Copyright PSIA 2010

Physical Security Interoperability Alliance

PSIA Specification : Recording and Content Management Device Specification
Version 1.1a

January 18, 2011

Copyright Physical Security Interoperability Alliance, All Rights Reserved

& PsIN

PSIA RaCM Device Specification
V1.1ar0.6b

RaCM WG

Copyright PSIA 2010

Document History

V1.1, R0.1

Created Version 1.1 Spec from prior RaCM Spec Version 1.0,
Revision 1.0 (Dec. 8, 2009)

Jan. 4, 2010

James Wang
Roger Richter

V1.1, R0.1

Schedule redesign to allow Extensions:
. In Track configuration: rename <Schedule> to
<TrackSchedule>
. Rename <ScheduleActionList> to <ScheduleBlock> (a
“Block is referenced by it's type/name uri & GUID. It
contains a series of <ScheduleAction>’s, and may contain
vendor-specific extensions)

Jan. 5, 2010

James Wang

V1.1, R0.2

Added Section 14 Polymorphic/Poly-temporal track design and
definitions. Added additional design information section on DVR,

and some NVR, operations in Section 7. Eliminated old Section 13.2.

Feb. 2, 2010

Roger Richter

V1.1, R0.3

Added Section 8.4. such that all RaCM device should now advertise
the IP media devices they are compatible with. This enables support
for both PSIA and non-PSIA IP devices, and helps VMSs/PSIMs
determine what devices are compatible with a RaCM unit.

Replaced the ‘capabilities’ resources in Sections 8.3 and 11.3 with
the ‘profile’ REST resource name. This is necessary to hew
definitions in the PSIA Service Model v1.1. spec. RaCM v1.0 has
been obsoleted with these changes.

Added new REST resource “/PSIA/ContentMgmt/ record/profie” and
a new Section 9.2. to describe advertising track type support and
extensions.

Feb. 8, 2010

Roger Richter

V1.1, R0.4

Added an audio track example, melded with video, to the
polymorphic track example in Section 14.2. Further clarified the
terms “flow ID” and “track ID” in Section 14.2.2, also.

March 8, 2010

Roger Richter

V1.1a, RO.5

Updated Section 11.4, /PSIA/ContentMgmt/search to allow the
support of ‘POST' in addition to ‘GET’ as HTTP message types for
search requests. Some programming APIs prevent GETs from
having content bodies event though this is clearly allowed in RFC
2616.

Sept. 27, 2010

Roger Richter

V1.1la, RO.6

- Delete erroneous references to “.../search/capabilities”.

- XSD & spec: Delete “.../search/index” Resource and schema.

- XSD: set minOccurs="0" for “Track” in “TrackList” (allows for empty
TrackList; see PSIA doc repository)

- XSD: Add “channellDList” to CMSearchDescription schema (see
PSIA doc repository).

- XSD: Add “channelURI” to ChannelStatus schema (see PSIA doc
repository).

- XSD: Add missing “maxSearchMatchResults” to “cmSearchProfile”
- Add more explanatory text regarding channel-based search and
status.

- Remove all embedded XSD text and, instead, refer to PSIA
website-repository.

Dec. 8, 2010

James Wang

V1.1a, RO6b

Minor corrections to xml examples and typos (some of which were
caused by Word's Autocorrect feature).

Jan. 18, 2011

James Wang

Copyright PSIA 2010

Disclaimer

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING

ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR
SAMPLE. Without limitation, PSIA disclaims all liability, including liability for infringement of any proprietary
rights, relating to use of information in this specification and to the implementation of this specification, and
PSIA disclaims all liability for cost of procurement of substitute goods or services, lost profits, loss of use, loss
of data or any incidental, consequential, direct, indirect, or special damages, whether under contract, tort,
warranty or otherwise, arising in any way out of use or reliance upon this specification or any information
herein.

No license, express or implied, by estoppel or otherwise, to any PSIA or PSIA member intellectual

property rights is granted herein.

Except that a license is hereby granted by PSIA to copy and reproduce this specification for internal
use only.

Contact the Physical Security Interoperability Alliance at info@psialliance.org for information on specification
licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

Copyright PSIA 2010

Table of Contents
O 111 £ o [FTox o] o TSPV UR PR URPRPRRPRPN 7
PO B O] 1 (0] 40T 13 (o PSSR URTRRTRORPRPRS 7
2.1 RETEIBINCES ...ttt bbbt bbbt r s 7
2.2 REST OVEIVIBW ..ottt sttt sttt sttt ettt be et be et e e st e s be e beeneesbeesbeenbesbeenbeennennean 9
2.3 HTTP Methods and CRUDcccooiiiiiiiiiieiesie et 10
3.0 RaCM Glossary and RelationSNIPSc.coviiiiiiiie i 10
K T8 A € 01XV VA) I 1 1SS 10
3.2 Relationship of Entities and Terminologyccccooveieiieiinie e 11
3.3 Arbitrary Stream and TraCk ASSOCIALIONSc.ccvverieerierieriereseeseeie e se e e e e saeseesaeens 12
3.4 Name Case (N0n) RECOMMENAALION.........cceeiuiiiiriierieeie et nee e 13
3.5 PSIA SEIVICE ROOL ...ttt sttt bbbttt bbb n s 13
3.6 XML RESEIVEU ChaAraCterS......civiiiieieeie sttt sttt re et neesae e 14
4.0 RESOUICE STIUCTUIEeiiiieieeieiee sttt e e ennr e e ne e e e ne e 15
5.0 PSIA Content Management REST EXamMPIES........coooiiiiiiieiiiie e 15
6.0 Content Management (RaCM) DeViCe DISCOVEIYcccueiieriiiiieiiesieeieseesieeseeseeseeee e saeens 16
7.0 EVENESIIBAMING ..ueiitieitieiie ittt sttt sttt st e b et e st e sbe e be e s b e e be et e e seesbe e beeneesreenee e 17
8.0 General Rules, Guidelines, Operation and APl Behavior............ccccoooveieiieiieie e, 17
8.1 DVR & NVR DesSign CONSIAEIAtIONS.c.ceitiiiiriieiieiesie i siee e ee st see e 19
8.2 Input Source Management (Remote Camera Configuration)c.cccecevvevviiierieeresnennnnn, 21
0.0 CoNtENtMOMLE BASE SEIVICEecuviiiieiiieieeiie sttt sttt sttt sre e teeneesneenee e 22
9.1 /PSIA/CONENTMOIME/INUEX....c.vieiieiireieeie sttt ee e eete e ste e e ste et esta e e sneesreeneesneenneans 23
9.2 /PSIA/CoNtentMgmME/AeSCrIPIION.oviiiiiieitieie ettt 24
9.3 /PSIA/ContentMgmt/profile (changed V1.1)......ccccoveiiiiiiiieiiiie e 25
931 [PS1A/ContentMgmt/profile Schema Definition.........cccoceiiiiiiiiiiiee e, 26
9.4 /PSIA/ContentMgmt/sourceSupport (NEW VL.1)cccoviierieiesiesireie e 26
94.1 Source Support XML Schema Definitioncccccocevieiiiieiecc e 28
9.4.2 Access and Operation OF SOUICE SUPPOIT.......ccverueeieriereaieseesieeee e siee e sreeseeeeesseeseeens 28
9.4.21 “Send=...” QUErY STriNG Parameterccooieiiiiiiee e enes 29
10.0 /PSIA/ContentMgmt/record (Recorder Configuration & Control)cccccoevvvviiieicnnnn, 34
10.1 /PSIA/ContentMgmt/record/storageMounts (Storage Allocation)..........cccccevvevevvennenne. 34
10.2 /PSIA/ContentMgmt/record/profile (NEW VI1.1)cccoociiiiiiiiiiiiieicnesc e 36
10.2.1 /PS1A/ContentMgmt/record/profile Schema Definition.............ccccceeveiieiiic e, 37
10.3 /PSIA/ContentMgmt/record/tracks (Recording Session Configuration).............cccceevenee. 37
10.3.1 Custom Configuration Data (EXIENSIONS)ccveiieiieriiiieieeie e sre e 39
10.3.2 PSIA-REST List-Entry <id> Creation Methodcccceviiiiiiiniicieee e 39
10.3.3 Streaming URL implied in <Track> configuration...........c.ccccccveveiieieic s 39
10.3.4 Recording SOUrCe DESCIIPIION.ciuiiiiieieieie et 39
10.3.4.1 Source Description Correlation FOr Status QUENIEScoeeeererieiiie e 39
10.3.5 Recording SChedule OVEIVIEBW ..o 40
10.3.6 Track DEeSCIHPLION NVP ...ttt re et ae e 41
10.3.7 <MetadataEvtCfgList> (used IN EDR MOGE)coceriririiiiieiencese e 42
10.3.8 /PS1A/ContentMgmt/record/tracks Resource DesCriptionccccvvevveveiiieieesieseennen, 42
10.3.9 /PSIA/ContentMgmt/record/tracks/<id> Resource DesCriptioncccocevvvrvrveieenienne. 43
10.3.10 Example Track Creation Message EXChangecccccveveiiiiiciie i 43

