 2004 – 7:12

5

1 PT motion speeds

At Pelco considerable effort has been made since the middle 1990’s to provide excellent control
of various integrated positioning systems. Originally all Pan and Tilt systems were of the “fixed
speed” verity. (Pelco still manufactures fixed speed units.)

1.1 Pan and Tilt Speeds

1.1.1 Pan Speeds

Each column of this table has been taken from a release of software for Pelco domes (Intercept,
Spectra) or pan/tilt units (Esprit). The data was obtained by going through the source code saved
in Document Control. All speeds in the table are in degrees per second (o/sec). The bold values in
columns E and H are the current values being used in Spectra III and Esprit units. The column
headings represent the following revisions/types of software:

A Intercept DRD08A12u3 R3.06 Pan Speeds, Figure 1, page 12

B Spectra I DD5x- PRGSPCTFW106 Pan Speeds, Figure 3, page 17

C Spectra II PG53-0001-0206 “0206” Pan Speeds“OLD SPEED TABLE”, Figure 5, page 19

D Spectra II PG53-0001-0206 “0206” Pan Speeds “non-OLD SPEED TABLE”, Figure 6, page 21

E Spectra II PG53-0060-0308 “0308” Pan Speeds, Figure 9, page 25

F Esprit PG53-0026-0100 Pan Speeds “NOTEST”, Figure 13, page 31

G Esprit PG53-0026-0100 Pan Speeds “not-NOTEST”, Figure 14, page 32

H Esprit PG53-0096-0210 Pan Speeds, Figure 17, page 35

3$Header: d:/UnitSpeeds/RCS/Speeds.inc,v 1.9 2004-11-10 09:42:26-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

6 1 PT MOTION SPEEDS

Index A B C D E F G H

0 1.5 .6 .6 .5 .5 .2 .2 .2
1 1.5 .6 .6 .5 .5 .2 .2 .2
2 1.5 .6 .6 .5 .5 .3 .3 .3
3 1.5 .6 .6 .5 .5 .3 .3 .3
4 1.5 .6 .6 .5 .5 .4 .4 .4
5 1.5 .6 .6 .5 .5 .5 .5 .5
6 1.5 .6 .6 .5 .5 .5 .7 .7
7 1.5 .6 .6 .9 .5 .9 .9 .9

8 1.5 1.3 1.3 1.3 .5 1.3 1.2 1.2
9 1.5 2.0 2.0 1.6 .5 1.6 1.5 1.5
10 1.9 2.7 2.7 2.0 .6 2.0 1.8 1.8
11 3.0 3.4 3.4 2.3 .7 2.3 2.1 2.1
12 3.2 3.4 4.1 2.7 .7 2.7 2.5 2.5
13 4.5 3.4 4.8 3.0 .8 3.0 2.9 2.9
14 4.9 6.3 5.6 3.4 .9 3.4 3.3 3.3
15 5.4 6.3 6.3 3.7 1.0 3.7 3.7 3.7

16 5.4 7.0 7.0 4.1 1.0 4.1 4.1 4.1
17 5.4 7.7 7.7 4.5 1.1 4.5 4.5 4.5
18 5.4 8.4 8.4 4.8 1.3 4.8 4.8 4.8
19 9.0 8.4 9.1 5.2 1.4 5.2 5.2 5.2
20 9.4 8.4 9.8 5.6 1.5 5.6 5.6 5.6
21 10.0 11.2 10.5 5.9 1.7 5.9 5.9 5.9
22 10.4 11.2 11.2 6.3 1.8 6.3 6.3 6.3
23 10.9 11.9 11.9 6.7 2.0 6.7 6.7 6.7

24 11.4 12.6 12.6 7.1 2.2 7.1 7.1 7.1
25 11.8 13.3 13.3 7.5 2.4 7.5 7.5 7.5
26 12.4 14.0 14.0 7.8 2.6 7.8 7.8 7.8
27 12.8 14.7 14.7 8.2 2.9 8.2 8.2 8.2
28 13.3 15.4 15.4 8.6 3.2 8.6 8.6 8.6
29 13.8 16.1 16.1 9.0 3.5 9.0 9.0 9.0
30 14.3 16.8 16.8 9.4 3.8 9.4 9.4 9.4
31 16.5 17.5 17.5 9.9 4.2 9.9 9.9 9.9

32 16.9 18.2 18.2 10.3 4.6 10.3 10.3 10.3
33 17.4 18.9 18.9 10.7 5.0 10.7 10.7 10.7
34 17.8 19.6 19.6 11.1 5.5 11.1 11.1 11.1

Continued on the next page.

Confidential PELCO Information – 15 December 2004 – 7:12

1.1 Pan and Tilt Speeds 7

Continued from the previous page.

Index A B C D E F G H

35 18.3 20.3 20.3 11.6 6.0 11.6 11.6 11.6
36 18.7 21.0 21.0 12.1 6.6 12.1 12.1 12.1
37 19.1 21.7 21.7 12.5 7.3 12.5 12.5 12.5
38 19.6 22.4 22.4 13.0 8.0 13.0 13.0 13.0
39 20.0 23.1 23.1 13.5 8.7 13.5 13.5 13.5

40 20.4 23.8 23.8 14.1 9.6 14.1 14.1 14.1
41 20.9 24.5 24.5 14.6 10.5 14.6 14.6 14.6
42 21.3 25.2 25.2 15.2 11.5 15.2 15.2 15.2
43 21.8 25.9 25.9 15.7 12.6 15.7 15.7 15.7
44 25.5 26.6 26.6 16.4 13.9 16.4 16.4 16.4
45 26.1 27.3 27.3 17.0 15.2 17.0 17.0 17.0
46 26.6 28.0 28.0 17.7 16.7 17.7 17.7 17.7
47 27.2 28.8 28.8 18.4 18.3 18.4 18.4 18.4

48 27.7 29.5 29.5 19.1 20.0 19.1 19.1 19.1
49 28.3 30.2 30.2 19.9 22.0 19.9 19.9 19.9
50 28.8 30.9 30.9 20.8 24.1 20.8 20.8 20.8
51 29.4 31.6 31.6 21.7 26.4 21.7 21.7 21.7
52 29.9 32.3 32.3 22.7 29.0 22.7 22.7 22.7
53 30.5 33.0 33.0 23.7 31.8 23.7 23.7 23.7
54 31.0 33.7 33.7 24.8 34.9 24.8 24.8 24.8
55 31.6 34.4 34.4 26.0 38.2 26.0 26.0 26.0

56 32.1 35.1 35.1 27.3 41.9 27.3 27.3 27.3
57 32.7 35.8 35.8 28.7 46.0 28.7 28.7 28.7
58 33.2 36.5 36.5 30.2 50.4 30.2 30.2 30.2
59 33.8 37.2 37.2 31.8 55.3 31.8 31.8 31.8
60 34.3 37.9 37.9 33.6 60.7 33.6 33.6 33.6
61 34.9 38.6 38.6 35.6 66.5 35.6 35.6 35.6
62 35.5 39.3 39.3 37.7 72.9 37.7 37.7 37.7
63 36.0 40.0 40.0 40.0 80.0 40.0 40.0 40.0

Confidential PELCO Information – 15 December 2004 – 7:12

8 1 PT MOTION SPEEDS

1.1.2 Tilt Speeds

Each column of this table has been taken from a release of software for Pelco domes (Intercept,
Spectra) or pan/tilt units (Esprit). The data was obtained by going through the source code saved
in Document Control. All speeds in the table are in degrees per second (o/sec). The bold values in
columns E and H are the current values being used in Spectra III and Esprit units. The column
headings represent the following revisions/types of software:

A Intercept DRD08A12u3 R3.06 Tilt Speeds, Figure 2, page 14

B Spectra I DD5x- PRGSPCTFW106 Tilt Speeds, Figure 4, page 18

C Spectra II PG53-0001-0206 “0206” Tilt Speeds “non-OLD SPEED TABLE”, Figure 7, page 23

D Spectra II PG53-0060-0331 “0331” NTSC Tilt Speeds, Figure 11, page 28

E Spectra II PG53-0060-0331 “0331” PAL Tilt Speeds, Figure 12, page 29

F Esprit PG53-0026-0100 Tilt Speeds “OLD SPEED TABLE”, Figure 15, page 33

G Esprit PG53-0026-0100 Tilt Speeds “not-OLD SPEED TABLE”, Figure 16, page 34

H Esprit PG53-0096-0210 Tilt Speeds, Figure 18, page 36

Confidential PELCO Information – 15 December 2004 – 7:12

1.1 Pan and Tilt Speeds 9

Index A B C D E F G H

0 1.5 .6 .5 .5 .5 .5 .5 .5
1 1.5 .6 .5 .5 .5 .5 .5 .5
2 1.5 .6 .5 .5 .5 .5 .5 .5
3 1.5 .6 .5 .5 .5 .5 .5 .5
4 1.5 .6 .5 .5 .5 .5 .5 .5
5 1.5 .6 .5 .5 .5 .5 .5 .5
6 1.5 .6 .5 .5 .5 .5 .5 .5
7 1.5 .6 .9 .9 .9 .9 .7 .7

8 1.5 1.3 1.3 1.3 1.3 1.3 .9 .9
9 1.5 2.0 1.6 1.6 1.6 1.6 1.1 1.1
10 2.0 2.7 2.0 2.0 2.0 2.0 1.3 1.3
11 2.5 3.4 2.3 2.3 2.3 2.3 1.4 1.4
12 3.0 4.1 2.7 2.7 2.7 2.7 1.6 1.6
13 3.6 4.9 3.0 3.0 3.0 3.0 1.8 1.8
14 4.1 5.6 3.4 3.4 3.4 3.4 2.0 2.0
15 4.6 6.3 3.7 3.7 3.7 3.7 2.2 2.2

16 5.1 7.0 4.1 4.1 4.1 4.1 2.3 2.3
17 7.7 7.7 4.5 4.5 4.5 4.5 2.5 2.5
18 8.1 8.4 4.8 4.8 4.8 4.8 2.7 2.7
19 8.5 9.1 5.2 5.2 5.2 5.2 2.9 2.9
20 8.9 9.8 5.6 5.6 5.6 5.6 3.1 3.1
21 9.2 10.5 5.9 5.9 5.9 5.9 3.3 3.3
22 9.6 11.2 6.3 6.3 6.3 6.3 3.5 3.5
23 10.0 11.9 6.7 6.7 6.7 6.7 3.6 3.6

24 10.4 12.6 7.1 7.1 7.1 7.1 3.8 3.8
25 10.8 13.3 7.5 7.5 7.5 7.5 4.0 4.0
26 11.2 14.0 7.8 7.8 7.8 7.8 4.2 4.2
27 11.6 14.7 8.2 8.2 8.2 8.2 4.4 4.4
28 15.4 15.4 8.6 8.6 8.6 8.6 4.6 4.6
29 15.9 16.1 9.0 9.0 9.0 9.0 4.9 4.9
30 16.3 16.8 9.4 9.4 9.4 9.4 5.1 5.1
31 16.8 17.5 9.9 9.9 9.9 9.9 5.3 5.3

32 17.3 18.2 10.3 10.3 10.3 10.3 5.5 5.5
33 17.8 18.9 10.7 10.7 10.6 10.7 5.7 5.7
34 18.2 19.6 11.1 11.1 10.7 11.1 6.0 6.0

Continued on the next page.

Confidential PELCO Information – 15 December 2004 – 7:12

10 1 PT MOTION SPEEDS

Continued from the previous page.

Index A B C D E F G H

35 18.7 20.3 11.6 11.6 11.8 11.6 6.2 6.2
36 19.2 21.0 12.1 12.1 12.1 12.1 6.4 6.4
37 19.7 21.7 12.5 12.5 12.5 12.5 6.7 6.7
38 20.1 22.4 13.0 12.8 13.0 13.0 6.9 6.9
39 20.6 23.1 13.5 13.1 13.5 13.5 7.2 7.2

40 21.1 23.8 14.1 13.9 14.1 14.1 7.5 7.5
41 21.5 24.5 14.6 14.6 14.6 14.6 7.8 7.8
42 22.0 25.2 15.2 15.2 15.2 15.2 8.1 8.1
43 22.5 25.9 15.7 15.7 15.7 15.7 8.4 8.4
44 23.0 26.6 16.4 16.4 16.4 16.4 8.7 8.7
45 23.4 27.3 17.0 17.0 17.0 17.0 9.0 9.0
46 23.9 28.0 17.7 17.7 17.7 17.7 9.4 9.4
47 24.4 28.8 18.4 18.4 18.4 18.4 9.7 9.7

48 28.3 29.5 19.1 19.1 19.1 19.1 10.1 10.1
49 28.8 30.2 19.9 19.9 19.9 19.9 10.5 10.5
50 29.3 30.9 20.8 20.8 20.4 20.8 11.0 11.0
51 29.8 31.6 21.7 21.7 20.6 21.7 11.4 11.4
52 30.4 32.3 22.7 22.7 24.9 22.7 11.9 11.9
53 30.9 33.0 23.7 23.7 25.2 23.7 12.4 12.4
54 31.4 33.7 24.8 24.8 25.3 24.8 13.0 13.0
55 31.9 34.4 26.0 25.3 25.5 26.0 13.5 13.5

56 32.4 35.1 27.3 29.0 26.0 27.3 14.2 14.2
57 32.9 35.8 28.7 30.0 26.5 28.7 14.8 14.8
58 33.4 36.5 30.2 31.0 27.0 30.2 15.5 15.5
59 34.0 37.2 31.8 32.0 38.0 31.8 16.3 16.3
60 34.5 37.9 33.6 33.6 29.0 33.6 17.1 17.1
61 35.0 38.6 35.6 35.6 37.6 35.6 18.0 18.0
62 35.5 39.3 37.7 37.0 40.0 37.7 19.0 19.0
63 36.0 40.0 40.0 44.0 44.0 40.0 20.0 20.0

Confidential PELCO Information – 15 December 2004 – 7:12

1.2 Intercept domes 11

1.2 Intercept domes

With the Intercept line of equipment some thought was applied to make the units as acoustically
quiet and controllable as possible. The work done on the Intercept products resulted in the pan
and tilt speed tables shown in Figure 1, page 12 and Figure 2, page 14, respectively. These two
graphs show that the speeds were generally linear with increasing speed commands. There are
some speeds that were delibertly “skipped over” to avoid mechanical resonances in the units. The
Intercept systems consisted of many models in several basic styles. The styles were:

1. 8 and 14 inch diameter domes.

2. Fixed and variable speed units.

3. With and without preset capability.

4. D, P and Coaxitron Protocol compatibility.

An internal description of the workings of the Intercept is shown in Section 4, page 46. The
Intercept line of domes is no longer being made. However many are still in use. The calculations
related to various Intercept speeds are shown in Section 5, page 70.

Confidential PELCO Information – 15 December 2004 – 7:12

12 1 PT MOTION SPEEDS

1.2.1 Intercept, version DRD08A12u3 R3.06, data.c

0

5

10

15

20

25

30

35

40

0 8 16 24 32 40 48 56 64

Wed Nov 10 07:32:17 2004

Intercept Pan speeds vs index value

Figure 1. Intercept DRD08A12u3 R3.06 Pan Speeds

4$Header: d:/UnitSpeeds/RCS/Ispeeds.inc,v 1.12 2004-12-15 07:10:45-08 Hamilton Exp Hamilton $
5$Header: d:/UnitSpeeds/RCS/IspeedP.inc,v 1.2 2004-11-10 08:27:28-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

1.2 Intercept domes 13

/* pan speed translate data for skipping noisy speeds */

/* speed 9 is 1.5 degrees/second, speed 63 is 36 degrees/second

skip speed ranges (degrees/second) 2.25-3.00, 3.33-4.50,

6.75-9.00, 14.3-16.5, 21.8-25.5 */

/* last 3 speeds of 4th range changed to 54 as a result of

testing */

uns code pan_speed_xlat[MAX_NORMAL_SPEED + 1] =

{

15, 15, 15, 15, 15, 15, 15, 15,

15, /* 1st range */

15, 19, /* 2nd range */

30, 32, /* 3rd range */

45, 49, 54,

54, 54, 54, /* 4th range */

90, 94, 100, 104, 109,

114, 118, 124, 128, 133, 138, 143, /* 5th range */

165,

169, 174, 178, 183, 187, 191, 196, 200,

204, 209, 213, 218, /* 6th range */

255, 261, 266, 272,

277, 283, 288, 294, 299, 305, 310, 316,

321, 327, 332, 338, 343, 349, 355, 360 /* 7th range */

};

Table 1. Pan speeds Intercept, version DRD08A12u3 R3.06, from the source code

Confidential PELCO Information – 15 December 2004 – 7:12

14 1 PT MOTION SPEEDS

0

5

10

15

20

25

30

35

40

0 8 16 24 32 40 48 56 64

Wed Nov 10 07:32:20 2004

Intercept Tilt speeds vs index value

Figure 2. Intercept DRD08A12u3 R3.06 Tilt Speeds

6$Header: d:/UnitSpeeds/RCS/IspeedT.inc,v 1.2 2004-11-10 08:27:28-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

1.2 Intercept domes 15

/* speed 9 is 1.5 degrees/second, speed 63 is 36 degrees/second

skip speed ranges (degrees/second) 5.14-7.71, 11.6-15.4,

24.4-28.3 */

uns code tilt_speed_xlat[MAX_NORMAL_SPEED + 1] =

{

15, 15, 15, 15, 15, 15, 15, 15,

15, /* 1st range */

15, 20, 25, 30, 36, 41, 46,

51, /* 2nd range */

77, 81, 85, 89, 92, 96, 100,

104, 108, 112, 116, /* 3rd range */

154, 159, 163, 168,

173, 178, 182, 187, 192, 197, 201, 206,

211, 215, 220, 225, 230, 234, 239, 244, /* 4th range */

283, 288, 293, 298, 304, 309, 314, 319,

324, 329, 334, 340, 345, 350, 355, 360 /* 5th range */

};

Table 2. Tilt speeds Intercept, version DRD08A12u3 R3.06, from the source code

Confidential PELCO Information – 15 December 2004 – 7:12

16 1 PT MOTION SPEEDS

1.3 Spectra domes

After manufacturing the Intercept series of domes and gaining knowledge and experience in
variable speed drives utilizing stepper motors, Pelco designed and started to produce a fully in-
tegrated series of domes called the Spectra line. The Spectra line has gone through and original
series and two significant upgrades. The current model is the Spectra III line of domes and consists
of several models based on:

1. Camera type, i.e. optical lens power (x16, x22 or x23) and a x10 digital “zoom”.

2. Television standard, i.e. NTSC or PAL.

3. The original Spectra I had a x12 optical lens power and a x8 digital “zoom”.

With the Spectra series speeds were originally linear with some anti-vibration “jumps”. It will
be noted in a graphing of the Spectra I pan speeds (Figure 3, page 17) that there are two anomalies
near input speed step numbers 13 and 19, while the tilt speeds (Figure 4, page 18) are essentially
linear. In both figures also note that there is a “dead band” at the start where all input speeds
result in very slow speeds. This is done to compensate for the characteristics of various Pelco
keyboards.