10.3. 11 TrACK LISE SCNBIMA ..ttt nnn 49

Copyright PSIA 2010

10.4 [PSIA/ContentMgmt/record/CONIOLcooiiiiiiieiiee s 49
10.4.1 [PS1A/ContentMgmt/record/control/manual/start (Recording Manual Start).................. 49
10.4.2 [PS1A/ContentMgmt/record/control/manual/stop (Recording Manual Stop) 50
10.4.3 /PS1A/ContentMgmt/record/control/lock (Record Track Locking)ccccccevvevieinennenn. 50

10.5 /PSIA/ContentMgmt/record/metadata (manual event inSertion)..........ccccevcvevvriennenienne 52
10.5.1 [PS1A/ContentMgmt/record/metadata/desCriptioncccccvevevieeresieseere e 52
11.0 [PSIA/ContentMgmt/schedules (NEW VI1.1)......ccuoiiiieiiiiesierieeiesee s 54

11.1 /PSIA/ContentMgmt/schedules/<ScheduleBlockGUID> (Resource Description)........... 54
12.0 [PSI1A/ContentMgmt/search (Search Service and RESOUICES)ccovveveeiieieniieneeniiaie s 56

12.1 /PSIA/ContentMgmt/search/desCription..........ccccveveiiiereeriesiese s 56

12.2 [PSI1A/ContentMgmt/search/profile (V1.1 changed).........ccoooreiieiiiiniieieeeseece e 57
12.2.1 /PS1A/ContentMgmt/search/profile Schema Definition.............ccoocvvviiveivie e, 58

12.3 [PSIA/CONtENIMOML/SEAICH. ..o 58
12.3.1 Search Query Parameter Schema Definition..........cccccovviieiiieii e 60
12.3.2 Search Query ReSUIS SCNEMA..........coiiiiiiiiiiei e s 63

12.3.2.1 Search ResSponse EXAMPIES........cccviiiiiieiie e e 63
12.3.2.2 Search Result Schema DefinitioN..........cccoieiiiiiiie e e 66
13.0 /PS1A/ContentMgmt/status (Status Service and RESOUICES).......c.covvrrvereererrenieseeseaeeneens 67

13.1 /PSIA/ContentMgmt/sStatuS/VOIUMESccveiieiieiecieece e 69

13.1.1 /PS1A/ContentMgmt/status/volume Attribute Definitions..........ccccovvvviveiviin e, 71
13.1.1.1 Content Base Status Attributes Tablecooiiiiiiiiiei e 71
13.1.1.2 Mount Volume Status Information Table ... 72

13.1.2 /PS1A/ContentMgmt/status/volume XML Schema Definitioncccccoevevveicinennenn, 73

13.2 /PSIA/CoNteNtMgME/STATUS/SOUICTES.eiviieieiieiieieseeete sttt 73
13.2.1 /PSIA/ContentMgmt/status/sources Status AttribULES...........ccevveveiieiiecece e, 76

13.2.1.1 Source Status Attribute DefinitioNSccviiiiiiiiiie e 77

13.2.2 /PS1A/ContentMgmt/status/sources XML Schema Definitioncccccvvevvveiecienenn, 77

13.3 [PSIA/ContentMgmt/status/Channels............ccooveiiiiiii s 77
13.3.1 [PS1A/ContentMgmt/status/channels Status AttribUtes..........c.ccceveiieiiiervcc e, 80
13.3.2 /PSIA/ContentMgmt/status/channels XML Schema Definitioncccccovevieiieennnn, 81

13.4 /PSIA/ContentMgmMU/StatUS/ITACKSccvveveeeieciiecie e 81
134.1 [PS1A/ContentMgmt/status/tracks Status AttribDULESccoovvieiiiiie e, 83
13.4.2 /PS1A/ContentMgmt/status/tracks XML Schema Definition............cccccevvvieiveicciennenn, 84
14.0 Streaming and PlayDaCKcouiiiiii 85

14.1 SEEAMING URIS ..ottt e st e ste et e nreesteeneeaneenneens 85
141.1 LIVE SEIBAIMS ...ttt b et r et e b e bt e b e e e e s bt e nbeeneesreenee e 85
14.1.2 ATCNIVE STIBAIMS ...ttt bbb bbbt e e 85
14.1.3 SOUrCe-Dased SIrEAMINGoiuiiiieiiiie e e e enes 86
14.1.4 Time-related StrEAMINGccie et re e e sne e 88

14.2 Streaming Configuration and SEALUS............cceiieririinieri e 88
14.2.1 SEIEAMING STALUSc.viieie et e et e ra et e neesra e beaneesreennennes 89
14.2.2 QoS Parameter for playback (NEW VI1.1)cooiiiiiiiiieieiie e 89

14.3 Streaming OPEIALIONSccvvieeieereeieseeseeee e e et st e e et e et e e e e sseesaeereesreesseeneeaneenneens 91

14.4 PIAYDACK. ... et nreas 92

Copyright PSIA 2010

144.1 PlayDack REQUITEMENTSoiuiiiiiiieiieie ettt nreas 92
1442 (O T 0 [0L U1 (<] PSPPSR PR ROPRTRPPRPP 93
14.4.3 USE OF RTSP ..ttt sttt sttt ne e b e et st e sbeenbeeneenreas 93
1444 RTP NEAUET EXIENSIONovvitiitiitisiesii sttt bbbttt nas 93
14.4.4.1 Compatibility with the JPEG header eXtENSIONccccevviiiiniiiieieeeee e 94
14442 NTP THMESTAMPS. ... eeeteeteeee ettt sttt s ee st et esbe st e besbe e e e sbeeneeseesreenbeseeeneas 95

14.4.5 INItIAING PlAYDACK cciiiiecie et 95
14451 Range header FIEltcoov oo 95
14.45.2 Rate-Control header FIeld..... ..o s 95
14453 Frames header FIEld..........ccooiiiiiiiie e 96
R O 1< 0 T]] £ SSTSSRRTRI 96
14455 Time-gapped PlaybacK. ... s 96

14.4.6 REVEISE TEPIAY ...ttt ettt e s e et e e seesreenteenaesneenteeneenres 97
14.46.1 Packet tranSMiSSION OFUENcueiiiieie ittt et seesraenaenreenes 97
14.4.6.2 RTP SEQUENCE NUMDEISeeiieeie et siee e stte st eesteeste e steesre e e ee e steesteesreessaesnaeenbeenseereesree e 97
14.4.6.3 RTP tIMESTAIMPSveiieieciee ettt et ste e e e ste e e e reeneeseestaeneeneeeneas 97

14.4.7 Currently recording fOOTAgEoovviieiieeii e 97
14.4.8 ENG OF TOOTAGEottt st nbe e nreas 97
14.4.9 GO TO THME <ttt ettt bbbttt b et e e e 98
15.0 Polymorphic/Poly-temporal Track SUpport (NEW VL1.1)cccoovveiiiiiiieiiiie e 99
15.1 Poly-attribute Tracks and Stream Managementccocvveereeresieneere e, 100
15.1.1 Poly-attribute Tracks and StreamS..........ccouiiiriiiie e e 100
15.1.2 TraCK AEEITOULESve et esneeneenreas 101
15.2 Poly-attribute Stream DeSCIIPLIONccveiiiieie e 103
15.2.1 SDP SESSION SECHION. .. .ccuiiiieiiiitie sttt ste e e sreesteeneesreesteeneenrens 103
15.2.2 SDP MEUIA SECLION.uiiiiiiiiiieieie ittt bbbt sb et 104
15.2.3 Stream SesSIoN MaNAGEMENT.oiuiitiririirieiei ettt 108
16.0 [PSI1A/Security (Security Service and RESOUICES)ccvevveeieiieiieeiieieese e see e e, 109

17.0 Appendix A: Codec Type (“codecType”) DICHIONArY.........cccuvrveieererenenesese e, 110

Copyright PSIA 2010

1.0 Introduction

This document specifies an interface that enables physical security and video management
systems to communicate with a Recording and Content Management (RaCM) device in a
standardized way. This eliminates the need for device driver customization in order to achieve
interoperability among products from different manufacturers. The intent of this specification is to
improve the interoperability of IP-based physical security products from different vendors.

2.0 Conformance

The RaCM Device will host PSIA compliant services and adhere to the PSIA Service Model
as defined in document [9] below.

2.1 References

[IEEE802.1D] “Media Access Control (MAC) Bridges”, June 2004,

http://standards.ieee.org/getieee802/download/802.1D-2004.pdf

[RFC 1305] “Internet Time Synchronization: the Network Time Protocol”, D. L. Mills,
March 1992
URL :http://www.ietf.org/rfc/rfc1305

[RFC 1945] “Hypertext Transfer Protocol -- HTTP/1.0”, T. Berners-Lee et al, May 1996
URL :http://www.ietf.org/rfc/rfc1945.txt

[RFC 2326] “Real Time Streaming Protocol (RTSP)”, H. Schulzrinne et al, April 1998
URL:http://www.ietf.org/rfc/rfc2326

[RFC 2474] “Definition of the Differentiated Services Field...”, K. Nichols et al,
December 1998
URL:http://www.ietf.org/rfc/rfc2474

[RFC 2597] “Assured Forwarding PHB Group”, J. Heinanen et al, June 1999
URL:http://www.ietf.org/rfc/rfc2597

[RFC 2598] “An Expedited Forwarding PHB”,V. Jacobson et al, June 1999
URL :http://www.ietf.org/rfc/rfc2598

[RFC 2616] “Hypertext Transfer Protocol -- HTTP/1.1", R. Fielding et al, June 1999
URL :http://www.ietf.org/rfc/rfc2616.txt

[RFC 3388] “Grouping of Media Lines in the Session Description Protocol
(SDP)””, G. Camarillo, et al, December 2002
URL :http://www.ietf.org/rfc/rfc3388.txt

[RFC 3550] “RTP: A Transport Protocol for Real-Time Applications”, H. Schulzrinne et
al., July 2003
URL :http://www.ietf.org/rfc/rfc3550.txt

[RFC 4571] “Framing Real-time Transport Protocol (RTP) and RTP Control Protocol (RTCP)
Packets over Connection-Oriented Transport”, J. Lazzaro,
July 2006
URL :http://www.ietf.org/rfc/rfc4571.txt

[RFC 5285] “A General Mechanism for RTP Header Extensions”, D. Singer et al, July

2008
URL:http://www.ietf.org/rfc/rfc5285.txt

http://standards.ieee.org/getieee802/download/802.1D-2004.pdf
http://www.ietf.org/rfc/rfc1305
http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc2326
http://www.ietf.org/rfc/rfc2474
http://www.ietf.org/rfc/rfc2597
http://www.ietf.org/rfc/rfc2598
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc3388.txt
http://www.ietf.org/rfc/rfc3550.txt
http://www.ietf.org/rfc/rfc4571.txt
http://www.ietf.org/rfc/rfc5285.txt

Copyright PSIA 2010

PSIA Service Model www.psialliance.org/documents/PSIA-Service-Model version 1 0.pdf,
specification March 17, 2009

PSIA IP Media Device www.psialliance.org/documents/PSIA-IPMD-v1r7.pdf, March 17, 2009
specification

http://www.psialliance.org/documents/PSIA-Service-Model_version_1_0.pdf
http://www.psialliance.org/documents/PSIA-IPMD-v1r7.pdf

Copyright PSIA 2010

2.2 REST Overview

REST is an approach to creating services that expose all information as resources in a uniform way. This
approach is quite different from the traditional Remote Procedure Call (RPC) mechanism which identifies
the functions that an application can call. Put simply, a REST Web application is noun-driven while an
RPC Web application is verb-driven. For example, if a Web application were to define an RPC API for
user management, it might be written as follows:

GET http://webserver/getUserList

GET http://webserver/getUser?userid=100
POST http://webserver/addUser

POST http://webserver/updateUser

GET http://webserver/deleteUser?userid=100

On the other hand, a REST API for the same operations would appear as follows:

GET http://webserver/users

GET http://webserver/users/user100
POST http://webserver/users

PUT http://webserver/users/userl00
DELETE http://webserver/users/user100

Part of the simplicity of REST is its uniform interface for operations. Since everything is represented as a
resource, create, retrieve, update, and delete (CRUD) operations use the same URI.

Copyright PSIA 2010

2.3 HTTP Methods and CRUD

The CRUD operations are defined by the HTTP method as shown in the table below.