The speeds originally used with the Spectra II (Figure 5, page 19 and Figure 7, page 23) that
the original tables were very linear.

Shortly the Spectra II speeds were changed to be “predictably non-linear” as is shown in Fig-
ure 6, page 21, for pan, and Figure 8, page 24, for tilt7. Later in the development cycle the speeds
were made more “aggressive” as is shown in Figure 9, page 25, for pan, and Figure 10, page 27, for
tilt. It should be noted that the maximum non-turbo pan speed has now been raised from 40osec
to 80osec. Tilt maximum speed remains the same as before. Some changes were made to the tilt
speeds to skip over vibration causing speeds with different speed tables being used for NTSC and
PAL television systems8

Spectra III uses the same speed tables as the last version of Spectra II.

7The change from linear to non-linear speeds were probably were the result of the findings in “The Joystick
Report”, September 19, 1997. (Section 3, page 43)

8There appears to be a coding error in the tilt speed table for PAL near input speed step number 59. This anomaly
is shown in Figure 12, page 29. It is unknown how this got into the code.

Confidential PELCO Information – 15 December 2004 – 7:12

1.3 Spectra domes 17

1.3.1 Spectra I, version DD5x- PRGSPCTFW106

0

5

10

15

20

25

30

35

40

0 8 16 24 32 40 48 56 64

Wed Nov 10 09:03:38 2004

Spectra Pan speeds vs index value

Figure 3. Spectra I DD5x- PRGSPCTFW106 Pan Speeds

static code WORD pan_speed_xlat[] = {

6, 6, 6, 6, 6, 6, 6, 6,

13, 20, 27, 34, 34, 34, 63, 63, /* skip speed 12(41), 13(48),

and 14(56) */

70, 77, 84, 84, 84, 112, 112, 119, /* skip speed 19(91), 20(98),

and 21(105) */

126, 133, 140, 147, 154, 161, 168, 175,

182, 189, 196, 203, 210, 217, 224, 231,

238, 245, 252, 259, 266, 273, 280, 288,

295, 302, 309, 316, 323, 330, 337, 344,

351, 358, 365, 372, 379, 386, 393, 400

};

Table 3. Pan speeds Spectra I, version DD5x- PRGSPCTFW106, from the source code

9$Header: d:/UnitSpeeds/RCS/Sspeeds.inc,v 1.13 2004-11-10 10:16:24-08 Hamilton Exp Hamilton $
10$Header: d:/UnitSpeeds/RCS/SspeedP1.inc,v 1.1 2004-11-10 09:43:59-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

18 1 PT MOTION SPEEDS

0

5

10

15

20

25

30

35

40

0 8 16 24 32 40 48 56 64

Wed Nov 10 09:03:38 2004

Spectra Tilt speeds vs index value

Figure 4. Spectra I DD5x- PRGSPCTFW106 Tilt Speeds

/* minimum input speed 7 */

static code WORD tilt_speed_xlat[] = {

6, 6, 6, 6, 6, 6, 6, 6,

13, 20, 27, 34, 41, 49, 56, 63,

70, 77, 84, 91, 98, 105, 112, 119,

126, 133, 140, 147, 154, 161, 168, 175,

182, 189, 196, 203, 210, 217, 224, 231,

238, 245, 252, 259, 266, 273, 280, 288,

295, 302, 309, 316, 323, 330, 337, 344,

351, 358, 365, 372, 379, 386, 393, 400

};

Table 4. Tilt speeds Spectra I, version DD5x- PRGSPCTFW106, from the source code

11$Header: d:/UnitSpeeds/RCS/SspeedT1.inc,v 1.1 2004-11-10 09:44:00-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

1.3 Spectra domes 19

1.3.2 Spectra II, version PG53-0001-0206

0

5

10

15

20

25

30

35

40

0 8 16 24 32 40 48 56 64

Wed Nov 10 09:03:38 2004

Spectra Pan speeds vs index value

Figure 5. Spectra II PG53-0001-0206 “0206” Pan Speeds“OLD SPEED TABLE”

#ifdef OLD_SPEED_TABLE /* 2.00 */

static code WORD pan_speed_xlat[] = {

6, 6, 6, 6, 6, 6, 6, 6,

13, 20, 27, 34, 41, 48, 56, 63, /* 2.00 */

70, 77, 84, 91, 98, 105, 112, 119, /* 2.00 */

126, 133, 140, 147, 154, 161, 168, 175,

182, 189, 196, 203, 210, 217, 224, 231,

238, 245, 252, 259, 266, 273, 280, 288,

295, 302, 309, 316, 323, 330, 337, 344,

351, 358, 365, 372, 379, 386, 393, 400

};

#else /* 2.00 */

#endif /* 2.00 */

/* End of 2.00 */

12$Header: d:/UnitSpeeds/RCS/Sspeeds.inc,v 1.13 2004-11-10 10:16:24-08 Hamilton Exp Hamilton $
13$Header: d:/UnitSpeeds/RCS/SspeedP2.inc,v 1.1 2004-11-10 09:43:59-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

20 1 PT MOTION SPEEDS

Table 5. Pan speeds Spectra II, version PG53-0001-0206, from the source code, first part

Confidential PELCO Information – 15 December 2004 – 7:12

1.3 Spectra domes 21

0

5

10

15

20

25

30

35

40

0 8 16 24 32 40 48 56 64

Wed Nov 10 09:03:38 2004

Spectra Pan speeds vs index value

Figure 6. Spectra II PG53-0001-0206 “0206” Pan Speeds “non-OLD SPEED TABLE”

#ifdef OLD_SPEED_TABLE /* 2.00 */

/* Start of 2.00 */

static code WORD pan_speed_xlat[] = {

5, 5, 5, 5, 5, 5, 5, 9,

13, 16, 20, 23, 27, 30, 34, 37,

41, 45, 48, 52, 56, 59, 63, 67,

71, 75, 78, 82, 86, 90, 94, 99,

103, 107, 111, 116, 121, 125, 130, 135,

141, 146, 152, 157, 164, 170, 177, 184,

191, 199, 208, 217, 227, 237, 248, 260,

273, 287, 302, 318, 336, 356, 377, 400

};

#endif /* 2.00 */

static code WORD pan_jitter_speeds[] =

{

34, 48, 63,

84, 98, 112

};

#define NPAN_JITTER_SPEEDS (sizeof(pan_jitter_speeds) / sizeof (WORD))

14$Header: d:/UnitSpeeds/RCS/SspeedP3.inc,v 1.1 2004-11-10 09:44:00-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

22 1 PT MOTION SPEEDS

/* End of 2.00 */

Table 6. Pan speeds Spectra II, version PG53-0001-0206, from the source code, second part

Confidential PELCO Information – 15 December 2004 – 7:12

1.3 Spectra domes 23

0

5

10

15

20

25

30

35

40

0 8 16 24 32 40 48 56 64

Wed Nov 10 09:03:38 2004

Spectra Tilt speeds vs index value

Figure 7. Spectra II PG53-0001-0206 “0206” Tilt Speeds “OLD SPEED TABLE”

#ifdef OLD_SPEED_TABLE

/* minimum input speed 7 */

static code WORD tilt_speed_xlat[] = {

6, 6, 6, 6, 6, 6, 6, 6,

13, 20, 27, 34, 41, 49, 56, 63,

70, 77, 84, 91, 98, 105, 112, 119,

126, 133, 140, 147, 154, 161, 168, 175,

182, 189, 196, 203, 210, 217, 224, 231,

238, 245, 252, 259, 266, 273, 280, 288,

295, 302, 309, 316, 323, 330, 337, 344,

351, 358, 365, 372, 379, 386, 393, 400

};

#else

#endif /* 2.00 */

Table 7. Tilt speeds Spectra II, version PG53-0001-0206, from the source code, first part

15$Header: d:/UnitSpeeds/RCS/SspeedT2.inc,v 1.1 2004-11-10 09:44:00-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

24 1 PT MOTION SPEEDS

0

5

10

15

20

25

30

35

40

0 8 16 24 32 40 48 56 64

Wed Nov 10 09:03:38 2004

Spectra Tilt speeds vs index value

Figure 8. Spectra II PG53-0001-0206 “0206” Tilt Speeds “non-OLD SPEED TABLE”

#ifdef OLD_SPEED_TABLE

#else

static code WORD tilt_speed_xlat[] = {

5, 5, 5, 5, 5, 5, 5, 9,

13, 16, 20, 23, 27, 30, 34, 37,

41, 45, 48, 52, 56, 59, 63, 67,

71, 75, 78, 82, 86, 90, 94, 99,

103, 107, 111, 116, 121, 125, 130, 135,

141, 146, 152, 157, 164, 170, 177, 184,

191, 199, 208, 217, 227, 237, 248, 260,

273, 287, 302, 318, 336, 356, 377, 400

};

#endif /* 2.00 */

Table 8. Tilt speeds Spectra II, version PG53-0001-0206, from the source code, second part

16$Header: d:/UnitSpeeds/RCS/SspeedT3.inc,v 1.1 2004-11-10 09:44:01-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

1.3 Spectra domes 25

1.3.3 Spectra II, version PG53-0060-0308

0

10

20

30

40

50

60

70

80

0 8 16 24 32 40 48 56 64

Wed Nov 10 09:03:38 2004

Spectra Pan speeds vs index value

Figure 9: Spectra II PG53-0060-0308 “0308” Pan Speeds. Note: that the vertical scaling has been
changed.

static code WORD pan_speed_xlat[] = {

5, 5, 5, 5, 5, 5, 5, 5,

5, 5, 6, 7, 7, 8, 9, 10,

10, 11, 13, 14, 15, 17, 18, 20,

22, 24, 26, 29, 32, 35, 38, 42,

46, 50, 55, 60, 66, 73, 80, 87,

96, 105, 115, 126, 139, 152, 167, 183,

200, 220, 241, 264, 290, 318, 349, 382,

419, 460, 504, 553, 607, 665, 729, 800

};

#endif /* 2.10 */

/* Line removed 2.10 */

#ifdef SKIP_VIBRATION_SPEEDS /* 2.10 */

static code WORD pan_jitter_speeds[] =

17$Header: d:/UnitSpeeds/RCS/Sspeeds.inc,v 1.13 2004-11-10 10:16:24-08 Hamilton Exp Hamilton $
18$Header: d:/UnitSpeeds/RCS/SspeedP4.inc,v 1.1 2004-11-10 09:44:00-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

26 1 PT MOTION SPEEDS

{

34, 48, 63,

84, 98, 112

};

#define NPAN_JITTER_SPEEDS (sizeof(pan_jitter_speeds) / sizeof (WORD))

#endif /* 2.10 */

/* End of 2.00 */

Table 9. Pan speeds Spectra II, version PG53-0060-0308, from the source code

Confidential PELCO Information – 15 December 2004 – 7:12

1.3 Spectra domes 27

0

5

10

15

20

25

30

35

40

0 8 16 24 32 40 48 56 64

Wed Nov 10 09:03:38 2004

Spectra Tilt speeds vs index value

Figure 10. Spectra II PG53-0060-0308 “0308” Tilt Speeds

/* Lines removed 2.10 */

/* Start of 2.00 */

static code WORD tilt_speed_xlat[] = {

5, 5, 5, 5, 5, 5, 5, 9,

13, 16, 20, 23, 27, 30, 34, 37,

41, 45, 48, 52, 56, 59, 63, 67,

71, 75, 78, 82, 86, 90, 94, 99,

103, 107, 111, 116, 121, 125, 130, 135,

141, 146, 152, 157, 164, 170, 177, 184,

191, 199, 208, 217, 227, 237, 248, 260,

273, 287, 302, 318, 336, 356, 377, 400

};

/* End of 2.00 */

/* Line removed 2.10 */

Table 10. Tilt speeds Spectra II, version PG53-0060-0308, from the source code

19$Header: d:/UnitSpeeds/RCS/SspeedT4.inc,v 1.1 2004-11-10 09:44:01-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

28 1 PT MOTION SPEEDS

1.3.4 Spectra II, version PG53-0060-0331

0

5

10

15

20

25

30

35

40

45

0 8 16 24 32 40 48 56 64

Wed Nov 10 09:03:38 2004

Spectra Tilt speeds vs index value

Figure 11. Spectra II PG53-0060-0331 “0331” NTSC Tilt Speeds

static code WORD tilt_ntsc_xlat[] = {

5, 5, 5, 5, 5, 5, 5, 9,

13, 16, 20, 23, 27, 30, 34, 37,

41, 45, 48, 52, 56, 59, 63, 67,

71, 75, 78, 82, 86, 90, 94, 99,

103, 107, 111, 116, 121, 125, 128, 131,

139, 146, 152, 157, 164, 170, 177, 184,

191, 199, 208, 217, 227, 237, 248, 253,

290, 300, 310, 320, 336, 356, 370, 440

};

Table 11. Tilt speeds Spectra II, version PG53-0060-0331, from the source code, first part

20$Header: d:/UnitSpeeds/RCS/Sspeeds.inc,v 1.13 2004-11-10 10:16:24-08 Hamilton Exp Hamilton $
21$Header: d:/UnitSpeeds/RCS/SspeedT5.inc,v 1.1 2004-11-10 09:44:01-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

1.3 Spectra domes 29

0

5

10

15

20

25

30

35

40

45

0 8 16 24 32 40 48 56 64

Wed Nov 10 09:03:39 2004

Spectra Tilt speeds vs index value

Figure 12. Spectra II PG53-0060-0331 “0331” PAL Tilt Speeds

static code WORD tilt_pal_xlat[] = {

5, 5, 5, 5, 5, 5, 5, 9,

13, 16, 20, 23, 27, 30, 34, 37,

41, 45, 48, 52, 56, 59, 63, 67,

71, 75, 78, 82, 86, 90, 94, 99,

103, 106, 107, 118, 121, 125, 130, 135,

141, 146, 152, 157, 164, 170, 177, 184,

191, 199, 204, 206, 249, 252, 253, 255,

260, 265, 270, 380, 290, 376, 400, 440

};

/*

for version 3.29:

ntsc:

gap inserted between 131 and 139, try to skip 135

gap inserted between 253 and 290, try to skip 270

gap inserted between 377 and 440, try to skip 405

pal:

gap inserted between 107 and 118, try to skip 112

gap inserted between 206 and 249, try to skip 224

22$Header: d:/UnitSpeeds/RCS/SspeedT6.inc,v 1.1 2004-11-10 09:44:01-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

30 1 PT MOTION SPEEDS

gap inserted between 290 and 376, try to skip 336

*/

Table 12. Tilt speeds Spectra II, version PG53-0060-0331, from the source code, second part

1.4 Esprit speeds

The Esprit series of pan and tilt units was based on Spectra II source code and shows reasonable
non-linear speed curves for both pan (Figure 13, page 31 and the very similar Figure 14, page 32).
The tilt speeds were partially from the Esprit tilt speed table (Figure 15, page 33) and an Esprit
specific tilt speed table (Figure 16, page 34).

Eventually the Esprit updated their speed tables to be reasonably non-linear with Figure 17,
page 35, for pan, and Figure 18, page 36 for tilt.