HTTP Method Operation
POST Create the resource
GET Retrieve the resource
PUT Update the resource
DELETE Delete the resource

Rules of thumb

e GET calls should never change the system state. They are meant to only return data to the requestor and
not to have any side effects

e POST calls should only be used to ADD something that did not already exist.

e PUT calls are expected to update an existing resource but if the resource specified does not already
exist, it can be created as well. This will be the assumed default behavior of PUT calls. If any resource
wishes to deviate from this behavior, it should be considered an exception and this should be noted in the
implementation notes of the resource.

3.0 RaCM Glossary and Relationships

3.1 Glossary of Terms

» Channel = handle/tag for an input source (port or stream); see IPMD spec for usage. For a
DVR, a “channel” is the identifier, or handle, used to identify a local input stream (which
may also be accessible to remote entities via a local /PSIA/Streaming/channel/<id>
Resource). The “stream” may contain Video, Audio, and/or Metadata. For an NVR, a
“channel” is used to identify a remote media stream which, if from an IPMD, should come
from the remote device’s /PSIA/Streaming/channels/<id> Resource. Within the RaCM
Device, such input ‘channels’ are not explicitly configured. The term ‘channel’ is used as
a guiding principle and logical construct. There is no single, explicit RaCM Resource that
exists for the purposes to allow an external entity to manage (create, update, delete)
‘channels’. However a “‘channel’ is implicitly created when a Track is created to record from
a ‘source’ (local or remote). In effect, when a Track is created, the <SourceDescriptor>
creates a logical input ‘channel’. If a 2" Track is created that records from the same source
(i.e. same Device and stream URL), then it is simply referring to the same logical *‘channel’
that the 1% Track referred to. These logical ‘channels’ are visible (Read-Only fashion) via
the “/PSIA/ContentMgmt/status/channels” Resource. It is also possible to search based
on these “channels’ via “/PSIA/ContentMgmt/search” Resource.

» Track = Virtual storage container for a specific type of content (e.g. MPEG4, G.726, etc.).
[Channels and tracks are kept separate to allow the ability to mix and match channels to

Copyright PSIA 2010

tracks]. RESTRICTION: At this time, a Track’s configuration contains only 1
<SourceDescriptor> which is intended to describe the source for the recorded media-stream.
This media-stream will be construed as the equivalent of the input “channel” for the track,
which means that each Track can only record one input stream. The media-stream however
can be Multi-Media, if the source delivers such a stream (to be found at the <SrcUrl>), as is
the case with IPMD. Even with legacy 3" party Cameras (e.g. Axis cameras that support
audio), a single RTSP URL can deliver a Multi-Media streaming session (via 2 RTP streams
for the single RTSP Session).

Source = Any input media device is a ‘source’, whether the input is a hardware oriented
‘port’ (e.g. NTSC/PAL, audio input jack, etc.), or an IP-based media device. All ‘sources’ are
identified by ISO/IEC 9834-8:2005 128-bit UUIDs/GUIDs to guarantee unigueness within
any given system. Using the RaCM nomenclature specified herein, Sources send their data to
RaCM devices on via ‘streams’ which are mapped to ‘channels.” Channels are handles used
to identify the specific input streams for a RaCM device. Channels that are recorded are then
mapped onto ‘tracks’ for recording. See the following diagram for more details. Within the
RaCM Device, such ‘sources’ are not explicitly configured. These logical ‘sources’ are
visible (Read-Only fashion) via the “/PSIA/ContentMgmt/status/sources” Resource. It
is also possible to search based on these ‘sources’ via “/PSIA/ContentMgmt/search”
Resource.

Metadata = Content based on PSIA metadata/event specification. This includes events,
alarms, etc.

Service = an intelligent REST resource.

Resource = A directly addressable REST object.

URI = a virtual path that specifically identifies a REST resource; this path must follow the
service/resource hierarchy (see PSIA Service Model specification).

Segment = A general term addressing a single, contiguous portion of a media track, or (in
some cases) a stream. Basically, a “media clip’ that is less than the whole of a respective
media track or stream, yet is individually accessible via one of the mechanisms specified in
this document.

3.2 Relationship of Entities and Terminology

Below are the basic relationships between the terms defined above.

Source = the device that is the origin point for input to a RaCM device. This is usually a
camera, encoder (video and/or audio) or metadata generator. All devices have their own
ISO/IEC 9834-8/ITU X.667, 128-bit UUID/GUID as their base identity.

Channel = incoming media stream (input identifier). This is a handle/identifier for a specific
input stream. If a device generated an audio and a video stream, which a RaCM device is
recording, a ‘channel’ is used to identify each specific stream type (see ‘Stream’ below).
Stream = in general, a network-based output media connection (output identifier). Basically,
any PSIA device that outputs a media data stream onto a network is outputting a ‘stream’ for
each media type. For example, an IP camera that supports two video resolutions, and audio,
has the ability to generate 3 “streams’; one for each of the video resolutions/rates and one for
the audio. This corresponds to the RTSP/SDP model. One session managing multiple

Copyright PSIA 2010

streams. DVRs, which contain their own encoders, generate an internal data stream that is
mapped to a channel identifier.

e Track = arecorded channel. Since input characteristics may change over time, ‘tracks’ are
the virtual containers for recorded content associated with a ‘channel’. Channels may be
extant or extinct with respect to a track. That is why tracks are separate from channels.
Channels are mapped to tracks for recording.

The following diagram depicts the relationships between streams, channels and tracks.

RaCM Terminology Relationships

Client Application

IP Media Device
Source = [GUID:X]

Input Channell[i]
mapped to Track(n]
at RaCM device

IP Media Device advertises its Streams by channels. Based on configuration the
RaCM device selects the IPMD’s stream channel ID (i) which is indigenous to the
IP Media Device. This input stream becomes Channel ‘m’ on the RaCM device
(since it has multiple inputs) for this particular live stream. Via configuration it is
Mapped to track ‘n’ for recording. The track ID ‘n’ may, or may not, be equal to ‘m’.
When a client requests a live stream from the RaCM device, it uses the advertised
Channel ID ‘'m’. When it requests a stream from the archived track, it uses the
Advertised track ID ‘n’. Searches based on the Source ID of ‘GUID: X’ will result in
A list of all the tracks that match the IPMD’s Source ID (GUID:X). In this case, it is
Track ‘n” whose track configuration references the source channel ‘m’.

3.3 Arbitrary Stream and Track Associations

The RaCM specification does not currently support the maintenance of logical collections of streams
from different sources or even multiple streams from the same source. Such abstractions are best
performed by a higher-level, external entity (e.g. VMS); though track “grouping” may be supported
in future release of RaCM. Bundling an Audio and Video stream together is already supported by
the basic definition of a stream from the same source; however associating a Video stream from 1
camera to an Audio stream from another camera or to a POS (Point of Sale) Metadata stream is not
supported. In general, the burden such abstractions should be avoided by RaCM, unless they fall out
naturally from the existing data definitions. The external VMS entity can easily create such
associations within its database.

Copyright PSIA 2010

3.4 Name Case (non) Recommendation

There are no requirements for use of case (capitalization) of URI (Service names) or XML/XSD
(Tag-names).

As a historical note, the PSIA Core members (during review of Service Model specification) had
suggested the following recommendations for use of upper & lower casing of names:
e For REST URIs: Service names have the first letter capitalized (“upper camel case”), while
Resources are not capitalized (“lower camel case”). Example: /PSIA/System/video/inputs.
e For XML/XSD: Tag-names which refer to PSIA-defined schema types (simple or complex)
have the first letter capitalized (“upper camel case™). Tag-names which refer to predefined,
W3C schema types are not capitalized (“lower camel case”). Obviously, no restriction can
be placed on values within the tags. Example:

<xs:complexType name="Entry'>
<xs:sequence>
<xs:element name="id" type='xs:integer" />
<xs:element name="OtherType" type='OtherType" />
</xs:complexType>

<xs:simpleType name="OtherType'>
<xs:restriction base="xs:string">
<xs:enumeration value="a" />
<xs:enumeration value="b" />
<xs:enumeration value="c" />
</xs:restriction>
</xs:simpleType>

(Also, see “‘Service.xsd’ from Core Model.)

However, the IPMD specification was developed in parallel to Service Model, so the
recommendation was not followed strictly. There are numerous exceptions to the recommendation
(e.g. in URI from IPMD: “/PSI1A/Streaming/Channels”, the “Channels” is a resource and not
service). Given the exceptions and difficulty with enforcing this recommendation, RaCM REST
URIs and XSDs are not required to abide strictly by these recommendations. Basically, all REST
URIs that are subordinate to a parent service (i.e. child nodes) are lower camel-case in notation since
the “index” resource of the parent service identifies them explicitly as services or resources.

3.5 PSIA Service Root

During the final days of Service Model ratification, the Core Members agreed to the root-name
“/PSIA” for all PSIA Services and Resources. Again, the IPMD Specification was developed in
parallel and was released, initially, without prefixing “/PSIA” to the Services in their respective URI
paths. It is understood that the root name of “/PSIA” is to be honored for all IPMD Services. The
addition of the “/PSIA” root prefix to the URI resource paths was made in subsequent releases of the
IPMD (v1.1+).

Copyright PSIA 2010

3.6 XML Reserved Characters

Within an XML document, some characters are reserved for language use. If these characters appear
in data values, they should be replaced with their Entity Reference equivalents (akin to ANSI
Escapes) to avoid parsing errors.

Character Description Entity Reference Comments

< Less than < May never appear in data.
& Ampersand & May never appear in data.
> Greater than > Replace as best practice.
“ Double quote " Replace as best practice.
Single quote ' Replace as best practice.
% Percent T; Replace as best practice.

Note that � (null) is not permitted.

For Example, the URL “rtsp://144.70.13.92:554/PSIA/Streaming/tracks/27?0ffset=a07724&endtime=2009-05-
18T10:31.25” would appear as follows in XML:

<playbackURI>rtsp://144.70.13.92:554/PS1A/Streaming/tracks/27?offset=a07724&endtime=2009-05-
18T10:31.25</playbackURI>

Copyright PSIA 2010

4.0

Resource Structure

Error! Objects cannot be created from editing field codes.

The above diagram depicts the basic REST resources supported by a spec-compliant PSIA RaCM
device as outlined in this document. The colored boxes in the diagram indicate resources that are
‘Services’. Services are resources that carry attributes defined by “description” and “capabilities”
schemas (see below and PSIA Service Model specification). Additionally, the resource hierarchy
determines the REST URI structures used to interact with each resource (see examples below in

Section 4.1).

Resource Name | Description Mandatory/Optional

Description will respond to an HTTP GET with a Mandatory
<ResourceDescription> datablock

Capabilities will respond to an HTTP GET with a Generally Optional;
resource-specific datablock Required for some

RaCM Services

Index will respond to an HTTP GET with a Mandatory
<ResourceList> datablock

Indexr will respond to an HTTP GET with Optional
<ResourcelList> datablock

5.0 PSIA Content Management REST Examples

The following examples identify the correlation between the PSIA Content Management resource
hierarchy and the REST scheme for addressing resources.

GET /PSIA/ContentMgmt/status/tracks/4
— Returns the status attributes of track # 4 via an XML document
POST /PSIA/ContentMgmt/record/tracks
— Creates a new track configuration via an XML document
GET /PSIA/ContentMgmt/record/tracks/114
— Gets the configuration for track #114 via an XML document
PUT /PSIA/ContentMgmt/record/tracks/114
— Sets (Updates) the configuration for track #114 via an XML document
GET /PSIA/ContentMgmt/search
— Creates a search; search criteria and response are in an XML schemas
GET /PSIA/ContentMgmt/status/channels
— Returns the status attributes of all input channels (that were implicitly created when
Tracks were configured) via an XML document
GET /PSIA/ContentMgmt/status/sources
— Returns the status attributes of all input sources (that were implicitly created when
Tracks were configured) via an XML document

Copyright PSIA 2010

6.0 Content Management (RaCM) Device Discovery

Zeroconf (Zero Configuration Networking) technology specifies the mDNS (Multicast DNS)
and DNS-SD (DNS Service Discovery) protocols, as described in http://files.dns-sd.org/draft-
cheshire-dnsext-dns-sd.txt), as the mechanisms to discover/locate service and devices on an IP
network. All PSIA protocols require DNS-SD and mDNS for device discovery. To support this
discovery model, the PSIA is registering a DNS SRV (RFC 2782) service type to be used to discover
all PSIA nodess via DNS —-SD and/or mDNS.

All PSIA devices are required, under the PSIA Service Model, to support ZeroConf network
discovery (see PSIA Service Model specification), but not ZeroConf’s use of Local IP address
allocation; this is optional. The discovery requirement consists of support for both DNS-SD and
mDNS such that large and small networks can be supported. As a result, this requires a Content
Management device to attempt to register, via DNS-SD, its own service record (i.e. SRV), during
system startup, with each of its designated DNS servers (as defined in its IP configuration).
Irrespective of whether the SRV registrations pass, or fail, the device is still required to honor mDNS
requests for its service type definition. The format of a PSIA compliant Content Mgmt device’s SRV
should always start with the DNS SRV ‘services’ and ‘protocol’ prefixes of : “_psia._tcp.”, followed
by the other pertinent information as outlined in RFC 2782, and in the following paragraph.

DNS-SD discoveries, initiated by entities seeking PSIA devices and services (i.e. clients,
management servers, etc.), should use the PSIA’s public DNS service type to discover the device
according to DNS Service Discovery (http://www.dns-sd.org/ServiceTypes.html). Once a device is
established as a PSIA-compliant device, its services and resources can be discovered using standard
HTTP GETs using the standard, mandatory REST resources.

The following information should be advertised in the SRV record:
e A (REST) path of “/index” — can be obtained from the “path” key in the TXT record
e The {host} — via an IP address or domain name, can be obtained from the service’s SRV
record
e The {port} — can be obtained from the service’s SRV record
e The version of the DNS SRV record in “txtvers”
e The PSIA protocol version in “protovers”
Once a PSIA-compliant device has been discovered, an HTTP GET of its mandatory */index’
resource returns a list of the services that the device supports. At this point, the standard methods are
used to “walk” the namespace tree and discover the supported services and resources.
It should be noted that the “index” resource returns only the first level resources of a node, but the
“indexr” resource will return a recursive tree structured list with the current resource as root.
As previously noted, all PSIA Content Management devices must support the required
‘/System’-based resources, in addition to the previously specified ‘/ContentMgmt’ resources. Other
REST resources, as defined by system functionality, may be provided by manufacturers.