Confidential PELCO Information – 15 December 2004 – 7:12

1.4 Esprit speeds 31

1.4.1 Esprit, version PG53-0026-0100

0

5

10

15

20

25

30

35

40

0 8 16 24 32 40 48 56 64

Wed Nov 10 07:04:49 2004

Esprit Pan speeds vs index value

Figure 13. Esprit PG53-0026-0100 Pan Speeds “NOTEST”

static code WORD pan_speed_xlat[] = {

#ifdef NOTEST

2, 2, 3, 3, 4, 5, 5, 9,

13, 16, 20, 23, 27, 30, 34, 37,

41, 45, 48, 52, 56, 59, 63, 67,

71, 75, 78, 82, 86, 90, 94, 99,

103, 107, 111, 116, 121, 125, 130, 135,

141, 146, 152, 157, 164, 170, 177, 184,

191, 199, 208, 217, 227, 237, 248, 260,

273, 287, 302, 318, 336, 356, 377, 400

#else

#endif

};

Table 13. Pan speeds Esprit, version PG53-0026-0100, from the source code, first part

23$Header: d:/UnitSpeeds/RCS/Espeeds.inc,v 1.10 2004-11-10 08:27:26-08 Hamilton Exp Hamilton $
24$Header: d:/UnitSpeeds/RCS/EspeedP1.inc,v 1.2 2004-11-10 08:27:24-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

32 1 PT MOTION SPEEDS

0

5

10

15

20

25

30

35

40

0 8 16 24 32 40 48 56 64

Wed Nov 10 07:04:49 2004

Esprit Pan speeds vs index value

Figure 14. Esprit PG53-0026-0100 Pan Speeds “not-NOTEST”

static code WORD pan_speed_xlat[] = {

#ifdef NOTEST

#else

2, 2, 3, 3, 4, 5, 7, 9,

12, 15, 18, 21, 25, 29, 33, 37,

41, 45, 48, 52, 56, 59, 63, 67,

71, 75, 78, 82, 86, 90, 94, 99,

103, 107, 111, 116, 121, 125, 130, 135,

141, 146, 152, 157, 164, 170, 177, 184,

191, 199, 208, 217, 227, 237, 248, 260,

273, 287, 302, 318, 336, 356, 377, 400

#endif

};

Table 14. Pan speeds Esprit, version PG53-0026-0100, from the source code, second part

25$Header: d:/UnitSpeeds/RCS/EspeedP2.inc,v 1.2 2004-11-10 08:27:25-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

1.4 Esprit speeds 33

0

5

10

15

20

25

30

35

40

0 8 16 24 32 40 48 56 64

Wed Nov 10 07:04:49 2004

Esprit Tilt speeds vs index value

Figure 15. Esprit PG53-0026-0100 Tilt Speeds “OLD SPEED TABLE”

#ifdef OLD_SPEED_TABLE /* v0.09 */

static code WORD tilt_speed_xlat[] = {

5, 5, 5, 5, 5, 5, 5, 9,

13, 16, 20, 23, 27, 30, 34, 37,

41, 45, 48, 52, 56, 59, 63, 67,

71, 75, 78, 82, 86, 90, 94, 99,

103, 107, 111, 116, 121, 125, 130, 135,

141, 146, 152, 157, 164, 170, 177, 184,

191, 199, 208, 217, 227, 237, 248, 260,

273, 287, 302, 318, 336, 356, 377, 400

};

#else /* v0.09 */

#endif /* v0.09 */

Table 15. Tilt speeds Esprit, version PG53-0026-0100, from the source code, first part

26$Header: d:/UnitSpeeds/RCS/EspeedT1.inc,v 1.2 2004-11-10 08:27:25-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

34 1 PT MOTION SPEEDS

0

2

4

6

8

10

12

14

16

18

20

0 8 16 24 32 40 48 56 64

Wed Nov 10 07:04:49 2004

Esprit Tilt speeds vs index value

Figure 16. Esprit PG53-0026-0100 Tilt Speeds “not-OLD SPEED TABLE”

#ifdef OLD_SPEED_TABLE /* v0.09 */

#else /* v0.09 */

/* each step */

static code WORD tilt_speed_xlat[] = {

5, 5, 5, 5, 5, 5, 5, 7,

9, 11, 13, 14, 16, 18, 20, 22,

23, 25, 27, 29, 31, 33, 35, 36,

38, 40, 42, 44, 46, 49, 51, 53,

55, 57, 60, 62, 64, 67, 69, 72,

75, 78, 81, 84, 87, 90, 94, 97,

101, 105, 110, 114, 119, 124, 130, 135,

142, 148, 155, 163, 171, 180, 190, 200

}

#endif /* v0.09 */

Table 16. Tilt speeds Esprit, version PG53-0026-0100, from the source code, second part

27$Header: d:/UnitSpeeds/RCS/EspeedT2.inc,v 1.2 2004-11-10 08:27:26-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

1.4 Esprit speeds 35

1.4.2 Esprit, version PG53-0096-0210

0

5

10

15

20

25

30

35

40

0 8 16 24 32 40 48 56 64

Wed Nov 10 07:04:49 2004

Esprit Pan speeds vs index value

Figure 17. Esprit PG53-0096-0210 Pan Speeds

static code WORD pan_speed_xlat[] = {

2, 2, 3, 3, 4, 5, 7, 9,

12, 15, 18, 21, 25, 29, 33, 37,

41, 45, 48, 52, 56, 59, 63, 67,

71, 75, 78, 82, 86, 90, 94, 99,

103, 107, 111, 116, 121, 125, 130, 135,

141, 146, 152, 157, 164, 170, 177, 184,

191, 199, 208, 217, 227, 237, 248, 260,

273, 287, 302, 318, 336, 356, 377, 400

};

Table 17. Pan speeds Esprit, version PG53-0096-0210, from the source code

28$Header: d:/UnitSpeeds/RCS/Espeeds.inc,v 1.10 2004-11-10 08:27:26-08 Hamilton Exp Hamilton $
29$Header: d:/UnitSpeeds/RCS/EspeedP3.inc,v 1.2 2004-11-10 08:27:25-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

36 1 PT MOTION SPEEDS

0

2

4

6

8

10

12

14

16

18

20

0 8 16 24 32 40 48 56 64

Wed Nov 10 07:04:49 2004

Esprit Tilt speeds vs index value

Figure 18. Esprit PG53-0096-0210 Tilt Speeds

static code WORD tilt_speed_xlat[] = {

5, 5, 5, 5, 5, 5, 5, 7,

9, 11, 13, 14, 16, 18, 20, 22,

23, 25, 27, 29, 31, 33, 35, 36,

38, 40, 42, 44, 46, 49, 51, 53,

55, 57, 60, 62, 64, 67, 69, 72,

75, 78, 81, 84, 87, 90, 94, 97,

101, 105, 110, 114, 119, 124, 130, 135,

142, 148, 155, 163, 171, 180, 190, 200

};

Table 18. Tilt speeds Esprit, version PG53-0096-0210, from the source code

30$Header: d:/UnitSpeeds/RCS/EspeedT3.inc,v 1.2 2004-11-10 08:27:26-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

1.4 Esprit speeds 37

1.4.3 Esprit, version PG53-0026-0100

The ExCite system has identical tilt speed tables for tilt in NTSC and PAL modes of operation.

0

5

10

15

20

25

30

35

40

0 8 16 24 32 40 48 56 64

Wed Nov 10 06:39:05 2004

Pan speeds vs index value for the ExCite

Figure 19. ExCite pan speeds, first released version

#ifdef MAX_SPEED_80

LOCAL

#ifndef BB_SPEED_TABLE

const

#endif

unsigned short pan_speed_xlat[] = {

10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 127, 166,

205, 245, 284, 324, 365, 405, 446, 488, 530, 572, 615, 658,

702, 747, 792, 838, 884, 931, 980, 1029, 1078, 1129, 1181, 1234,

1289, 1344, 1401, 1459, 1519, 1581, 1644, 1710, 1777, 1846, 1918, 1992,

2069, 2149, 2231, 2317, 2406, 2499, 2595, 2696, 2801, 2911, 3026, 3146,

3272, 3403, 3542, 3687

};

#endif

31$Header: d:/UnitSpeeds/RCS/ExCite.inc,v 1.2 2004-11-10 10:33:41-08 Hamilton Exp Hamilton $
32$Header: d:/UnitSpeeds/RCS/ExCiteP.inc,v 1.2 2004-11-10 10:33:41-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

38 1 PT MOTION SPEEDS

Table 19: Pan and Tilt speeds for the initial version of the ExCite, from the source code, first part

Confidential PELCO Information – 15 December 2004 – 7:12

1.4 Esprit speeds 39

0

2

4

6

8

10

12

14

16

18

20

0 8 16 24 32 40 48 56 64

Wed Nov 10 06:39:05 2004

Tilt NTSC speeds vs index value for the ExCite

Figure 20. ExCite NTSC tilt speeds, first release

LOCAL

#ifndef BB_SPEED_TABLE

const

#endif

unsigned short tilt_ntsc_xlat[] = {

50, 50, 50, 50, 50, 50, 50, 60, 70, 80, 100, 120,

140, 150, 170, 190, 210, 230, 240, 260, 280, 300, 320, 340,

360, 380, 390, 410, 430, 450, 470, 500, 520, 540, 560, 580,

610, 630, 640, 660, 700, 730, 760, 790, 820, 850, 890, 920,

960, 1000, 1040, 1090, 1140, 1190, 1240, 1270, 1450, 1500, 1550, 1600,

1680, 1780, 1850, 2000

};

Table 20. Pan and Tilt speeds for the initial version of the ExCite, from the source code

33$Header: d:/UnitSpeeds/RCS/ExCiteTN.inc,v 1.2 2004-11-10 10:33:42-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

40 2 THE PMD/UMDM/PUD MOTION CONTROL CHIPS

2 The PMD/UMDM/PUD motion control chips

With the Intercept series, motion control was either fixed speed motion control or by “half
stepping” stepper motors and utilizing a large pan ratio to get good slow speed. The control
signals for the half stepping of the stepper motors were generated by the Intercept software with
an assist from some special firmware in the programmable Xilinx chip.

When the design of the Spectra was started it was realized that better smooth motion control
could be obtained by “microstepping” the stepper motors. Eventually a motion control chip set
(two chips) made by Performance Motor Devices (PMD) was chosen to do the microstepping. The
PMD chip provides 64 microsteps per “full step”, velocity and trajectory control for the system.
The interface to it consists of sending it commands and parameters. It then generates the correct
Pulse Width Modulated (PWM) signal to drive two stepper motors. (One for pan and one for
tilt.) (This chip set is still used in all Spectra and some Esprit units today.)

In an effort to control our own products, Pelco in 1997 started a project to make our “own”
motion control chips. This was originally known as the Universal Motor Driver Module (UMDM)
project and has resulted in one patent (Appendix A.1, page A-1). Later on the name was changed
to the Pelco Universal Driver (PUD) project which is currently being used in some Esprits units.
The PUD resulted in one patent (Appendix A.2, page A-1).

A feature of the PUD chips is that they may have some of their internal tables downloaded.
These are the sinΘ table (Figure 21, page 41) used to generate the motor control data and the
IVcorrection table to provide better control of the stepper motor at high speeds. The downloaded
sinΘ table from one of the Espirts is shown in Figure 2.1, page 41.

Confidential PELCO Information – 15 December 2004 – 7:12

2.1 sin table used with the PUD from the Esprit PG53-0096-0210 41

2.1 sin table used with the PUD from the Esprit PG53-0096-0210

aaa
aaa
aaa
aaa
aaa
aaaa
aaaa
aaaa
aaaa
aaaaa
aaaaa
aaaaaa

aaaaaaaaaa
aaa

$RCSfile: PudSin.inc,v $

Figure 21. PUD sin wave vs. a “real” one

34$Header: d:/UnitSpeeds/RCS/PudSin.inc,v 1.6 2004-11-09 14:38:01-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

42 2 THE PMD/UMDM/PUD MOTION CONTROL CHIPS

static code unsigned int pansine[SINE_TABLE_SIZE]

= {

0, 115, 125, 140, 160, 175, 200, 215,

230, 246, 275, 298, 321, 345, 365, 387,

407, 430, 453, 471, 492, 515, 525, 539,

553, 571, 590, 609, 628, 648, 665, 686,

703, 720, 737, 752, 769, 788, 807, 821,

835, 846, 860, 871, 885, 896, 906, 917,

923, 932, 940, 949, 958, 966, 975, 990,

995, 1000, 1004, 1007, 1010, 1012, 1014, 1016,

1023, 1016, 1014, 1012, 1010, 1007, 1004, 1000,

995, 990, 975, 966, 958, 949, 940, 932,

923, 917, 906, 896, 885, 871, 860, 846,

835, 821, 807, 788, 769, 752, 737, 720,

703, 686, 665, 648, 628, 609, 590, 571,

553, 539, 525, 515, 492, 471, 453, 430,

407, 387, 365, 345, 321, 298, 275, 246,

230, 215, 200, 175, 160, 140, 125, 115,

};

static code unsigned int tiltsine[SINE_TABLE_SIZE]

= {

0, 115, 125, 140, 160, 175, 200, 215,

230, 246, 275, 298, 321, 345, 365, 387,

407, 430, 453, 471, 492, 515, 525, 539,

553, 571, 590, 609, 628, 648, 665, 686,

703, 720, 737, 752, 769, 788, 807, 821,

835, 846, 860, 871, 885, 896, 906, 917,

923, 932, 940, 949, 958, 966, 975, 990,

995, 1000, 1004, 1007, 1010, 1012, 1014, 1016,

1023, 1016, 1014, 1012, 1010, 1007, 1004, 1000,

995, 990, 975, 966, 958, 949, 940, 932,

923, 917, 906, 896, 885, 871, 860, 846,

835, 821, 807, 788, 769, 752, 737, 720,

703, 686, 665, 648, 628, 609, 590, 571,

553, 539, 525, 515, 492, 471, 453, 430,

407, 387, 365, 345, 321, 298, 275, 246,

230, 215, 200, 175, 160, 140, 125, 115,

};

"Real sin() table"

0, 25, 50, 75, 100, 125, 150, 175,

200, 224, 249, 273, 297, 321, 345, 368,

391, 415, 437, 460, 482, 504, 526, 547,

568, 589, 609, 629, 649, 668, 687, 705,

723, 741, 758, 775, 791, 806, 822, 836,

851, 864, 877, 890, 902, 914, 925, 935,

945, 954, 963, 971, 979, 986, 992, 998,

1003, 1008, 1012, 1015, 1018, 1020, 1022, 1023,

1023, 1023, 1022, 1020, 1018, 1015, 1012, 1008,

1003, 998, 992, 986, 979, 971, 963, 954,

945, 935, 925, 914, 902, 890, 877, 864,

851, 836, 822, 806, 791, 775, 758, 741,

723, 705, 687, 668, 649, 629, 609, 589,

568, 547, 526, 504, 482, 460, 437, 415,

391, 368, 345, 321, 297, 273, 249, 224,

200, 175, 150, 125, 100, 75, 50, 25,

Confidential PELCO Information – 15 December 2004 – 7:12

43

3 About the Joystick Report

The original source for the Joystick Report has been misplaced35. There are several “Xerox”
copies of one of the originals. The overall findings of the Joystick Report are that a non-linear speed
table resident on the dome, pan/tilt, should be used for the best control of a dome or pan/tilt
device. For this to work correctly the commands received by the dome, must be generated in
a linear manner. I.e. as the joy stick is moved further and further from the center the values
generated must monotonically increase in a linear manner. Since humans perceive most things in
a non-linear manner, the non-linear portion of the control loop must be inside the dome and must
be matched to the dome’s internal/physical characteristics. A suggested table of non-linear dome
speeds is shown in Table 21, page 45 of the Joystick Report, it is plotted in Figure 22, page 44.
Motion control of the Spectra series of domes improved significantly after the recommendations
of the Joystick Report were adopted. (The Esprit series of pan/tilt units always have had the
improved speed tables suggested by the Joystick Report.)

35The last known original was “misplaced” by Eric Hamilton sometime in this century or the last.

Confidential PELCO Information – 15 December 2004 – 7:12

44 3 ABOUT THE JOYSTICK REPORT

3.1 “Ideal” speeds from sheet 6 of the Joystick Report

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60

Wed Nov 10 07:51:55 2004

Joy Stick outputs

Figure 22. Ideal Joystick speeds

36$Header: d:/UnitSpeeds/RCS/JsSpeeds.inc,v 1.4 2004-11-10 08:27:28-08 Hamilton Exp Hamilton $
37$Header: d:/UnitSpeeds/RCS/Jspeeds.inc,v 1.2 2004-11-10 08:27:29-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

3.1 “Ideal” speeds from sheet 6 of the Joystick Report 45

1 005 30 016 59 063 88 224
2 005 31 017 60 063 89 246
3 005 32 017 61 069 90 246
4 005 33 019 62 069 91 269
5 005 34 019 63 075 92 269

6 005 35 021 64 075 93 295
7 005 36 021 65 083 94 295
8 005 37 023 66 083 95 323
9 006 38 023 67 090 96 323
10 006 39 025 68 090 97 353

11 007 40 025 69 099 98 353
12 007 41 027 70 099 99 387
13 007 42 027 71 108 100 387
14 007 43 030 72 108 101 424
15 008 44 030 73 119 102 424

16 008 45 033 74 119 103 464
17 009 46 033 75 130 104 464
18 009 47 036 76 130 105 508
19 010 48 036 77 142 106 508
20 010 49 040 78 142 107 556

21 011 50 040 79 156 108 556
22 011 51 044 80 156 109 609
23 012 52 044 81 171 110 609
24 012 53 048 82 171 111 667
25 013 54 048 83 187 112 667

26 013 55 052 84 187 113 730
27 014 56 052 85 205 114 730
28 014 57 057 86 205 115 800
29 016 58 057 87 224 116 800

Table 21. Speed values from sheet 6 of “The Joystick Report”, September 19, 1997

Confidential PELCO Information – 15 December 2004 – 7:12

464 FIRMWARE FUNCTIONAL SPECIFICATION FOR THE DRD08/14 SERIES OF DOMES

4 Firmware Functional Specification for the DRD08/14 series of
domes

David Micon, March 27, 1995
David Micon, July 20, 1995

Modified by:
Eric Hamilton, January 2004

4.1 Introduction

This documentation applies to at least one model of the old Intercept series of domes. The
Spectra I and following integrated position systems used this, and its upgrades, to as a basis for
their internal logic. This write up is “out of date”, but is the most recent write up that covers all
the internal routines of this code.

This documentation specification applies to several different versions of the software. When
this software was writen Pelco had different versions of the software for each of the communications
protocols used to control the domes. The protocols were/are:

1. Coaxitron. Used to send commands on the same coaxial cable used to send the video from
the dome (but in the opposite direction).

2. Pacom Intercept, now known as P Protocol. Used to communicate on an RS-422/RS-485
connection between the head end and the dome.

3. American Dynamics, now known asD Protocol. Used to communicate on an RS-422/RS-
485 connection between the head end and the dome.

All of these refer to the logical method used to communicate between the control and the
Intercept.

The older Intercept domes (there were 8 and 14 inch versions) behavee identically except that
the 8-inch version moves twice as fast as the 14-inch version.

In some places in this document there will be refrences to different versions of the Intercept
dome.

• The A22 versions always have video capability (the ability to put messages on the monitor
that is connected to the Intercept).

• The P22 and D22 versions may or may not have video capability depending on whether or
not video hardware is installed.

The following descriptions refer to all models of the Intercept except where noted.

38$Header: d:/UnitSpeeds/RCS/IntLogic.inc,v 1.5 2004-11-09 14:37:59-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

4.2 Video 47

4.2 Video

Models of the Intercept that have video capability can put two lines of 20 characters each on
the monitor. The first line is used for pattern messages and zone labels. The second line is used for
preset labels. Pattern messages and preset labels are normally cleared when the Intercept moves
(including the lens). Zone labels are updated as the Intercept pans (if zone scan is turned on).

The control can also write characters to the video. This is used to write labels when setting
preset and zone labels. When this command is recieved, the monitor is locked so that motion
commands will not clear the monitor. This allows a label to be written on the monitor, and then
movement to a preset or zone position before setting the preset or zone.

4.3 Firmware Organization

The firmware is organized into a main loop and several tasks. The main loop calls the tasks
repeatedly. If a task has nothing to do or is waiting for something to happen, it returns to the
main loop quickly. If a task does have something to do, it does it and then returns.

The tasks are divided into six groups: configuration/command, speed ramping, pattern pro-
cessing, alarm checking, screen refreshing, and zone processing. The configuration/command group
has two tasks, configuration processing and command processing. Only one of the tasks will be
called during each pass through the main loop, since the Intercept can be either configuring or
processing commands but not both at the same time. All the other groups have one task each.

4.4 Configuration

The purpose of configuration is to move the pan-and-tilt (P/T) so that the index points are hit
to reset the counters that count the pulses coming from the position encoders.

Upon power up or reset, the firmware goes into a configuration cycle. There is a delay to allow
the operator to remove his or her hands before the drive starts moving.

After the delay, the lens zooms wide and focuses far. Then it zooms tele and focuses near. Then
the Intercept tilts down and pans left. Then it tilts up and pans right. During configuration the
receiver will not accept any commands.

4.5 Reset command

The reset command resets the receiver. The receiver will start configuring, just as if power had
been removed and then reapplied.

4.6 Motion commands

Motion commands are commands that tell the receiver to start or stop a P/T or lens motion
(pan, tilt, zoom, focus, iris). More than one motion can be going on at a time. If a motion (or
motions) has been started, the receiver will stop it after 15 seconds when the control comes from
an RS-422/RS-485 protocol, or 1 second for Coaxitron commands, if no other motion command

Confidential PELCO Information – 15 December 2004 – 7:12

484 FIRMWARE FUNCTIONAL SPECIFICATION FOR THE DRD08/14 SERIES OF DOMES

has been received. This prevents the receiver from being driven forever if communication problems
(or other reasons) prevent the receiver from receiving a stop command.

The second video line (preset labels) is cleared. Also, the first video line (zone labels, pattern
messages) is cleared if the monitor is not locked, a pattern is not being recorded, and zone scan is
not enabled.

4.7 Speed Calculation

The Spectra and Esprit series of integrated units utilize either a PMD or PUD motion control
chip to control their motion. The motion control chip receives its control from the CPU chip
in response to various motion commands. An explination as to how the motion commands were
generated is in Section 6, page 75.

4.8 Speed Ramping

To avoid abrupt speed changes (which could cause clunking noises or even motor stalling), the
speeds (angular velocities in degrees/second) are ramped up or down. A command that causes
an speed change (such as a motion command or a move to preset) does not set the speed di-
rectly. Instead, it sets a desired speed and direction. The ramping task compares the current
speed (degrees/second) and direction to the desired speed and direction and calculates a new
current speed and direction. This new speed is calculated to keep the angular acceleration (de-
grees/second/second) approximately constant.

Because the time between ramp calculations can vary (depending on the time taken by other
tasks), the time since the last ramp calculation is determined by reading a timer and this time is
used to help determine the speed change.

4.9 Presets

Presets can be moved to, set, or cleared.
When a move to preset command is received, the preset position stored for the preset number

specified in the command is checked. If the position is not valid, the command is ignored. Otherwise
the Intercept moves to the preset pan, tilt, zoom, and focus positions.

A move to preset is started by setting preset in progress. This is done during processing of the
move to preset command. Then the preset task takes over. On each pass through the preset task,
it reads the current position. For each type of movement (e.g. pan), it determines which direction
to move to get to the desired position and starts the move. For pan and tilt, it also calculates the
speed at which to move (the closer to the destination, the slower). If it is at the desired position,
it stops moving. When all types of movement are at the desired position and have been there for
some time, preset in progress is turned off.

Once the preset has been reached, the preset label is displayed on the second video line.
If any command which causes motion is received during a move to preset, the move will be

aborted and the new command will start. These commands are: a motion command, or another

Confidential PELCO Information – 15 December 2004 – 7:12

4.10 Screen Refreshing 49

move to preset command, Also if the move is not completed within 15 seconds, the move is aborted
and motion is stopped.

When a set preset command is received, the current pan, tilt, focus, and zoom positions are
saved for the preset number specified in the command. For video models (all Spectras and Esprits
are “video models”), the monitor is unlocked, and the label for that preset becomes whatever is
currently on the second video line.

The clear preset command makes the stored preset for the preset number specified in the
command invalid so that it can not be moved to.

4.10 Screen Refreshing

Each time this task is called, 5 characters are written to the character generator that puts
characters on the screen. Then a counter is incremented so that the next 5 characters are written
the next time the task is called. Refreshing the character generator ensures that even if the
generator’s memory gets corrupted (due to noise or other causes), the memory will be corrected in
a short time and bad characters will not stay on the screen.

4.11 Auxiliary outputs

There is 1 auxiliary output. (Spectra and Esprit have 2 auxiliary outputs.) This is a relay that
is opened and closed by software command. (The additional output is an “open collector” type.)
Note that there is no momentary command to the dome. If a momentary relay closure is desired,
a close relay command must be sent to the receiver, followed by an open relay command.

4.12 Zones

Zones are only meaningful for video models.
When a zone start command is received, the current pan position is saved as the start position

for the zone number specified in the command. Also whatever is displayed on the first video line is
saved as the zone label. Note that zone scan must be turned off before this command is received
or the zone programming will not work correctly.

When a zone end command is received, the monitor is unlocked, and the current pan position
is saved as the end position for the zone number specified in the command.

Zones extend from the start point clockwise, looking down from above the dome, to the end
point. This means that if a zone start point is set, the Intercept is panned slightly clockwise, and the
zone end point is set, the zone will be small. But if the Intercept is panned slightly counterclockwise
between the start and end points, the zone will be almost all the way around the pan circle. Also
note that the requirement that a zone not cross the ”zero position” in the pan circle has been
removed.

There are commands to turn zone scan on and off. If zone scan has been turned on, the current
pan position is continuously read. If the current position is within a zone, the label for that zone is
displayed on the first video line. If the current position is not within any zone, the line is cleared.

Confidential PELCO Information – 15 December 2004 – 7:12

504 FIRMWARE FUNCTIONAL SPECIFICATION FOR THE DRD08/14 SERIES OF DOMES

If the current position is within more than one zone, the label for the highest-numbered zone will
be displayed.

4.13 Pattern

There are two types of pattern processing: record and playback. Pattern processing occurs once
each timer tick (14 times a second). If recording, the current command is stored in the EEPROM.
If the current command is not one that can be played back, an illegal command is saved (it will be
skipped during playback). If playing back, a command is read out of the EEPROM and decoded.
If it is an illegal command, it is skipped.

Recording of a pattern starts when a start pattern record command is received. It ends when
either an end pattern record command is received, or 60 seconds has elapsed since the start pattern
record command was received. (Newer units have more patterns that are longer.) For video versions
of the code, the message ”PROGRAMMING PATTERN” is put on the first video line. When recording
stops (either by command or timeout), the message is cleared.

Playing of the recorded pattern starts when a start pattern play command is received. When
the end of the recorded pattern is reached, playback starts over again at the beginning of the
pattern. This continues until any other command is received. For video versions of the code, the
monitor is unlocked. If zones have not been enabled, the message ”RUNNING PATTERN” is put on
the first video line and remains there until playback stops, at which point it is cleared. If zones
have been enabled, the ”RUNNING PATTERN” message will not be shown. Instead, the zone labels
will be shown as the pattern moves through the zones. When playback is stopped, the first video
line is cleared whether the monitor is locked or not. (In the Spectra and Esprit series the ”RUNNING
PATTERN” is never output.)

Confidential PELCO Information – 15 December 2004 – 7:12

4.14 Software Description 51

4.14 Software Description

Note

All code features are described in the following code descriptions. However for each version
of code that is generated, only some of the features will be included.

4.14.1 main program

initialize hardware and software (including programming the Xilinx)

enable interrupts (the serial receiver is not enabled yet)

put power up message in screen buffer and on screen

delay

put configuring message in screen buffer

start configuration process

do forever

commands task

if no scan in progress

if motion timer has timed out

stop motion

stop any command in progress (preset, scan, pattern)

reset motion timer

endif

else (scan in progress)

switch scan type

case configure

configuration task

endcase

case preset

move to preset task

endcase

case auto scan

auto scan task

endcase

case frame scan

frame scan task

endcase

case random scan

random scan task

endcase

endswitch

endif (scan in progress)

speed ramp task

alarms task

Confidential PELCO Information – 15 December 2004 – 7:12

524 FIRMWARE FUNCTIONAL SPECIFICATION FOR THE DRD08/14 SERIES OF DOMES

screen refresh task

pattern task

if zones are active

zone task

endif

enddo

4.14.2 Start configuration process

set scan type to config

set configuration state to start

set scan in progress

4.14.3 Configuration task

Start zoom wide and focus far

Wait for a while

Stop motion

Wait for a while

Save the current zoom and focus values

Start zoom tele and focus near

Wait for a while

Stop motion

Wait for a while

read the zoom value

if new zoom value < saved zoom value

set zoom reversed

endif

read the focus value

if new focus value < saved focus value

set focus reversed

endif

Start tilt down and pan left

Wait for a while

Stop motion

Wait for a while

Start tilt up and pan right

Wait for a while

Stop motion

Wait for a while

set configuration done

enable UART receiver so commands can be received

Note: During the waits the processor is not just looping in the routine. What is actually

Confidential PELCO Information – 15 December 2004 – 7:12

4.14 Software Description 53

happening is that the routine state is saved in a global variable. When waiting, the routine returns
to the main loop. On the next pass, the main loop will call this routine again, and the routine will
use the state variable to decide where to start executing again.

4.14.4 Commands task (RS485

Wait for a start byte to be received

initialize data counter

reset timer

repeat

if no data byte has been received

if timeout

prepare to receive next message (wait for another start

byte)

endif

else

save data byte

reset timer

endif

until all command bytes received

if command is for this receiver address and command format is

proper

compute checksum

if checksum is correct

copy command to decode buffer

decode command

endif

prepare to receive next message (wait for another start byte)

Note: Waits are implemented in a similar (but not identical) fashion as in the configuration
routine. Also this routine is exited and re-entered during the repeat loop while waiting for message
bytes.

The difference between the waits in this routine and the configuration routine is that if a
command byte has been received, the routine checks if the next byte has been received before
returning to the main loop. This allows the routine to ”catch up” if passes through the main loop
are slow and several bytes have been received between the last pass through this routine and this
pass.

4.14.5 Commands task (Coaxitron)

Disable vertical interrupt (to stop another Coaxitron command

from interfering)

if number of Coaxitron bits received is not valid

Confidential PELCO Information – 15 December 2004 – 7:12

544 FIRMWARE FUNCTIONAL SPECIFICATION FOR THE DRD08/14 SERIES OF DOMES

enable vertical interrupt

else

copy command from Coaxitron receive buffer to decode buffer

set number of Coaxitron bits to 0 (an invalid value)

enable vertical interrupt

decode command

endif

4.14.6 Decode command

(RS485 only)

if not a pattern playback command

send acknowledgment

endif

(all)

if command is extended command

if not currently recording pattern or command is end record command

or command is reset

if not playback command and currently playing pattern

stop motion

stop pattern playing

endif

switch on command

case set preset

if preset number is in range and no preset move is in

progress

do set preset

endif

endcase

case clear preset

if preset number is in range and no preset move is in

progress

do clear preset

endif

endcase

case move to preset

if preset number is in range

clear screen

do start move to preset

elseif preset number is flip

clear screen

do start flip

Confidential PELCO Information – 15 December 2004 – 7:12

4.14 Software Description 55

elseif preset number is move to zero point

clear screen

do start move to zero point

endif

endcase

case set auxiliary relay

if relay number is in range

set bit for relay in lens image

send lens image

elseif number is auto scan

set next scan to auto scan

elseif number is random scan

set next scan to random scan

elseif number is frame scan

set next scan to frame scan

endif

endcase

case clear auxiliary relay

if relay number is in range

clear bit for relay in lens image

send lens image

endif

endcase

case reset configuration

restart at beginning of code

endcase

case set zone start

if zone number in range

do set zone start

endif

endcase

case set zone end

if zone number in range

do set zone end

endif

endcase

case write char to screen

put char in screen buffer

lock screen

endcase

case clear screen

clear screen buffer

Confidential PELCO Information – 15 December 2004 – 7:12

564 FIRMWARE FUNCTIONAL SPECIFICATION FOR THE DRD08/14 SERIES OF DOMES

unlock screen

endcase

case zones on

set zones active

endcase

case zones off

clear zones active

endcase

case start pattern record

do start pattern record

endcase

case end pattern record

do end pattern record

endcase

case start pattern play

do start pattern play

endcase

case set zoom speed

(Zoom speed is controlled by changing the duty cycle

of pulses sent to the lens motor)

if valid speed

set zoom PWM (pulse width modulation) ratio and saved

zoom speed

endif

endcase

case set focus speed

(Focus speed is controlled by changing the duty cycle

of pulses sent to the lens motor)

if valid speed

set focus PWM ratio and saved focus speed

endif

endcase

endswitch

endif (command is end record etc...)

else (command is PTZ command)

if command is engage scan

start scan

elseif command is terminate scan

stop motion

stop scan

elseif command is auto scan

set next scan to auto scan

Confidential PELCO Information – 15 December 2004 – 7:12

4.14 Software Description 57

elseif command is random scan

set next scan to random scan

elseif command is frame scan

set next scan to frame scan

else (not special PTZ command)

if not a stop command

stop preset

if command is not from playback and playback in progress

stop playback

stop scan

if screen is not locked and playback not in progress and

recording not in progress

if zones not active

clear text

else

clear text except zone line

endif

endif

if the tilt up bit is on and not at up limit stop

set desired tilt up

get desired tilt speed from tilt speed table using input tilt

speed

elseif the tilt down bit is on and not at down limit stop

clear desired tilt up

get desired tilt speed from tilt speed table using input tilt

speed

else

set desired tilt speed to 0 (stop tilt)

endif

if the pan left bit is on and not at left limit stop

clear desired pan right

if input pan speed is in normal speed range

get desired pan speed from pan speed table using input

pan speed

elseif input pan speed is turbo speed

set desired pan speed to turbo pan speed

set desired tilt speed to 0 (stop tilt)

endif

elseif the pan right bit is on and not at right limit stop

set desired pan right

if input pan speed is in normal speed range

get desired pan speed from pan speed table using input

Confidential PELCO Information – 15 December 2004 – 7:12

584 FIRMWARE FUNCTIONAL SPECIFICATION FOR THE DRD08/14 SERIES OF DOMES

pan speed

elseif input pan speed is turbo speed

set desired pan speed to turbo pan speed

set desired tilt speed to 0 (stop tilt)

endif

else

set desired pan speed to 0 (stop pan)

endif

if the zoom tele bit is on

clear wide bit and set tele bit in lens image

send lens image

elseif the zoom wide bit is on

clear tele bit and set wide bit in lens image

send lens image

else

clear tele bit and wide bit in lens image

send lens image

endif

if the focus far bit is on

clear near bit and set far bit in lens image

send lens image

elseif the focus near bit is on

clear far bit and set near bit in lens image

send lens image

else

clear near bit and far bit in lens image

send lens image

endif

if the iris open bit is on

clear close bit and set open bit in lens image

send lens image

elseif the iris close bit is on

clear open bit and set close bit in lens image

send lens image

else

clear close bit and open bit in lens image

send lens image

endif

endif (not special PTZ)

endif (PTZ)

Confidential PELCO Information – 15 December 2004 – 7:12

4.14 Software Description 59

4.14.7 Set preset

Mark the preset to be set invalid (if a power failure occurs

before the new preset is fully written, it will appear invalid)

Write the current position into the new preset

Mark the new preset valid

4.14.8 Start move to preset

Get the desired preset

if desired preset is valid

reset motion timer

set zoom and focus speeds to maximum

do start move to preset 1

endif

4.14.9 Start flip

Get current position and put into desired position

set desired pan position 180 degrees away

do start move to preset 1

4.14.10 Start move to zero point

Set desired position to zero

do start move to preset 1

set lens reversals to max (to disable lens movement)