Copyright PSIA 2010

7.0 Event streaming

All RaCM Devices that support events, alarming, notification, etc., must conform to the PSIA
Common Metadata and Event Model as defined in the “PSIA-Common-MetaEvent-Model v1.1”
specification. This specification is available to PSIA members on the PSIA web site.

8.0 General Rules, Guidelines, Operation and API Behavior

The following guidelines and requirements apply to those parties implementing this specification:
e All RaCM devices shall comply with the guidelines, formats, syntax, and base protocol
definitions contained in the PSIA Service Model specification.
e All RaCM devices shall implement the following PSIA REST Resource hierarchies, as
outlined on the PSIA IP Media Device (IPMD) Specification Version 1.0, Revision 0.7:

0 For DVRs, the “/PSIA/System/Video/...” REST resources and services, IPMD
Section 7.7, as is pertinent for the hardware capabilities for a given RaCM device.
This is described in more detail in Section 7.1 below.

o0 For DVRs that support PTZ commands, the “/PSIA/PTZ/...” REST resources and
services are to be implemented, as outlined in IPMD Section 7.8, where the PTZ
capabilities in the IPMD specification are functionally compatible for the DVR
device.

o For DVRs and NVRs, the “/PSIA/System/...” REST resource hierarchies must be
implemented as defined in IPMD Sections 7.1 through 7.9, for the configurable
system based devices and 1/0 capabilities (network, serial, 1/O, ...) supported by a
given RaCM device.

o For DVRs, the “/PSIA/Streaming/Channels...” REST resource hierarchy for each
hardware channel it supports (see more in Section 7.1 below). The “picture”, and
“requestKeyFrame” resources are not required.

0 For NVRs and hybrid DVRs, the “/PSIA/Streaming/Channels/status” REST resources
in IPMD Section 7.12.2.

0 NVRs and hybrid DVRs must comply with the management guidelines outlined in the
following Section 7.2 regarding the management of external IP media devices.

o For DVRs and NVRs, the “/PSIA/Security...” REST resources, in IPMD Sections
7.10 and 7.11, as outlined by Section 13 of this document (“/PSIA/Security”) are to
be implemented.

0 All RaCM devices shall support the “/PSIA/System/time/...” REST resources for
setting/reporting local time on their devices unless they use a network domain
controller to access network time.

o All DVRs and NVRs must provide system level status for their devices via the
“/PSIA/System/status” REST resource defined in Section 7.1.7 of the IPMD
specification.

o DVRs and NVRs that support internal video motion detection (VMD) functionality,
must implement the “/PSIA/Custom/MotionDetection...” REST hierarchy described

Copyright PSIA 2010

in Section 7.14 of the IPMD specification where the VMD function they provide is

compatible with the modes listed there.
Though the resource hierarchy described herein does cite specific resources in the IPMD and Service
Model specifications, it does not preclude RaCM device implementers from incorporating other
PSIA resources that are relevant. For example, in addition to the RaCM required services, a
DVR/NVR may choose to implement the IPMD “/PSIA/Diagnostics” service resources. The
objective of this specification is to provide the design details and intent for the base protocol
implementation.

(Updated v1.1) As a rule, handling REST/management commands should not affect the
streaming and recording behaviors. However, any REST/management command that modifies a
streaming, codec, or network parameter, may be disruptive/destructive to recording and/or
streaming. When a RaCM device performs a command that is disruptive, or destructive, to a
streaming and/or recording operation it MUST return the HTTP status code ““206 Reset Content™ in
the response message. This status code indicates a successful update, but indicates that there has
been some significant affect to the streaming/recording operations.

A number of clients should be able to send APl commands to a Content Management device
concurrently. The maximum number of pending operations, and any associated timeouts, for each
APl command are defined in later in this specification.

(New v1.1) DVR manufacturers should carefully read all of this section, Section 9.2 and
Section 12.3 to understand the configuration and correlation of ‘channels’ to each other, and to
tracks, on a system that has local video codec hardware. Additionally, Section 12.3 describes how all
input channels are enumerated with respect to type and status.

Copyright PSIA 2010

8.1 DVR & NVR Design Considerations

(Version 1.1)

Digital Video Recorder (DVR) devices have design issues unique to their product class.
Unlike NVRs, DVRs have onboard video and (in many cases) audio codec hardware as their input
sources. Since this hardware is intrinsic to the device, i.e. it is not dynamically assignable to the unit
like NVR input sources, DVRs must comply with the following design operational items, in addition
to the general requirements listed in the above section of this document:

e All video codec hardware must be listed as pre-configured (i.e. with default settings)

input “‘channels’ in the following PSIA resource hierarchies:

o For DVR video input hardware that provides image setting parameters, such as
brightness, contrast, sharpness, etc., these settings must be accessible in the
“/PSIA/System/Video/inputs/channels...” resource hierarchy. This means that the
‘VideolnputChannelList” XML schema document returned by a GET to the
“IPSIA/System/Video/inputs/channels” resource must list all of the existing input
channels as “VideolnputChannel’ elements. The IDs for each element must be set
for each channel by the DVR and cannot be allowed to be changed by external
entities (see IPMD Sections 7.7.3-7.7.5).

0 DVR video codec hardware must be listed as pre-configured (i.e. using default
values) input ‘channels’ in the “/PSIA/Streaming/channels...” resource. The
returned ‘StreamingChannelList” XML schema document must be pre-populated
with all of the codec channels that are available for configuration and use. The
channel I1Ds in the schema must be preset by the DVR.

e All audio codec hardware present on a DVR must be listed as existing, pre-configured
(i.e. using default values) hardware input ‘channels’ in the
“/PS1A/System/Audio/channels...” resource hierarchy. The channel IDs must be pre-
populated in the ‘AudioChannelList” XML schema document returned by GETSs to the
“/PSIA/System/Audio/channels...” resource. The channels IDs assigned by a DVR are
immutable by external entities.

e |tis strongly recommended that all channel ID values be unary-based ASCII/XML
unsigned integer values to support consistency across vendors.

e Itis strongly recommended that a 1-to-1 mapping of
“/PSIA/System/Video/inputs/channels/<id>" to “/PSIA/Streaming/channels/<id>" be
used with the RaCM Device.

e For the DVR with audio encoders, to the extent that it is possible, there should also be a
1-tol mapping of “/PSIA/System/Audio/channels/<id>" to
“/PS1A/Streaming/channels/<id>". Obviously, if video is mapped to the same Streaming
channel <id>, that stream is Multi-Media (clients can also obviously select to Play either
or both media).

e Tracks will record from their respective <SourceDescriptor>’s.

0 Thus, each active Track implicitly creates an input ‘channel’.

0 The <id> for these ‘channels’ are determined by the RaCM Device automatically.

o0 It is strongly recommended that these channel <id>’s match the <Track> ID’s
and are also propagated to the /PSIA/Streaming/channels/<id>’s. This would

Copyright PSIA 2010

facilitate easy streaming of the “live” content that is feeding the Recorded
<Track>, if exposing this Stream to an external Client is desired by the RaCM
implementor. For the NVR, this “live” streaming feature is not critical, since the
networked Camera’s stream should also be viewable by any Client on the network
without aid from the RaCM Device. For the DVR, this “live” stream serves a
more critical function, since the Camera is unlikely to also be network attached to
allow for independent “live” viewing.
Redundant ‘channel’ handling: The actual way of handling this problem is
implementation specific. When multiple tracks record from the same source (same
Device/GUID and same stream URL), they essentially create identical ‘channels’. After
the first ‘channel’ is created by the RaCM Device, the subsequent identical ‘channels’
may simply refer to the first ‘channel’ or new ‘channels’ may be created which are
identical to the first (essentially cloning the first ‘channel’). However, in the second
approach, the new ‘channels’ would have their own <id>’s, making the search interface
less effective (since channel-based searches would require a list of all identical ‘channel’
<id>’s to truly search all the desired ‘channels’). In contrast, the first approach serves the
search and status interfaces better but is much more complex to implement, since the first
and original “‘channel’ could not be removed based on any particular track being deleted
since multiple tracks may be referencing it.

The above design items are described here to aid in providing commonality in the implementation of
this specification, and provide clarity for those developing to the interfaces defined herein. Hybrid
DVR/NVR products must still follow the above guidelines for the onboard codec hardware that is
present on their respective devices. Please note that these design guidelines pertain to the definition
and configuration of the video/audio input hardware. The information related to track configuration,
status, etc., is addressed later in this document.

Copyright PSIA 2010

8.2 Input Source Management (Remote Camera Configuration)

NVRs, and hybrid DVRs, support external IP network devices as their input sources. These
devices, usually IP cameras, may, or may not, be PSIA protocol compliant. This specification does
not require the external input sources to be PSIA compliant in order to be supported by a RaCM
device. However, within the industry there are different methods for managing the support for,
configuration and status of, input IP media devices. PSIA RaCM devices must fall into one of two
possible categories regarding the management of external IP media sources. The management

categories are listed below:

Management M ode

Mode Description

Simple

This mode describes as RaCM device that manages track configuration,
but does not manage the settings related to video/audio codecs and
streaming at the external source camera/encoder. This means that
management entities such as VMS and PSIM applications are required to
manage the settings on the RaCM devices, and the external source
devices, separately. l.e. the RaCM device does not change the settings on
a source device when a codec or streaming related parameter is changed
on a track. A Simple RaCM device will attempt to open a new session to
the respective source with the new codec/streaming settings, but it will
NOT modify the codec/streaming configuration settings on an external
camera/encoder. In some cases, this is sufficient since codec settings on
some cameras can be modified on-the-fly via the session setup
parameters; in other cases the VMS/PSIM management application will
have to modify the codec/streaming settings at the source prior to making
track setting changes. In all cases in Simple management mode, the
management application (VMS, PSIM, etc.) is responsible for the
settings at all the devices and for the synchronization of those settings
between the sources and consumers. The recommendation in this mode is
that management applications SHOULD always change the settings at
the source device (camera, encoder) and then modify the appropriate
track settings on the dependent RaCM device(s). Please note that: A) this
can produce race conditions between the source the and recoding device
in some cases, and B) for some settings there will not be a disruption of
service but the RaCM device should always attempt (and log, if possible)
a reconnection of the streaming input when a track’s codec setting is
modified.

Proxy (future versions)

RaCM devices that have the ability to remotely manage other source
device’s codec/streaming parameters are called *proxy managers’.
Modifications to codec/streaming settings on a proxy managing RaCM
device will also be performed at the external source device by the RaCM
device for those devices the RaCM unit knows how to configure.
Basically, in proxy management mode the RaCM device receives the
settings that affect streams and/or tracks, and performs, based on the
sources behavior, all of the necessary configuration adjustments on

Copyright PSIA 2010

behalf of the management application. This management mode is
reserved for future use but mentioned here since it has an affect on the
current RaCM v1.1 resource structure.

Since the PSIA system Security model is not completed yet within the PSIA, all version 1.1 RaCM
devices that support external IP media devices as input sources must comply with the Simple
management mode listed above. In order to aid interoperability, and to support the future use of
Proxy management mode, a new RaCM v1.1 REST resource “/PSIA/ContentMgmt/sourceSupport”
has been created. This resource identifies which mode of management and level of interoperability a
RaCM device provides for each advertised camera/encode device it claims support for (see
/PSIA/ContentMgmt/sourceSupport (new v1.1)). Fundamentally, this RaCM resource provides a list
of IP cameras and encoders, by manufacture and model, that are supported (i.e. compatible) along
with the management mode for each (for v1.1 RaCM devices this is ‘Simple’ mode). This resource
also addresses an area of compatibility and interoperability that the RaCM version 1.0 specification
did not directly define. These areas are covered in more detail in the following sections of this
document.

9.0 ContentMgmt Base Service

The ‘ContentMgmt’ base service is the ‘root’ for all Recording and Content Management
(RaCM) device function related to the recording and management of multimedia data. This service is
the base node in the REST resource hierarchy for all active functions provided by a RaCM device.

As mentioned in the previous section, the RaCM device must also comply with the PSIA Service
Model specification and also implement the required IPMD Services.

Copyright PSIA 2010

9.1 /PSIA/ContentMgmt/index

PSIA mandated resource that list all of the 1* level resources contained by ‘/ContentMgmt’.
See the ‘capabilities’ resource description for more details.

URI /PS1A/ContentMgmt/index ‘ Type ‘Resource
Requirement| All -
Level
i PSIA Mandatory REST resource/object that enumerates the 1% level child
Function . ,
resources for ‘/ContentMgmt’..
Methods Query String(s) Inbound Data Return Result
GET None <ResourceL.ist>
<
PUT N/A N/A ResponseStatus w/error
code>
<
POST N/A N/A ResponseStatus w/error
code>
<
DELETE N/A N/A ResponseStatus w/error
code>
Notes The ‘GET’ request issued to retrieve an instance of the ‘ResourceList’ XML schema.
See the Service Model specification, Section 7, 8, 10, for schema details.
<?xml version="1.0" encoding=""UTF-8"?>
Exarnple(s) <Rgsou¥ceL:st version:"l.a" xmIns="urn:psialliance-org">

<Resource version="1.0">
<name>search</name>
<version>1.1</version>
<type>service</type>

</Resource>

<Resource version="1.0">
<name>status</name>
<version>1.1</version>
<type>service</type>

</Resource>

<Resource version="1.0">
<name>record</name>
<version>1.1</version>
<type>service</type>

</Resource>

<Resource version="1.0">
<name>schedules</name>
<version>1.1</version>
<type>resource</type>

</Resource>

<Resource version="1.0">
<name>profile</name>
<version>1l.1</version>
<type>resource</type>

</Resource>

<Resource version="1.0">
<name>index</name>
<version>1.1</version>
<type>resource</type>

Copyright PSIA 2010

</Resource>

<Resource version="1.0">
<name>description</name>
<version>1.1</version>
<type>resource</type>