4.14.11 Start move to preset 1

(version 3.06 and below)

clear screen text

clear reversal counts

set preset in progress

(version 3.07)

clear screen text

get current position

do ramping calculations (to find where to start ramping pan down)

clear reversal counts

set preset in progress

4.14.12 Clear preset

Mark the preset invalid

Confidential PELCO Information – 15 December 2004 – 7:12

604 FIRMWARE FUNCTIONAL SPECIFICATION FOR THE DRD08/14 SERIES OF DOMES

4.14.13 Move to preset task

if motion timed out

reset motion timer

stop preset in progress

stop motion

elseif preset in progress

get current position

if pan reversal count exceeded

set desired pan speed to 0 (stop pan)

else

(start of version 3.06 and below)

set error to desired pan - current pan

if SL (cannot go shorter distance for non-SL because of limit

stops)

if error > one-half rotation (going right but left is

closer)

subtract one rotation from error (compute error going

left)

elseif error < -one-half rotation (going left but right is

closer)

add one rotation to error (compute error going right)

endif

endif

if (pan is not stalled)

if error < -minimum allowed pan difference

clear desired pan right (go left)

set error to -error (make it positive)

elseif error > minimum allowed pan difference

(desired is right of current by more than a threshold)

set desired pan right

else (error less than threshold)

set error to 0

endif

if error > ramp error (far enough away to run at full speed)

set desired pan speed to full speed

else

linearly interpolate desired pan speed between full speed

and zero

endif

endif (pan is not stalled)

(end of version 3.06 and below)

(version 3.07)

Confidential PELCO Information – 15 December 2004 – 7:12

4.14 Software Description 61

do find preset direction (direction pan should move)

if direction has changed

do ramping calculations

endif

if (pan has not stalled)

if pan error > error at which to start ramping down

set desired pan speed to preset speed

elseif error > 1st step error

set desired pan speed to 1st step speed (speed at end of

ramp down)

elseif error > minimum error

set desired pan speed to 2nd step speed

else

set desired pan speed to 0

endif

endif (pan has not stalled)

(end of version 3.07)

endif (pan reversal count not exceeded)

if tilt reversal count exceeded

set desired tilt speed to 0 (stop tilt)

else

set error to desired tilt - current tilt

if error > minimum allowed tilt difference

set desired tilt up

elseif error < -minimum allowed tilt difference

clear desired tilt up (go down)

else

set desired tilt speed to 0 (stop tilt)

endif

endif

if zoom reversal count exceeded

clear tele and wide in lens image

send lens image

else

set error to desired zoom - current zoom

if error > 0

if wide in lens image

increment zoom reversal

clear wide in lens image

endif

set tele in lens image

send lens image

Confidential PELCO Information – 15 December 2004 – 7:12

624 FIRMWARE FUNCTIONAL SPECIFICATION FOR THE DRD08/14 SERIES OF DOMES

elseif error < 0

if tele in lens image

increment zoom reversal

clear tele in lens image

endif

set wide in lens image

send lens image

else

if wide or tele in lens image

increment zoom reversal

clear wide and tele in lens image

send lens image

reset preset stop timer

endif

endif

endif (zoom reversal count not exceeded)

focus is similar to zoom

if no current motion and no desired motion and preset stop timer

timed out

stop preset

endif

endif

Notes: Here is a general description of the way this routine determines that the preset point
has been reached. There is a reversal counter for each type of motion (pan, tilt, zoom, focus).
A reversal counter is incremented if the desired point for that motion has been reached or if the
desired point has been passed and the direction of motion must be reversed. If a reversal counter
exceeds a limit, motion is stopped for that motion. This prevents excessive ”hunting”. When
the desired point is reached for a type of motion, that motion is stopped and a timer is reset. If
there is no motion at all, then all motions have either reached their desired points or their reversal
counters have reached their maximum. But the preset can not be considered complete yet because
the mechanics may be coasting past the desired point. So the routine waits for the timer mentioned
above to expire before calling the move to preset complete. This gives time to see if any overshoot
will occur. If it does, then motion will start again (if the reversal count has not been exceeded),
and the timer will start over when the desired point has again been reached and motion has been
stopped. Note that the reversal counter and preset stop timer are changed in this routine and also
in the ramp routine.

4.14.14 Stop preset

set no preset in progress

Confidential PELCO Information – 15 December 2004 – 7:12

4.14 Software Description 63

4.14.15 Speed ramp task

(also see description of speed calculation in calc.doc)

if not panning

set current pan speed to zero

endif

if not tilting

set current tilt speed to zero

endif

if a tick (1/14 second) has elapsed

set pan stalled flag if movement expected but no

movement since last tick

endif

determine the number of msec that have occurred since the

last time this task was entered

clear pan and tilt speed change flags

set pan change value to pan speed change per msec * elapsed

msec (this keeps the acceleration rate approximately constant even

if the time between entries to this task varies)

set maximum limit on pan change value

if pan has stalled

decrease current pan speed to try to achieve motor lock

else

if pan direction needs to be changed and currently panning

if current pan speed is non zero (slow down before

reversing)

decrease current pan speed but not below zero

else

if not stopping

set pan change flag

reverse direction and increment pan reversal count

else

if currently panning

set pan change flag

increment pan reversal count

reset preset stop timer

stop panning

endif

endif

endif

elseif speed needs to be increased

set pan change flag

Confidential PELCO Information – 15 December 2004 – 7:12

644 FIRMWARE FUNCTIONAL SPECIFICATION FOR THE DRD08/14 SERIES OF DOMES

increase current pan speed but not above desired speed

start pan in desired direction

elseif speed needs to be decreased

set pan change flag

decrease current pan speed but not below zero or desired speed

else (speeds are equal)

if stopping pan

if currently panning

set pan change flag

increment pan reversal count

reset preset stop timer

stop panning

endif

endif

endif

if stopping tilt

if tilting

set tilt change flag

increment tilt reversal count

reset preset stop timer

stop tilt

endif

else

if tilt up desired

if currently tilting down

increment tilt reversal count

start tilting up

endif

else (tilt down desired)

if currently tilting up

increment tilt reversal count

start tilting down

end

endif

endif

if current tilt speed is not equal to desired tilt speed

set tilt change flag

set current tilt speed to desired tilt speed

endif

if pan change or tilt change flags are set

(also see calc.doc)

calculate minimum product (of high and low values) from

Confidential PELCO Information – 15 December 2004 – 7:12

4.14 Software Description 65

current pan speed

calculate maximum product from current tilt speed

if minimum product is less than or equal to maximum product

set pan minimum flag

else

clear pan minimum flag

exchange minimum and maximum products

endif

calculate minimum high and low values from minimum product

calculate maximum high and low values from maximum product

if high speed will be slowed down by using maximum high (for

example pan 200 degrees/second, tilt 1.5 degrees/second)

set maximum high value to minimum low value

endif

recalculate minimum low value using maximum high value

recalculate maximum high value using minimum low value to

eliminate some rounding errors (for example pan 40 degrees/second,

tilt 1.5 degrees/second)

recalculate maximum low value using maximum high value

truncate maximum low value if it is too high

put maximum high value in hardware

if pan minimum flag is set

put minimum low value in hardware for pan speed

put maximum low value in hardware for tilt speed

else

put maximum low value in hardware for pan speed

put minimum low value in hardware for tilt speed

endif

endif (change flags were set)

4.14.16 Start pattern record

put programming message in video text buffer line 1

clear video text buffer line 2

set zones inactive

get current position and save it in the pattern start preset

initialize pattern step

set pattern state to record in progress

4.14.17 End pattern record

if record in progress

clear programming message in video text buffer

Confidential PELCO Information – 15 December 2004 – 7:12

664 FIRMWARE FUNCTIONAL SPECIFICATION FOR THE DRD08/14 SERIES OF DOMES

write end pattern marker in pattern

mark pattern as valid

clear pattern state

endif

4.14.18 Start pattern play

start pattern state to move to pattern preset in progress

if pattern is valid

set pattern state to move to pattern preset

put running message in video text buffer line 1

clear video text buffer line 2

set zones inactive

endif

4.14.19 Pattern task

switch on pattern state

if record in progress

if a tick (1/14 second) has elapsed

if last decoded command is extended command (not PTZ) or

speed is greater than normal speed (is turbo speed)

set last decoded command to illegal command

endif

save last decoded command at pattern step location

increment pattern step

if pattern full

clear programming message from text buffer

clear record in progress

mark pattern valid

endif

endif

endcase

case move to pattern preset in progress

if no preset progress (move done)

set pattern state to play in progress

initialize pattern step counter

endif

endcase

case play in progress

if a tick has elapsed

if at end of pattern

start pattern play over

Confidential PELCO Information – 15 December 2004 – 7:12

4.14 Software Description 67

else

get command from pattern step location

if end pattern marker

start pattern play over

else

decode command

increment pattern step

endif

endif

endif

endcase

endswitch

4.14.20 Set zone start

get current pan and tilt position

set zone start and end positions (in EEPROM) to current pan

position (setting the end position equal to the start position

sets the zone invalid)

put text string in EEPROM

4.14.21 Set zone end

get current pan and tilt position

set zone end position (in EEPROM) to current pan position

4.14.22 Zone task

get current pan and tilt position

for zone 8 down to zone 1

if zone does not cross zero point

if in zone

exit for loop

endif

elseif zone crosses zero point

if in zone

exit for loop

endif

endfor

if current position is in zone

put zone text in video text buffer line 1

else

clear video text buffer line 1

endif

Confidential PELCO Information – 15 December 2004 – 7:12

684 FIRMWARE FUNCTIONAL SPECIFICATION FOR THE DRD08/14 SERIES OF DOMES

4.14.23 Start scan

switch on next scan

case auto scan

stop motion

stop commands

set desired pan right

set pan speed

set scan in progress

endcase

case frame scan

stop motion

stop commands

set desired pan right

set pan speed

reset frame scan timer

set scan in progress

endcase

case random scan

if no scan in progress or scan type is not random

stop motion

stop commands

initialize random number generator

set random state to start move

set scan in progress

endif

endcase

endswitch

set scan type to next scan

4.14.24 Frame scan task

if frame scan timer has timed out

if currently moving

stop movement

else (currently stopped)

set desired pan right

start movement

endif

reset frame scan timer

endif

Confidential PELCO Information – 15 December 2004 – 7:12

4.14 Software Description 69

4.14.25 Random scan task

switch on random state

case start move

get random value

if random value is odd (use low random value bit for direction)

set random right

else

clear random right

endif

shift random value once right

normalize random value to a time between minimum move time and

maximum move time

set desired pan right to random right

start motion

set random state to wait move

reset motion timer

endcase

case wait move

if motion timer is greater than or equal to random value

stop motion

get new random value

normalize random value to a time between minimum move time

and maximum move time

reset motion timer

set random state to wait look

endif

endcase

case wait look

if motion timer is greater than or equal to random value

set random state to start move

endif

endcase

Confidential PELCO Information – 15 December 2004 – 7:12

70 5 SPEED CALCULATIONS FOR INTERCEPT

5 Speed Calculations for Intercept

David Micon

From the circuit, then the pan step rate (in steps/second) is given by the following equation:

pan step rate = 3580000/(256−H)/2/(256− PL)/2
or

pan step rate = 895000/((256−H)× (256− PL))
where H is the value loaded into the high speed register and PL is the value loaded into the

low pan speed register. Each step turns the motor 0.18 degree (it is really a half step). Since there
is a 1 : 12 gear reduction, the camera will turn 0.015 degree for each step. So the pan speed, or
PS, (in degrees/second) is:

pan speed = 895000/((256−H)× (256− PL))× 0.015
or

PS = 13425/((256−H)× (256− PL))
The tilt step rate is described by the following equation:

tilt step rate = 3580000/(256−H)/2/(256− TL)/2
or

tilt step rate = 895000/((256−H)× (256− TL))
where H is the value loaded into the high speed register and TL is the value loaded into the low

tilt speed register. Note that the high speed register is shared between the pan and tilt functions.
Each step turns the motor 0.18 degree. Since there is a 1 : 7 gear reduction, the camera will tilt
0.0257 degree for each step. So the tilt speed, or TS, (in degrees/second) is

tilt speed = 895000/((256−H)× (256− TL))× 0.0257
or

TS = 23001/((256−H)× (256− TL))
What is desired is to compute values for H, PL, and TL given PS and TS with the constraint

that H, PL, and TL must be integers from 0 to 254.
Let H 0 = 256−H, PL0 = 256− PL and PP (panproduct) = H 0 × PL0. So

39$Header: d:/UnitSpeeds/RCS/CalcInt.inc,v 1.6 2004-11-09 14:23:08-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

5.1 Preset calculations 71

PS = 13425/PPandPP = 13425/PS

Once PP has been calculated for a given PS, H and L must be determined. Since H and L
must be integers from 0 to 254, PP can only be approximated. If H 0 is made as small as possible,
then L0 will be as large as possible. Doing this means that small changes in L0 will make small
changes in the speed, so the approximation to the desired speed will be more accurate. So set

H 0 = PP/256

Then if H 0 is less than 2, set H 0 to 2 (this is necessary to keep H from being bigger than 254).
Then set

PL0 = PP/H 0

If PL0 is less than 2 or greater than 256, increase H 0 by 1 and recalculate PL0. Keep doing this
until PL0 is greater than or equal to 2 and less than or equal to 256.

Then H = 256−H 0 and PL = 256− PL0.
For tilt, let H 0 = 256−H, TL0 = 256− TL and TP (tiltproduct) = H 0 × TL0. So

TS = 23001/TPandTP = 23001/TS

Since H and H 0 have already been determined during the pan calculation, only TL needs to be
determined.

TL0 = TP/H 0

Since H and H 0 are fixed for pan, TL0 may be greater than 256, so use 256. Then TL =
256− TL0.

5.1 Preset calculations

This shows the calculations needed to determine the point on the P/T pan circle where the
time needed to reverse direction to get to a preset is the same as the time needed to continue on
in the same direction to get to the preset.

• p0 = initial position (degrees)
• v0 = initial speed (degrees/second)
• vf = final speed (degrees/second)
• vm = maximum velocity (degrees/second)

• l = total distance (circumference) (360 degrees)
• a = acceleration (degrees/second2)

Confidential PELCO Information – 15 December 2004 – 7:12

72 5 SPEED CALCULATIONS FOR INTERCEPT

• s = distance (degrees)
• t = time (seconds)

s = (vf2 − v02)/2× a
t = (vf − v0)/a

In the following calculations, deceleration time at the preset position is ignored because it is
the same for both reversing and non-reversing motions.

Also the preset position is considered to be 0.

5.1.1 Reversing

distance after decelerating to a stop and accelerating to vm in the opposite direction (ss).

ss = ((−vm)2 − v02)/2×−a
(velocity and acceleration are negative since the motion and acceleration are towards the origin)
time to decelerate to a stop and accelerate to vm in the opposite direction (t1r)

t1r = (−vm− v0)/− a
distance to the preset point after reversing (sar)

sar = p0 + ss

time to the preset point after reversing (tar)

tar = −sar/− vm = sar/vm

(distance is negative since the motion is towards the origin)
total time for reversing (tr)

tr = t1r + tar

5.1.2 Non-reversing

distance after accelerating to vm (da)

da = (vm2 − v02)/2× a
(velocity and acceleration are positive since the motion and acceleration are away from the

origin).
time to accelerate to vm (t1n)

t1n = (vm− v0)/a

Confidential PELCO Information – 15 December 2004 – 7:12

5.1 Preset calculations 73

distance to the preset point after acceleration (sp)

sp = l − p0− da
(note: l − p0 is the distance to the preset point before acceleration when continuing in the

original direction).
time to the preset point after acceleration (tp)

tp = sp/vm

total time for non-reversing (tn)

tn = t1n+ tp

5.1.3 Final calculation

Find the point where

tn = tr

and solve for p0 in terms of v0. By substituting back and simplifying,

p0 = l/2− v0× vm/a
This shows the calculations needed to determine when to start slowing down to reach the preset.

• p0 = initial position (degrees)
• v0 = initial speed (degrees/second)
• p1 = position to start slowing down
• v1 = velocity when slow down starts
• vm = maximum velocity

• a = acceleration (degrees/second2)
• s = distance (degrees)
• t = time (seconds)

The preset position is considered to be 0.
Speed up phase:

p1 = p0 + ((−v1)2 − (−v0)2)/2× (−a)
(speed and acceleration are negative because they are toward the origin)
Slow down phase:

Confidential PELCO Information – 15 December 2004 – 7:12

74 5 SPEED CALCULATIONS FOR INTERCEPT

0 = p1 + (02 − (−v1)2)/2× a
(the first zero is the final position and the second zero is the final speed. the acceleration is

positive because it is away from the origin)
Substituting back and solving for v1:

v1 = (+or−)sqrt(a× p0 + v02/2)
Substituting into the equation for p1 and simplifying,

p1 = p0/2 + v02/(4× a) = v12/2× a
There are limitations on the use of p1. If v0 is so high that p1 is greater than p0, this means

that the pan can not be stopped in time to stop at the preset and that it will overshoot. Also v1
can not be greater than vm. If v1 is greater then vm the pan will accelerate vm, coast at the same
speed, and decelerate. In this case, p1 is:

p1 = vm2/(2× a)
since v1 will be equal to vm. To check whether the maximum speed will be reached, it is easier

to check for v12 then v1.

Confidential PELCO Information – 15 December 2004 – 7:12

75

6 Various PMD calculations

David Micon, 199X
Modified by:

Eric Hamilton, 2004

In this document I have collected two worked examples of the PMD specific calculations used
in the original Spectra I. The differences are:

1. In Section 6.2, page 76 the following holds:

Pan Gear Ratio 1 : 5

Tilt Gear Ratio 1 : 2

Motor Step Size 0.9o

2. In Section 6.3, page 80 the following holds:

Pan Gear Ratio 1 : 12

Tilt Gear Ratio 1 : 7

Motor Step Size 1.8o

Other values are the same. A program to calculate these values is shown in Section 6.4, page 84.

6.1 Fixed point calculations for speed, acceleration and jerk

Calculations are done in long (32-bit unsigned) or long (32-bit signed) arithmetic. The maximum
unsigned value is 232 − 1 or 4294967295. The maximum signed value is 231 − 1 or 2147483647.

Distances are specified in degrees. To get finer resolution from fixed point numbers, they are
stored as tenths of degrees (just called tenths from here on).

40$Header: d:/UnitSpeeds/RCS/PmdCalcs.inc,v 1.5 2004-12-15 07:10:46-08 Hamilton Exp Hamilton $

Confidential PELCO Information – 15 December 2004 – 7:12

76 6 VARIOUS PMD CALCULATIONS

6.2 Example 1

6.2.1 Parameters

The gear ratio from pan motor to camera is 1 : 5, and the gear ratio from tilt motor to camera
is 1 : 2.

A full step for each motor is 0.9 degrees (deg) and there are 64 microsteps (µsteps) per full step
for each motor.

A “cycle” for the PMD motor driver is 540 microseconds or 5.4E-4 seconds.

6.2.2 Converting pan distance from degrees to microsteps

1 deg (camera)× 5 (motor)/1 (camera) = 5 deg (motor)
(distance ratio is inverse of gear ratio)

5 deg (motor)/(0.9 deg/step) = 5.555555556 steps

5.555555556 steps× 64 µsteps/step = 355.5555556 µsteps
so

1 deg (camera) = 355.5555556 µsteps

6.2.2.1 Converting pan speed from degrees/second to microsteps/cycle

1 deg/sec (camera)× 355.5555556 µsteps/deg = 355.5555556 µsteps/sec

355.5555556 µsteps/sec× 5.4E − 4 sec/cycle = 0.192 µsteps/cycle
so

1 deg/sec (camera) = 0.192 µsteps/cycle

6.2.2.2 Converting pan acceleration from degrees/second2 to microsteps2

1 deg2 (camera)× 0.192 µsteps/cycle/deg/sec = 0.192 µsteps/cycle/sec

0.192 µsteps/cycle/sec× 5.4E − 4 usec/cycle = 1.0368E − 4 µsteps2
so

1 deg2 (camera) = 1.0368E − 4 µsteps2

Confidential PELCO Information – 15 December 2004 – 7:12

6.2 Example 1 77

6.2.2.3 Converting pan jerk from degrees/second3 to microsteps3

1 deg3 (camera)× 1.0368E − 4 µsteps2/deg2 = 1.0368E − 4 µsteps2/sec

1.0368E − 4 µsteps2/sec× 5.4E − 4 sec/cycle = 5.59872E − 8 µsteps3
so

1 deg3 (camera) = 5.59872E − 8 µsteps3

6.2.3 Converting tilt distance from degrees to microsteps

1 deg (camera)× 2 (motor)/1 (camera) = 2 deg (motor)
(distance ratio is inverse of gear ratio)

2 deg (motor)/(0.9 deg/step) = 2.222222222 steps

2.222222222 steps× 64 µsteps/step = 142.2222222 µsteps
so

1 deg (camera) = 142.2222222 µsteps

6.2.3.1 Converting tilt speed from degrees/second to microsteps/cycle

1 deg/sec (camera)× 142.2222222 µsteps/deg = 142.2222222 µsteps/sec

142.2222222 µsteps/sec× 5.4E − 4 sec/cycle = 0.0768 µsteps/cycle
so

1 deg/sec (camera) = 0.0768 steps/cycle

6.2.3.2 Converting tilt acceleration from degrees/second2 to microsteps2

1 deg2 (camera)× 0.0768 µsteps/cycle/deg/sec = 0.0768 µsteps/cycle/sec

0.0768 µsteps/cycle/sec× 5.4E − 4 sec/cycle = 4.1472E − 5 µsteps2
so

1 deg2 (camera) = 4.1472E − 5 usteps2

Confidential PELCO Information – 15 December 2004 – 7:12

78 6 VARIOUS PMD CALCULATIONS

6.2.3.3 Converting tilt jerk from degrees/second3 to microsteps3

1 deg3 (camera)× 4.1472E − 5 µsteps2/deg2 = 4.1472E − 5 µsteps2/sec

4.1472E − 5 µsteps2/sec× 5.4E − 4 sec/cycle = 2.239488E − 8 µsteps3

so

1 deg3 (camera) = 2.239488E − 8 µsteps3

6.2.4 Speed

Speeds must be converted from degrees/second (actually tenths/second) to microsteps/cycle.
The maximum pan speed is 400 degrees/second or 4000 tenths/second. Speed is expressed as an

unsigned value. To avoid overflow, the maximum value of the conversion constant is 4294967295/-
4000 or 1073741 (truncated to integer). (Always truncate to keep the value lower than the actual
value to avoid overflow). The conversion constant is 0.19 (see above) if the speed is in units of
degrees/second. Since the speed is in tenths/second, the constant is 0.0192. Now we want to
multiply this number by the largest power of two that will keep the product less than 1073741.
This will keep the largest number of significant bits. In this case this comes out to 225 and the
product is 644245 (truncated to integer).

After multiplying to do the conversion, the value is 225times greater than the actual value (the
binary point is 25 places to the left of where it should be). The PMD chipset expects speeds to
be expressed in 16/16 format (16 places to the left of the binary point, 16 places to the right of
the binary point). So if we shift the result (25− 16) or 9 places to the right, the value will be 216
greater than the actual value. So the binary point will be 16 places to the left of where it should
be and the value will be scaled to 16/16 format.

The maximum tilt speed is 200 degrees/second or 2000 tenths/second. Speed is expressed as
an unsigned value. The maximum value of the conversion constant is 4294967295/2000 or 2147483
(truncated to integer). The conversion constant is 0.0768 (see above) when the speed is in units of
degrees/second or 0.00768 for units of tenths/second. Multiply the constant by the largest power
of two that will keep the product less than 2147483. The power of two is 228 and the product is
2061584 (truncated to integer). To convert to 16/16 format, the product must be shifted (28− 16)
or 12 places to the right.

6.2.5 Acceleration

The maximum pan acceleration is 3000 degrees/second2 or 30000 tenths/second2. Acceleration
is expressed as a signed value (at least for some PMD profile modes). The maximum value of the
conversion constant is 2147483647/30000 or 71582 (truncated to integer). The conversion constant
is 1.0368E-4 (see above) when the acceleration is in units of degrees/second2 or 1.0368E-5 for units
of tenths/second2. Multiply the constant by the largest power of two that will keep the product

Confidential PELCO Information – 15 December 2004 – 7:12

6.2 Example 1 79

less than 71582. The power of two is 232 and the product is 44530 (truncated to integer). To
convert to 16/16 format, the product must be shifted (32− 16) or 16 places to the right.

The maximum tilt acceleration is 3000 degrees/second2 or 30000 tenths/second2. Acceleration
is expressed as a signed value (at least for some PMD profile modes). The maximum value of the
conversion constant is 2147483647/30000 or 71582 (truncated to integer). The conversion constant
is 4.1472E-5 (see above) when the acceleration is in units of degrees/second2 or 4.1472E-6 for units
of tenths/second2. Multiply the constant by the largest power of two that will keep the product
less than 71582. The power of two is 234 and the product is 71248 (truncated to integer). To
convert to 16/16 format, the product must be shifted (34− 16) or 18 places to the right.

6.2.6 Jerk

The maximum pan jerk is 10000 degrees/second3 or 100000 tenths/second3. Jerk is expressed
as a signed value. The maximum value of the conversion constant is 2147483647/100000 or 21474
(truncated to integer). The conversion constant is 5.59872E-8 (see above) when the acceleration
is in units of degrees/second2 or 5.59872E-9 for units of tenths/second2. Multiply the constant
by the largest power of two that will keep the product less than 21474. The power of two is 241

and the product is 12311 (truncated to integer). To convert to 0/32 format, the product must be
shifted (41− 32) or 9 places to the right.

The maximum tilt jerk is 10000 degrees/second3 or 100000 tenths/second3. Jerk is expressed
as a signed value. The maximum value of the conversion constant is 2147483647/100000 or 21474
(truncated to integer). The conversion constant is 2.239488E-8 (see above) when the acceleration
is in units of degrees/second2 or 2.239488E-9 for units of tenths/second2. Multiply the constant
by the largest power of two that will keep the product less than 21474. The power of two is 243

and the product is 19698 (truncated to integer). To convert to 0/32 format, the product must be
shifted (43− 32) or 11 places to the right.

Confidential PELCO Information – 15 December 2004 – 7:12

80 6 VARIOUS PMD CALCULATIONS

6.3 Example 2

6.3.1 Parameters

The gear ratio from pan motor to camera is 1 : 12, and the gear ratio from tilt motor to camera
is 1 : 7.

A full step for each motor is 1.8 degrees (deg) and there are 64 microsteps (µsteps) per full step
for each motor.

A “cycle” for the PMD motor driver is 540 microseconds or 5.4E-4 seconds.

6.3.2 Converting pan distance from degrees to microsteps

1 deg (camera)× 12 (motor)/1 (camera) = 12 deg (motor)
(distance ratio is inverse of gear ratio)

12 deg (motor)/(1.8 deg/step) = 6.66666667 steps

6.666666667 steps× 64 µsteps/step = 426.6666667 µsteps
so

1 deg (camera) = 426.6666667 µsteps

6.3.2.1 Converting pan speed from degrees/second to microsteps/cycle

1 deg/sec (camera)× 426.6666667 µsteps/ deg = 426.6666667 µsteps/sec

426.6666667 µsteps/sec× 5.4E − 4 sec/cycle = 0.2304 µsteps/cycle
so

1 deg/sec (camera) = 0.2304 µsteps/cycle

6.3.2.2 Converting pan acceleration from degrees/second2 to microsteps/cycle2

1 deg/sec2 (camera)× 0.2304 µsteps/cycle/ deg/sec = 0.2304 µsteps/cycle/sec

0.2304 µsteps/cycle/sec× 5.4E − 4 usec/cycle = 1.24416E − 4 µsteps/cycle2
so

1 deg/sec2 (camera) = 1.24416E − 4 µsteps/cycle2

Confidential PELCO Information – 15 December 2004 – 7:12

6.3 Example 2 81

6.3.2.3 Converting pan jerk from degrees/second3 to microsteps/cycle3

1 deg/sec3 (camera)× 1.24416E − 4 µsteps/cycle2/ deg/sec2 = 1.24416E − 4 µsteps/cycle2/sec

1.24416E − 4 µsteps/cycle2/sec× 5.4E − 4 sec/cycle = 6.718464E − 8 µsteps/cycle3

so

1 deg/sec3 (camera) = 6.718464E − 8 µsteps/cycle3

6.3.3 Converting tilt distance from degrees to microsteps

1 deg (camera)× 7(motor)/1(camera) = 7 deg(motor)
(distance ratio is inverse of gear ratio)

7 deg(motor)/(1.8 deg/step) = 3.888888889 steps

3.888888889 steps× 64 µsteps/step = 248.8888889 µsteps
so

1 deg (camera) = 248.8888889 µsteps

6.3.3.1 Converting tilt speed from degrees/second to microsteps/cycle

1 deg/sec (camera)× 248.8888889 µsteps/ deg = 248.8888889 µsteps/sec

248.8888889 µsteps/sec× 5.4E − 4 sec/cycle = 0.1344 µsteps/cycle
so

1 deg/sec (camera) = 0.1344 steps/cycle

Confidential PELCO Information – 15 December 2004 – 7:12

82 6 VARIOUS PMD CALCULATIONS

6.3.3.2 Converting tilt acceleration from degrees/second2 to microsteps/cycle2

1 deg/sec2 (camera)× 0.1344 µsteps/cycle/ deg/sec = 0.1344 µsteps/cycle/sec

0.1344 µsteps/cycle/sec× 5.4E − 4 sec/cycle = 7.2576E − 5 µsteps/cycle2

so

1 deg/sec2 (camera) = 7.2576E − 5 µsteps/cycle2

6.3.3.3 Converting tilt jerk from degrees/second3 to microsteps/cycle3

1 deg/sec3 (camera)× 7.2576E − 5 µsteps/cycle2/ deg/sec2 = 7.2576E − 5 µsteps/cycle2/sec

7.2576E − 5 µsteps/cycle2/sec× 5.4E − 4 sec/cycle = 3.919104E − 8 µsteps/cycle3

so

1 deg/sec3 (camera) = 3.919104E − 8 µsteps/cycle3

6.3.4 Speed

Speeds must be converted from degrees/second (actually tenths/second) to microsteps/cycle.
The maximum pan speed is 400 degrees/second or 4000 tenths/second. Speed is expressed as an

unsigned value. To avoid overflow, the maximum value of the conversion constant is 4294967295/-
4000 or 1073741 (truncated to integer). (Always truncate to keep the value lower than the actual
value to avoid overflow). The conversion constant is 0.2304 (see above) if the speed is in units of
degrees/second. Since the speed is in tenths/second, the constant is 0.02304. Now we want to
multiply this number by the largest power of two that will keep the product less than 1073741.
This will keep the largest number of significant bits. In this case this comes out to 225 and the
product is 773094 (truncated to integer).

After multiplying to do the conversion, the value is 225 times greater than the actual value (the
binary point is 25 places to the left of where it should be). The PMD chipset expects speeds to
be expressed in 16/16 format (16 places to the left of the binary point, 16 places to the right of
the binary point). So if we shift the result (25− 16) or 9 places to the right, the value will be 216
greater than the actual value. So the binary point will be 16 places to the left of where it should
be and the value will be scaled to 16/16 format.

The maximum tilt speed is 200 degrees/second or 2000 tenths/second. Speed is expressed as
an unsigned value. The maximum value of the conversion constant is 4294967295/2000 or 2147483
(truncated to integer). The conversion constant is 0.1344 (see above) when the speed is in units of

Confidential PELCO Information – 15 December 2004 – 7:12

6.3 Example 2 83

degrees/second or 0.01344 for units of tenths/second. Multiply the constant by the largest power
of two that will keep the product less than 2147483. The power of two is 227 and the product is
1803886 (truncated to integer). To convert to 16/16 format, the product must be shifted (27− 16)
or 11 places to the right.

6.3.5 Acceleration

The maximum pan acceleration is 2000 degrees/second2 or 20000 tenths/second2. Acceleration
is expressed as a signed value (at least for some PMD profile modes). The maximum value of the
conversion constant is 2147483647/20000 or 107374 (truncated to integer). The conversion constant
is 1.24416E-4 (see above) when the acceleration is in units of degrees/second2 or 1.24416E-5 for
units of tenths/second2. Multiply the constant by the largest power of two that will keep the
product less than 107374. The power of two is 233 and the product is 106872 (truncated to integer).
To convert to 16/16 format, the product must be shifted (33− 16) or 17 places to the right.

The maximum tilt acceleration is 2000 degrees/second2 or 20000 tenths/second2. Acceleration
is expressed as a signed value (at least for some PMD profile modes). The maximum value of the
conversion constant is 2147483647/20000 or 107374 (truncated to integer). The conversion constant
is 7.2576E-5 (see above) when the acceleration is in units of degrees/second2 or 7.2576E-6 for units
of tenths/second2. Multiply the constant by the largest power of two that will keep the product
less than 107374. The power of two is 233 and the product is 62342 (truncated to integer). To
convert to 16/16 format, the product must be shifted (33− 16) or 17 places to the right.

6.3.6 Jerk

The maximum pan jerk is 10000 degrees/second3 or 100000 tenths/second3. Jerk is expressed
as a signed value. The maximum value of the conversion constant is 2147483647/100000 or 21474
(truncated to integer). The conversion constant is 6.718464E-8 (see above) when the acceleration
is in units of degrees/second2 or 6.718464E-9 for units of tenths/second2. Multiply the constant
by the largest power of two that will keep the product less than 21474. The power of two is 241

and the product is 14774 (truncated to integer). To convert to 0/32 format, the product must be
shifted (41− 32) or 9 places to the right.

The maximum tilt jerk is 10000 degrees/second3 or 100000 tenths/second3. Jerk is expressed
as a signed value. The maximum value of the conversion constant is 2147483647/100000 or 21474
(truncated to integer). The conversion constant is 3.919104E-8 (see above) when the acceleration
is in units of degrees/second2 or 3.919104E-9 for units of tenths/second2. Multiply the constant
by the largest power of two that will keep the product less than 21474. The power of two is 242

and the product is 17236 (truncated to integer). To convert to 0/32 format, the product must be
shifted (42− 32) or 10 places to the right.

Confidential PELCO Information – 15 December 2004 – 7:12

84 6 VARIOUS PMD CALCULATIONS

6.4 mtrcalc.c

Dave Micon also wrote a short routine that will automatically generate the required header file
(.H) given the input parameters for a given motor step size, etc.

1 /**/

2 /*

3 Calculate PMD conversion factors given the pan and tilt step sizes

4 and gear ratios.

5

6 For derivation of the formulas used, see file "calc.doc" in a

7 PMD code directory.

8 */

9 /**/

10 #include <stdio.h>

11 #include <math.h>

12

13 #define MAX_PAN_SPEED 400 /* max pan speed in degrees/second */

14 #define MAX_PAN_ACCEL 3000 /* max pan accel in degrees/second**2 */

15 #define MAX_PAN_JERK 10000 /* max pan jerk in degrees/second**3 */

16 #define MAX_TILT_SPEED 200 /* max tilt pan speed in degrees/second */

17 #define MAX_TILT_ACCEL 3000 /* max tilt accel in degrees/second**2 */

18 #define MAX_TILT_JERK 10000 /* max tilt jerk in degrees/second**3 */

19 #define MAX_DWORD 4294967295UL /* max unsigned 32-bit value */

20 #define MAX_LONG 2147483647L /* max signed 32-bit value */

21 #define DISTANCE_SCALE 10 /* distance scale factor to convert degrees to

tenths */

22 #define USTEPS_STEP 64 /* # of usteps per step */

23 #define DEGREES_REV 360 /* degrees per revolution */

24 #define LOG_2 0.69314718055995 /* log(2) */

25

26 typedef unsigned int UINT;

27 typedef unsigned long DWORD;

28

29 /**/

30 /*

31 Truncate, not round when calculating multipliers to make sure

32 overflow never occurs. Round when calculating microsteps per

33 revolution to get closest value.

34 */

35 /**/

36 #pragma warning (disable : 4702) /* unreachable code */

37 void main(void)

38 {

39 double cycle_time; /* motor controller cycle time */

40 double pan_ratio; /* pan gear ratio */

41 double pan_step_size; /* pan motor step size */

42 double tilt_ratio; /* tilt gear ratio */

Confidential PELCO Information – 15 December 2004 – 7:12

6.4 mtrcalc.c 85

43 double tilt_step_size; /* tilt motor step size */

44 double distance_conv; /* distance conversion factor */

45 double speed_conv; /* speed conversion factor */

46 double accel_conv; /* accel conversion factor */

47 double jerk_conv; /* jerk conversion factor */

48 double max_shifted_conv; /* max shifted conversion value that will

49 not make conversion overflow */

50 double usteps_rev; /* usteps per revolution */

51 DWORD final_conv; /* final conversion value */

52 UINT shift_count; /* shift count for conversion value */

53 char Inbuff[128]; /* input buffer */

54

55 printf("mtrcalc v1.00\n");

56 for (;;)

57 {

58 do

59 {

60 pan_ratio = pan_step_size = tilt_ratio = tilt_step_size = 0;

61 printf("Cycle time in usec (540 for PMD, 400 for UMDM): ");

62 gets(Inbuff);

63 sscanf(Inbuff, "%lf", &cycle_time);

64 printf("Pan gear ratio: ");

65 gets(Inbuff);

66 sscanf(Inbuff, "%lf", &pan_ratio);

67 printf("Pan step size (degrees): ");

68 gets(Inbuff);

69 sscanf(Inbuff, "%lf", &pan_step_size);

70 printf("Tilt gear ratio: ");

71 gets(Inbuff);

72 sscanf(Inbuff, "%lf", &tilt_ratio);

73 printf("Tilt step size (degrees): ");

74 gets(Inbuff);

75 sscanf(Inbuff, "%lf", &tilt_step_size);

76 printf("\n");

77 }

78 while (pan_ratio <= 0 || pan_step_size <= 0 || tilt_ratio <= 0 ||

79 tilt_step_size <= 0);

80

81 cycle_time *= 1E-6; /* conv from usec to sec */

82 printf("Cycle time = %12.3E\n", cycle_time);

83 printf("Pan gear ratio = %6.2lf\n", pan_ratio);

84 printf("Pan step size = %6.2lf\n", pan_step_size);

85 printf("Tilt gear ratio = %6.2lf\n", tilt_ratio);

86 printf("Tilt step size = %6.2lf\n", tilt_step_size);

87

88 /* calculate floating point conversion factors */

89 distance_conv = pan_ratio / (pan_step_size * DISTANCE_SCALE) *

90 USTEPS_STEP;

Confidential PELCO Information – 15 December 2004 – 7:12

86 6 VARIOUS PMD CALCULATIONS

91 speed_conv = distance_conv * cycle_time;

92 accel_conv = speed_conv * cycle_time;

93 jerk_conv = accel_conv * cycle_time;

94

95 /* calculate fixed point conversion factors and shift counts */

96 /* pan distance */

97 usteps_rev = (DEGREES_REV * DISTANCE_SCALE) * distance_conv; /*

98 usteps in one revolution */

99 max_shifted_conv = MAX_DWORD / usteps_rev;

100 shift_count = (UINT) (log(max_shifted_conv) / LOG_2); /* log base

101 2 of max conversion value */

102 final_conv = (DWORD) (distance_conv * ((DWORD) 1 <<

103 shift_count)); /* shift true conv factor by max allowable */

104 printf("Pan distance conversion multiplier: %10ld, shift "

105 "count: %2d\n", final_conv, shift_count);

106

107 /* pan speed */

108 max_shifted_conv = MAX_DWORD / ((double) MAX_PAN_SPEED *

109 DISTANCE_SCALE * speed_conv);

110 shift_count = (UINT) (log(max_shifted_conv) / LOG_2); /* log

111 base 2 of max conversion value */

112 final_conv = (DWORD) (speed_conv * ((DWORD) 1 <<

113 shift_count)); /* shift true conv factor by max allowable */

114 shift_count -= 16; /* because PMD uses 16/16 value */

115 printf("Pan speed conversion multiplier: %10ld, shift "

116 "count: %2d\n", final_conv, shift_count);

117

118 /* pan accel */

119 max_shifted_conv = MAX_LONG / ((double) MAX_PAN_ACCEL *

120 DISTANCE_SCALE * accel_conv);

121 shift_count = (UINT) (log(max_shifted_conv) / LOG_2);

122 final_conv = (DWORD) (accel_conv * pow(2, shift_count));

123 shift_count -= 16; /* because PMD uses 16/16 value */

124 printf("Pan acceleration conversion multiplier: %10ld, shift "

125 "count: %2d\n", final_conv, shift_count);

126

127 /* pan jerk */

128 max_shifted_conv = MAX_LONG / ((double) MAX_PAN_JERK *

129 DISTANCE_SCALE * jerk_conv);

130 shift_count = (UINT) (log(max_shifted_conv) / LOG_2);

131 final_conv = (DWORD) (jerk_conv * pow(2, shift_count));

132 shift_count -= 32; /* because PMD uses 0/32 value */

133 printf("Pan jerk conversion multiplier: %10ld, shift "

134

135 "count: %2d\n", final_conv, shift_count);

136 /* calculate pan microsteps per revolution */

137 final_conv = (DWORD) (usteps_rev + 0.5 /* for rounding */);

138 printf("Pan microsteps per revolution: %ld\n", final_conv);

Confidential PELCO Information – 15 December 2004 – 7:12

6.4 mtrcalc.c 87

139

140 /* calculate floating point conversion factors */

141 distance_conv = tilt_ratio / (tilt_step_size * DISTANCE_SCALE) *

142 USTEPS_STEP;

143 speed_conv = distance_conv * cycle_time;

144 accel_conv = speed_conv * cycle_time;

145 jerk_conv = accel_conv * cycle_time;

146

147 /* calculate fixed point conversion factors and shift counts */

148 /* tilt distance */

149 usteps_rev = (DEGREES_REV * DISTANCE_SCALE) * distance_conv; /*

150 usteps in one revolution */

151 max_shifted_conv = MAX_DWORD / usteps_rev;

152 shift_count = (UINT) (log(max_shifted_conv) / LOG_2); /* log base

153 2 of max conversion value */

154 final_conv = (DWORD) (distance_conv * ((DWORD) 1 <<

155 shift_count)); /* shift true conv factor by max allowable */

156 printf("Tilt distance conversion multiplier: %10ld, shift "

157 "count: %2d\n", final_conv, shift_count);

158

159 /* tilt speed */

160 max_shifted_conv = MAX_DWORD / ((double) MAX_TILT_SPEED *

161 DISTANCE_SCALE * speed_conv);

162 shift_count = (UINT) (log(max_shifted_conv) / LOG_2); /* log

163 base 2 of max conversion value */

164 final_conv = (DWORD) (speed_conv * ((DWORD) 1 <<

165 shift_count)); /* shift true conv factor by max allowable */

166 shift_count -= 16; /* because PMD uses 16/16 value */

167 printf("Tilt speed conversion multiplier: %10ld, shift "

168 "count: %2d\n", final_conv, shift_count);

169

170 /* tilt accel */

171 max_shifted_conv = MAX_LONG / ((double) MAX_TILT_ACCEL *

172 DISTANCE_SCALE * accel_conv);

173 shift_count = (UINT) (log(max_shifted_conv) / LOG_2);

174 final_conv = (DWORD) (accel_conv * pow(2, shift_count));

175 shift_count -= 16; /* because PMD uses 16/16 value */

176 printf("Tilt acceleration conversion multiplier: %10ld, shift "

177 "count: %2d\n", final_conv, shift_count);

178

179 /* tilt jerk */

180 max_shifted_conv = MAX_LONG / ((double) MAX_TILT_JERK *

181 DISTANCE_SCALE * jerk_conv);

182 shift_count = (UINT) (log(max_shifted_conv) / LOG_2);

183 final_conv = (DWORD) (jerk_conv * pow(2, shift_count));

184 shift_count -= 32; /* because PMD uses 0/32 value */

185 printf("Tilt jerk conversion multiplier: %10ld, shift "

186 "count: %2d\n", final_conv, shift_count);

Confidential PELCO Information – 15 December 2004 – 7:12

88 6 VARIOUS PMD CALCULATIONS

187

188 /* calculate tilt microsteps per revolution */

189 final_conv = (DWORD) (usteps_rev + 0.5 /* for rounding */);

190 printf("Tilt microsteps per revolution: %ld\n", final_conv);

191 printf("\n\n");

192 } /* for (;;) */

193 }

194 #pragma warning (default: 4702) /* unreachable code */

195

Confidential PELCO Information – 15 December 2004 – 7:12

6.5 MC.c 89

6.5 MC.c

Brad Buce modified mtrcalc.c for the ExCite project (project 125). The two areas of changes
were to make the default gear ratio what is used on the ExCite and have the routine directly
generate a header file, motor.h, that may be included in source code41.

1 /*! \class mc_c

2 *

3 * - This file is part of BIOS.

4 * $Workfile: mc.c $

5 * $Archive: /RD/Utils/mc/mc.c $

6 * $Revision: 15 $

7 * $Modtime: 7/14/04 8:08a $

8 * $Author: Bbuce $

9 * \attention Copyright(©) by Pelco, 2000, 2001, 2002, 2003

10 * -

11 * - Calculate PMD conversion factors given the gear ratios.

12 * - For derivation of the formulas used, see file "calc.doc" in a

13 * PMD code directory.

14 * - Compiles with VC 6.0, runs on a PC. Does not run on the MCORE.

15 */

16

17 /**/

18 #include <stdlib.h>

19 #include <stdio.h>

20 #include <math.h>

21 #include <string.h>

22 #include <time.h>

23

24 /*lint -e421 Caution -- function ’gets(char *)’ is considered dangerous */

25

26 void DoAxis(int axis);

27

28 #define DEGREES_REV 360 /*!< Degrees per revolution */

29 #define DISTANCE_SCALE 100 /*!< Distance scale factor to convert degrees

to hungrees */

30 #define LOG_2 0.69314718055995 /*!< log(2) */

31 #define MAX_DWORD 4294967295uL /*!< Max unsigned 32-bit value */

32 #define MAX_LONG 2147483647L /*!< Max signed 32-bit value */

33

34 #define PAN 0 /*!< Indicates pan axis is being used */

35 #define TILT 1 /*!< Indicates tilt axis is being used */

36 //

37

38 #define USTEPS_STEP 64 /*!< # of usteps per step */

39

41Previously the values generated by mtrcalc.c had to be hand transcribed into a header file.

Confidential PELCO Information – 15 December 2004 – 7:12

90 6 VARIOUS PMD CALCULATIONS

40 #define CYCLE_TIME 542.72

41

42 #define MAX_SPEED 40 /*!< Max speed in degrees/second */

43 #define MAX_ACCEL 100 /*!< Max accel in degrees/second**2 */

44 #define MAX_JERK 1000 /*!< Max jerk in degrees/second**3 */

45

46 #define DENOMINATOR 360

47 #define NUMERATOR 6800

48

49 #define STEP_SIZE 1.8

50

51 //

52

53 double accel_conv; /*!< Accel conversion factor */

54 double cycle_time; /*!< Motor controller cycle time */

55 double denominator;

56 double distance_conv; /*!< Distance conversion factor */

57 double inverse_distance_conv; /*!< inverse Distance conversion factor */

58 double jerk_conv; /*!< Jerk conversion factor */

59 double max_shifted_conv; /*!< Max shifted conversion value that will not make

conversion overflow */

60 double max_accel;

61 double max_jerk;

62 double max_speed;

63 double numerator;

64 double ratio; /*!< Gear ratio */

65 double speed_conv; /*!< Speed conversion factor */

66 double inverse_speed_conv;

67 double step_size; /*!< Motor step size */

68 int ustep_step;

69 int distance_scale;

70 double usteps_rev; /*!< Usteps per revolution */

71

72 unsigned long final_conv; /*!< Final conversion value */

73 unsigned int shift_count; /*!< Shift count for conversion value */

74 char Inbuff[128]; /*!< Input buffer */

75

76 FILE *outfile;

77 time_t start;

78 struct tm *startlocal;

79

80

81 /**/

82 /**

83 Truncate, not round when calculating multipliers to make sure overflow

84 never occurs. Round when calculating microsteps per revolution to get

85 closest value.

86 */

Confidential PELCO Information – 15 December 2004 – 7:12

6.5 MC.c 91

87 /**/

88

89 int main(void)

90 {

91 outfile = fopen("motor.h","w+");

92

93 time(&start);

94 startlocal = localtime(&start);

95

96 fprintf(outfile,"/*! \\class motor_h\n");

97 fprintf(outfile," *\n");

98 fprintf(outfile," * - This file is part of MAIN\n");

99 fprintf(outfile," * $Workfile: mc.c $\n");

100 fprintf(outfile," * $Archive: /RD/Utils/mc/mc.c $\n");

101 fprintf(outfile," * $Revision: 15 $\n");

102 fprintf(outfile," * $Modtime: 7/14/04 8:08a $\n");

103 fprintf(outfile," * $Author: Bbuce $\n");

104 fprintf(outfile," * \\attention Copyright(©) by Pelco, 2000, 2001, 2002,

2003\n");

105 fprintf(outfile," * -\n");

106 fprintf(outfile," * - File auto-created: %s",asctime(startlocal));

107 fprintf(outfile," */\n\n");

108

109 // Get cycle time

110 cycle_time = CYCLE_TIME;

111 printf("Cycle time in usec (%f for PMD, 400 for UMDM):

%f\n",CYCLE_TIME,cycle_time);

112 gets(Inbuff);

113 sscanf(Inbuff, "%lf", &cycle_time);

114 if (cycle_time == 0.0)

115 cycle_time = CYCLE_TIME;

116

117 printf("Cycle time = %6.3E\n", cycle_time);

118 fprintf(outfile,"/**\n");

119 fprintf(outfile," * - Cycle time = %6.3E\n",cycle_time);

120

121

122 /* conv from usec to sec */

123 cycle_time *= 1E-6;

124

125

126 // Get usteps per step

127 ustep_step = USTEPS_STEP;

128 printf("Microsteps per step: %d\n",ustep_step);

129 gets(Inbuff);

130 sscanf(Inbuff, "%lf", &ustep_step);

131 if (ustep_step == 0.0)

132 ustep_step = USTEPS_STEP;

Confidential PELCO Information – 15 December 2004 – 7:12

92 6 VARIOUS PMD CALCULATIONS

133

134 printf("Usteps per step = %d\n", ustep_step);

135 fprintf(outfile," * - Usteps per step = %d\n",ustep_step);

136

137 // print distance scale

138 distance_scale = DISTANCE_SCALE;

139 printf("Distance Scale = %d\n", distance_scale);

140 fprintf(outfile," * - Distance Scale = %d\n",distance_scale);

141 fprintf(outfile," */\n");

142

143 fprintf(outfile,"#define MOTOR_USTEPS_PER_STEP %d\n",ustep_step);

144

145 fprintf(outfile,"#define DISTANCE_SCALE %d\n",distance_scale);

146

147

148 fprintf(outfile,"#define Global_motor_constants_doxygen\n");

149

150 DoAxis(PAN);

151 DoAxis(TILT);

152

153 fclose(outfile);

154 exit(EXIT_SUCCESS);

155 }

156

157

158 void DoAxis(int axis)

159 {

160 char AxisPrefix[5];

161

162 ratio = step_size = 0;

163

164 switch (axis)

165 {

166 case PAN:

167 strcpy(AxisPrefix,"PAN");

168 break;

169

170 case TILT:

171 strcpy(AxisPrefix,"TILT");

172 break;

173

174 default:

175 return;

176 }

177

178

179 // Get gear ratio

180 numerator = 0;

Confidential PELCO Information – 15 December 2004 – 7:12

6.5 MC.c 93

181 printf("%s Numerator of gear ratio: %d\n",AxisPrefix,NUMERATOR);

182 gets(Inbuff);

183 sscanf(Inbuff, "%lf", &numerator);

184 if (numerator == 0)

185 numerator = NUMERATOR;

186

187 denominator = 0;

188 printf("%s Denominator of gear ratio: %d\n",AxisPrefix,DENOMINATOR);

189 gets(Inbuff);

190 sscanf(Inbuff, "%lf", &denominator);

191 if (denominator == 0)

192 denominator = DENOMINATOR;

193

194 ratio = (double) numerator / denominator;

195 printf("A %s gear ratio of %f is being used\n\n",AxisPrefix,ratio);

196

197 // Get step size of motor

198 step_size = 0;

199 printf("%s Step size (degrees): %f\n",AxisPrefix,STEP_SIZE);

200 gets(Inbuff);

201 sscanf(Inbuff, "%lf", &step_size);

202 if (step_size == 0)

203 step_size = STEP_SIZE;

204

205 // Get maximum speed, acceleration and jerk parameters

206 max_speed = 0;

207 printf("%s Maximum speed (degrees/sec): %d\n",AxisPrefix,MAX_SPEED);

208 gets(Inbuff);

209 sscanf(Inbuff, "%lf", &max_speed);

210 if (max_speed == 0)

211 max_speed = MAX_SPEED;

212

213 max_accel = 0;

214 printf("%s Maximum acceleration (degrees/sec/sec): %d\n",AxisPrefix,MAX_ACCEL);

215 gets(Inbuff);

216 sscanf(Inbuff, "%lf", &max_accel);

217 if (max_accel == 0)

218 max_accel = MAX_ACCEL;

219

220 max_jerk = 0;

221 printf("%s Maximum jerk (degrees/sec/sec/sec): %d\n",AxisPrefix,MAX_JERK);

222 gets(Inbuff);

223 sscanf(Inbuff, "%lf", &max_jerk);

224 if (max_jerk == 0)

225 max_jerk = MAX_JERK;

226

227 printf("\n\n");

228

Confidential PELCO Information – 15 December 2004 – 7:12

94 6 VARIOUS PMD CALCULATIONS

229

230 fprintf(outfile,"\n/**\n");

231

232 printf("%s Gear ratio = %6.2f\n",AxisPrefix, ratio);

233 fprintf(outfile," * - %s Gear ratio = %6.2f\n",AxisPrefix, ratio);

234 printf("%s Step size = %6.2f\n",AxisPrefix, step_size);

235 fprintf(outfile," * - %s Step size = %6.2f\n",AxisPrefix, step_size);

236 printf("%s Max speed = %6.2f\n", AxisPrefix,max_speed);

237 fprintf(outfile," * - %s Max speed = %6.2f\n",AxisPrefix, max_speed);

238 printf("%s Max acceleration = %6.2f\n",AxisPrefix, max_accel);

239 fprintf(outfile," * - %s Max acceleration = %6.2f\n",AxisPrefix, max_accel);

240 printf("%s Max jerk = %6.2f\n",AxisPrefix, max_jerk);

241 fprintf(outfile," * - %s Max jerk = %6.2f\n",AxisPrefix, max_jerk);

242 fprintf(outfile," *\n");

243

244 printf("\n");

245

246 /* calculate floating point conversion factors */

247 distance_conv = ratio / (step_size * DISTANCE_SCALE) * USTEPS_STEP;

248 inverse_distance_conv = 1/distance_conv;

249 speed_conv = distance_conv * cycle_time;

250 inverse_speed_conv = 1/speed_conv;

251 accel_conv = speed_conv * cycle_time;

252 jerk_conv = accel_conv * cycle_time;

253

254

255 printf("%s Distance conversion factor =

%8.6E\n",AxisPrefix,distance_conv);

256 fprintf(outfile," * - %s Distance conversion factor =

%8.6E\n",AxisPrefix,distance_conv);

257

258 printf("%s Inverse Distance conversion factor =

%8.6E\n",AxisPrefix,inverse_distance_conv);

259 fprintf(outfile," * - %s Inverse Distance conversion factor =

%8.6E\n",AxisPrefix,inverse_distance_conv);

260

261 printf("%s Speed conversion factor =

%8.6E\n",AxisPrefix,speed_conv,speed_conv);

262 fprintf(outfile," * - %s Speed conversion factor =

%8.6E\n",AxisPrefix,speed_conv);

263

264 printf("%s Inverse Speed conversion factor =

%8.6E\n",AxisPrefix,inverse_speed_conv,inverse_speed_conv);

265 fprintf(outfile," * - %s Speed conversion factor =

%8.6E\n",AxisPrefix,inverse_speed_conv);

266

267 printf("%s Acceleration conversion factor =

%8.6E\n",AxisPrefix,accel_conv,accel_conv);

Confidential PELCO Information – 15 December 2004 – 7:12

6.5 MC.c 95

268 fprintf(outfile," * - %s Acceleration conversion factor =

%8.6E\n",AxisPrefix,accel_conv);

269 printf("%s Jerk conversion factor =

%8.6E\n",AxisPrefix,jerk_conv,jerk_conv);

270 fprintf(outfile," * - %s Jerk conversion factor =

%8.6E\n",AxisPrefix,jerk_conv);

271 printf("\n");

272 fprintf(outfile," */\n");

273 fprintf(outfile,"#define %s_motor_constants_doxygen\n\n",AxisPrefix);

274

275 fprintf(outfile,"#define %s_GEAR_RATIO %f\n",AxisPrefix,

ratio);

276 fprintf(outfile,"#define %s_MOTOR_STEP_SIZE %f\n",AxisPrefix,

step_size);

277

278 /* calculate fixed point conversion factors and shift counts */

279 //

280 /* distance */

281 /* usteps in 2 revolution */ // need to use 2 revs for preset error calc to not

overflow

282 usteps_rev = (DEGREES_REV * DISTANCE_SCALE) * distance_conv;

283 max_shifted_conv = MAX_DWORD / (2*usteps_rev);

284

285 /* log base 2 of max conversion value */

286 shift_count = (unsigned int) (log(max_shifted_conv) / LOG_2);

287

288 /* shift true conv factor by max allowable */

289 final_conv = (unsigned long) (distance_conv * ((unsigned long) 1 <<

shift_count));

290 printf("%s Distance conversion multiplier: %10ld, shift count:

%2d\n",AxisPrefix, final_conv, shift_count);

291

292 fprintf(outfile,"#define %s_DISTANCE_TO_PMD %duL\n",AxisPrefix,

final_conv);

293 fprintf(outfile,"#define %s_DISTANCE_PMD_SHIFT_COUNT %d\n"

,AxisPrefix, shift_count);

294 ///////////////////////////

295 /* inverse distance */

296

297 /* usteps in one revolution */

298 max_shifted_conv = MAX_DWORD / ((usteps_rev) * inverse_distance_conv);

299

300 /* log base 2 of max conversion value */

301 shift_count = (unsigned int) (log(max_shifted_conv) / LOG_2);

302

303 /* shift true conv factor by max allowable */

304 final_conv = (unsigned long) (inverse_distance_conv * ((unsigned long) 1 <<

shift_count));

Confidential PELCO Information – 15 December 2004 – 7:12

96 6 VARIOUS PMD CALCULATIONS

305 printf("%s Inverse Distance conversion multiplier: %10ld, shift count:

%2d\n",AxisPrefix, final_conv, shift_count);

306

307 fprintf(outfile,"#define %s_INVERSE_DISTANCE_TO_PMD %duL\n",AxisPrefix,

final_conv);

308 fprintf(outfile,"#define %s_INVERSE_DISTANCE_PMD_SHIFT_COUNT %d\n"

,AxisPrefix, shift_count);

309 //////////////////////////

310

311 /* Speed */

312 max_shifted_conv = MAX_DWORD / ((double) max_speed * DISTANCE_SCALE *

speed_conv);

313

314 /* log base 2 of max conversion value */

315 shift_count = (unsigned int) (log(max_shifted_conv) / LOG_2);

316

317 /* shift true conv factor by max allowable */

318 final_conv = (unsigned long) (speed_conv * ((unsigned long) 1 << shift_count));

319

320 /* because PMD uses 16/16 value */

321 shift_count -= 16;

322 printf("%s Speed conversion multiplier: %10ld, shift count:

%2d\n",AxisPrefix, final_conv, shift_count);

323

324 fprintf(outfile,"#define %s_SPEED_TO_PMD %duL\n",AxisPrefix,

final_conv);

325 fprintf(outfile,"#define %s_SPEED_PMD_SHIFT_COUNT %d\n" ,AxisPrefix,

shift_count);

326 //

327

328 /* inverse Speed */

329 max_shifted_conv = MAX_DWORD / (((double) max_speed * DISTANCE_SCALE *

speed_conv)/inverse_speed_conv);

330

331

332 /* log base 2 of max conversion value */

333 shift_count = (unsigned int) (log(max_shifted_conv) / LOG_2);

334

335 /* shift true conv factor by max allowable */

336 final_conv = (unsigned long) (inverse_speed_conv * ((unsigned long) 1 <<

shift_count));

337

338 /* because PMD uses 16/16 value */

339 shift_count -= 16;

340 printf("%s Inverse Speed conversion multiplier: %10ld, shift count:

%2d\n",AxisPrefix, final_conv, shift_count);

341

Confidential PELCO Information – 15 December 2004 – 7:12

6.5 MC.c 97

342 fprintf(outfile,"#define %s_INVERSE_SPEED_TO_PMD %duL\n",AxisPrefix,

final_conv);

343 fprintf(outfile,"#define %s_INVERSE_SPEED_PMD_SHIFT_COUNT %d\n" ,AxisPrefix,

shift_count);

344

345

346 //

347 /* Accel */

348 max_shifted_conv = MAX_LONG / ((double) max_accel * DISTANCE_SCALE * accel_conv);

349 shift_count = (unsigned int) (log(max_shifted_conv) / LOG_2);

350 final_conv = (unsigned long) (accel_conv * pow(2.0, (double) shift_count)); //

HAM 6NOV03 lint fix

351

352 /* because PMD uses 16/16 value */

353 shift_count -= 16;

354 printf("%s Acceleration conversion multiplier: %10ld, shift count:

%2d\n",AxisPrefix, final_conv, shift_count);

355

356 fprintf(outfile,"#define %s_ACCEL_TO_PMD %dL\n",

AxisPrefix,final_conv);

357 fprintf(outfile,"#define %s_ACCEL_PMD_SHIFT_COUNT %d\n" ,AxisPrefix,

shift_count);

358

359 /* Jerk */

360 max_shifted_conv = MAX_LONG / ((double) max_jerk * DISTANCE_SCALE * jerk_conv);

361 shift_count = (unsigned int) (log(max_shifted_conv) / LOG_2);

362 final_conv = (unsigned long) (jerk_conv * pow(2.0, (double) shift_count)); // HAM

6NOV03 lint fix

363

364 /* because PMD uses 0/32 value */

365 shift_count -= 32;

366 printf("%s Jerk conversion multiplier: %10ld, shift count:

%2d\n",AxisPrefix, final_conv, shift_count);

367

368 fprintf(outfile,"#define %s_JERK_TO_PMD %dL\n",AxisPrefix,

final_conv);

369 fprintf(outfile,"#define %s_JERK_PMD_SHIFT_COUNT %d\n"

,AxisPrefix, shift_count);

370

371 /* calculate Microsteps per revolution */

372

373 if (usteps_rev - ((int) usteps_rev) != 0)

374 {

375 printf("WARNING: GEAR RATIO YIELDS NON-INTEGER NUMER OF MICROSTEPS PER

REVOLUTION\n");

376 fprintf(outfile,"//WARNING: GEAR RATIO YIELDS NON-INTEGER NUMER OF MICROSTEPS PER

REVOLUTION\n");

377 }

Confidential PELCO Information – 15 December 2004 – 7:12

98 6 VARIOUS PMD CALCULATIONS

378

379 /* for rounding */

380 final_conv = (unsigned long) (usteps_rev + 0.5);

381 printf("%s Microsteps per revolution: %ld\n\n",AxisPrefix, final_conv);

382

383 fprintf(outfile,"#define %s_USTEPS_REV %dL\n",AxisPrefix,

final_conv);

384

385 }

386 //;;;

387 /**

388 * $Log: /RD/Utils/mc/mc.c $

389 *

390 * 15 7/14/04 2:12p Bbuce

391 * fix preset 300+ wrong route err

392 *

393 * 14 7/01/04 2:13p Bbuce

394 *

395 * 13 2/17/04 8:11a Bbuce

396 * added more parameter defines to remove duplicates from main code

397 *

398 * 12 2/11/04 10:35a Bbuce

399 *

400 * 11 2/10/04 3:04p Bbuce

401 *

402 * 10 2/03/04 3:39p Bbuce

403 * added warning if microsteps per revolution is non-integer

404 *

405 * 9 11/14/03 11:14a Bbuce

406 * Fixed bug in distance conversion

407 *

408 * 8 11/06/03 11:28a Ehamilton

409 * Fixed an error in calculating tilt values and made more doxygen

410 * changes. Also made some lint fixes.

411 *

412 * 7 11/05/03 12:05p Ehamilton

413 * Make changes to help support doxygen.

414 *

415 * 6 11/04/03 10:41a Bbuce

416 * added tilt to auto gen

417 *

418 * 5 11/04/03 9:48a Bbuce

419 *

420 * 4 11/04/03 9:47a Bbuce

421 * souresafe keywords

422 */

423 //;;;

424 #define mc_c_log_doxygen

Confidential PELCO Information – 15 December 2004 – 7:12

6.5 MC.c 99

425

Confidential PELCO Information – 15 December 2004 – 7:12

100 6 VARIOUS PMD CALCULATIONS

6.6 SpdCalc.c

Dave Micon wrote a program to generate the non-linear speed table that is used to control
Pelco’s pan and tilt units. Its output conforms to the reccomendations of the Joy Stick Report.

1 /**/

2 /*

3 Calculate speed tables.

4 */

5 /**/

6 #include <stdio.h>

7 #include <math.h>

8 #define MAX_SPEED 400.0 // maximum output speed in 1/10 deg

9 #define MIN_SPEED 5.0 // min output speed in 1/10 deg

10 #define MAX_INPUT_SPEED 63 // max input speed value

11 #define MIN_INPUT_SPEED 7 /* min input speed value after flat

12 minimum speed */

13 void main(void)

14 {

15 int i;

16 FILE *outfile;

17 double multiplier, multiplyvalue;

18 double adder, addvalue;

19 double value;

20

21 outfile = fopen("temp.tmp", "w");

22 adder = (MAX_SPEED - MIN_SPEED) / (MAX_INPUT_SPEED - MIN_INPUT_SPEED + 1);

23 multiplier = pow(MAX_SPEED - MIN_SPEED, 1.0 / (MAX_INPUT_SPEED - MIN_INPUT_SPEED

+ 1));

24 addvalue = multiplyvalue = MIN_SPEED;

25 value = (addvalue + multiplyvalue) / 2.0;

26 for (i = 0; i < MIN_INPUT_SPEED; i++)

27 {

28 printf("%4.0f", value);

29 fprintf(outfile, "%4.0f", value);

30 printf(",");

31 fprintf(outfile, ",");

32 if (i % 8 == 7)

33 {

34 printf("\n");

35 fprintf(outfile, "\n");

36 }

37 }

38 addvalue = adder;

39 multiplyvalue = multiplier;

40 for (i = MIN_INPUT_SPEED; i <= MAX_INPUT_SPEED; i++)

41 {

42 value = (addvalue + multiplyvalue) / 2.0;

Confidential PELCO Information – 15 December 2004 – 7:12

6.6 SpdCalc.c 101

43 printf("%4.0f", value + MIN_SPEED);

44 fprintf(outfile, "%4.0f", value + MIN_SPEED);

45 if (i != MAX_INPUT_SPEED)

46 {

47 printf(",");

48 fprintf(outfile, ",");

49 }

50 if (i % 8 == 7)

51 {

52 printf("\n");

53 fprintf(outfile, "\n");

54 }

55 addvalue += adder;

56 multiplyvalue *= multiplier;

57 }

58 fclose(outfile);

59 }

Confidential PELCO Information – 15 December 2004 – 7:12

A-1

APPENDIX A

A Patents

Pelco holds some U.S. patents in controlling stepper motors.

A.1 United States Patent 6,566,839

Title Switched capacitor motor driver

Abstract The present invention is a method and apparatus that allows the torque of an electric
motor to be increased allowing the motor to be operated at higher speeds and at higher
torque without raising the supply voltage, thus allowing for a wider dynamic range of speed
and torque to be realized. This is accomplished by connecting one or more capacitors in series
with each motor winding, and selectively activating the capacitors at higher speeds where the
frequency of the motor resonates with that of the capacitor(s). Switching a capacitor into the
circuit with the motor in a particular frequency range allows higher currents to flow through
the motor windings resulting in higher torque.

A.2 United States Patent 6,670,783

Title Method and apparatus for improved motor control through current/velocity correction

Abstract The present invention provides a method and apparatus, including a processor and
software incorporating a table that contains sets of pre-determined correction values that are
used to supply different amounts of power to an electric stepper motor when the motor is
operating at different speeds. Use of the correction values in the table allows power to be
supplied to the motor in differing amounts that are approximately the same as the power
actually required by the motor at different motor speeds or ranges of speeds.

Confidential PELCO Information – 15 December 2004 – 7:12

APPENDIX B

Index

.H, 84
14 inch diameter dome, 11
8 inch diameter dome, 11

A22, 46
American Dynamics, 46

Coaxitron, 11, 46, 47
CPU, 48

D Protocol, 11, 46
D22, 46
Document Control, 5, 8

Espirt, 40
Esprit, 5, 8, 30—37, 40, 41, 43, 48—50
ExCite, 37—39, 89

fixed speed, 5

Intercept, 5, 8, 11—16, 40, 46—49
IVcorrection, 40

Joy Stick Report, 100
Joystick, 44
Joystick Report, 16

MC.c, 89
microstepping, 40
microsteps, 40
motor.h, 89
mtrcalc.c, 84, 89

NTSC, 16, 28, 37, 39

P Protocol, 11, 46
P/T, 47
P22, 46

Pacom Intercept, 46
PAL, 16, 29, 37
Pan and Tilt, 5
Pattern, 47, 50, 66
pattern, 47, 48, 50, 65, 66
Pelco, 5, 8, 16, 40, 46, 100
PMD, 40, 48, 75, 76, 78—80, 82, 83
Preset, 48
preset, 47—49, 59, 60, 62
PUD, 40, 41, 48
PWM, 40

RS-422, 46, 47
RS-485, 46, 47
RS485, 53

SpdCalc.c, 100
Spectra, 5, 8, 16, 40, 43, 48—50
Spectra I, 5, 8, 16—18, 46, 75
Spectra II, 5, 8, 16, 19—30
Spectra III, 5, 8, 16
stepper motors, 16

UMDM, 40

Video, 47
video, 46—50

Xilinx, 40

Zone, 47, 49, 67
zone, 47—50, 67

B-1