</Resource>

</ResourcelList>

9.2 /PSIA/ContentMgmt/description

URI /PS1A/ContentMgmt/description "rype ‘Resource
Requirement| All -
Level
Function PSIA REST resource/object that describes the functional behavior of the base
resource (see PSIA Service Model Sections 7, 8, 10 for more details).
Methods Query String(s) Inbound Data Return Result
GET None None <ResourceDescription>
PUT N/A N/A <ResponseStatus w/error
code>
<
POST N/A N/A ResponseStatus w/error
code>
<
DELETE N/A N/A ResponseStatus w/error
code>
Notes The ‘GET’ request issued to retrieve an instance of the ‘ResourceList’ XML schema.
See the Service Model specification for schema details.
Exarnple(s) <?xml version="1.0" encoding="UTF-8"?>

<ResourceDescription version="1.0" xmlns="urn:psialliance-org">
<name>ContentMgmt</name>

<version>l</version>

<type>service</type>

<get>
<queryStringParameterList>none</queryStringParameterList>
<inboundXML>none</inboundXML>
<function>Content Mgmt root service</function>
<returnResult>none</returnResult>
<notes/>

</get>

<put/>

<post/>

<delete/>

</ResourceDescription>

Copyright PSIA 2010

9.3 /PSIA/ContentMgmt/profile (changed v1.1)

Due to the complexity of the functions entailed in a recording and content management
(RaCM) device, all RaCM devices MUST provide a “profile’ resource (schema instance) such that
entities accessing them may determine their functional level and basic attributes. Details are outlined

below.
URI /PSIA/ContentMgmt/profile \ Type \ Resource
Requirement| All -
Level
Function RaCM Mand_atory R_EST resource/ob_ject that publishes the functional profile/level of
a RaCM device and its operable service/resource structure.
Methods Query String(s) Inbound Data Return Result
GET None <CMProfile>
PUT N/A N/A <ResponseStatus w/error code>
POST N/A N/A <ResponseStatus w/error code>
DELETE N/A N/A <ResponseStatus w/error code>
Notes The ‘GET' request issued to retrieve an instance of the ‘CMCapabilities’ XML schema.
Exarnple(s) <?xml version="1.0" encoding="UTF-8"?>

<CMProfile version="1.0" xmlns="urn:psialliance-org">
<profileLevel>basic+</profileLevel>

<supportedResourcelList>
<supportedResource>/PSIA/ContentMgmt/search</supportedResource>
<supportedResource>/PSIA/ContentMgmt/status</supportedResource>
<supportedResource>/PSIA/ContentMgmt/status/volumes</supportedResource>
<supportedResource>/PSIA/ContentMgmt/status/tracks</supportedResource>
<supportedResource>/PSIA/ContentMgmt/status/channels</supportedResource>
<supportedResource>/PSIA/ContentMgmt/status/sources</supportedResource>
<supportedResource>/PSIA/ContentMgmt/record</supportedResource>
<supportedResource>/PSIA/ContentMgmt/record/profile</supportedResource>
<supportedResource>/PSI1A/ContentMgmt/record/tracks</supportedResource>
<supportedResource>/PSIA/ContentMgmt/record/control</supportedResource>
<supportedResource>/PSIA/ContentMgmt/schedules</supportedResource>

</supportedResourceList>

<mfgrinformation>WarpedAndJaded Inc., RecorderWare Version 2.01.4, Model
1600</mfgrinformation>

<CMProfile>

The above example represents the Content Management profile XML instance for a ‘Basic’
profile/level device that supports some optional features (hence the “basic+" tag). The
advertised resource list outlines all the supported, non-overhead REST resources (such as
‘index’ and ‘description’). Since this is a basic device only the minimum resources are listed.

Copyright PSIA 2010

9.3.1 /PSIA/ContentMgmt/profile Schema Definition

The profile schema for the Content Management base service describes 3 major areas:

e The functional profile/level of the RaCM device, which is either ‘Basic’ or ‘Full’; devices
that support optional functions must add a plus sign (‘+’) suffix to the profile level tag (e.g.
“full+”).

e Alist of all the supported resources. This enables service users to determine what functions
(i.e. REST resources) are active on a particular device instance.

e Optional, but recommended, Manufacturer information relevant to the make/model, type and
version of the device.

XSD: To get the latest version of all RaCM XSDs, including this one (cmProfile.xsd) please
download from the PSIA documents website: http://www.psialliance.org/documents download.html

9.4 /PSIA/ContentMgmt/sourceSupport (new v1.1)

For version 1.1-compliant RaCM devices that support external IP cameras and encoders as input
devices, the “sessionSupport’ REST resource MUST be supported in order to advertise the types and
models of devices that a unit is compatible with. Section 7.2 of this specification describes the
management modes a RaCM device may support for managing external IP input sources. In version
1.1, RaCM devices are only required to support Simple management mode. GETs from the
“/PSIA/ContentMgmt/sourceSupport” resource return a schema that describes the manufacturers,
makes and models of IP media devices that a RaCM device is compatible with. The following table
provides the base details for the “sessionSupport’ resource. Please note that for version 1.1. RaCM
devices this is a read-only resource.

URI /PSIA/ContentMgmt/sourceSupport | Type ‘Resource
RquL':feTent Basic (v1.1)
Eunction Description_of the IP media devices, in mfgr, make and model, that a RaCM devices
supports as input sources
Methods Query String(s) Inbound Data Return Result
Optional:
“send=head”
GET zzggjgr)ddle None <CMSourceSupport>
“send=bottom” OR...
“mfgr=<mfgrName>"
PUT None None <ResponseStatus w/error code>
POST None None <ResponseStatus w/error code>
DELETE None None <ResponseStatus w/error code>
Notes The schema and element definitions for this resource follow.

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

Example XML <?xml version="1.0" encoding="UTF-8"?>

<CMSourceSupport version="1.0" xmlns="urn:psialliance-org”>
<MediaDeviceModelCount>17</MediaDeviceModelCount>
<SupportedMediaDeviceSourceList>

<MediaDeviceSource>
<MediaDeviceMfgr>GoodVision</MediaDeviceMfgr>
<MediaDeviceMgmtMode>Simple</MediaDeviceMgmtMode>
<MediaDeviceMode I>GVX-1000</MediaDeviceModel>
<MediaDeviceModel>GVX-1000PTZ</MediaDeviceModel>
<MediaDeviceModel>GVX-1070D</MediaDeviceModel>
<MediaDeviceModel>GVX-1150PTZ</MediaDeviceModel>
<MediaDeviceMode I>GVX-1500D</MediaDeviceModel>
<MediaDeviceModel>GVX-2000D</MediaDeviceModel>

</MediaDeviceSource>

<MediaDeviceSource>
<MediaDeviceMfgr>ClearView</MediaDeviceMfgr>
<MediaDeviceMake>MaxView Series</MediaDeviceMake>
<MediaDeviceMgmtMode>Simple</MediaDeviceMgmtMode>
<MediaDeviceModel>MCV-100F</MediaDeviceModel>
<MediaDeviceMode I>MCV-250PTZ</MediaDeviceModel>
<MediaDeviceMode I>MCV-500</MediaDeviceModel>
<MediaDeviceModel>MCV-650PTZ</MediaDeviceModel>

</MediaDeviceSource>

<MediaDeviceSource>
<MediaDeviceMfgr>Gotcha</MediaDeviceMfgr>
<MediaDeviceMake>Professional Series</MediaDeviceMake>
<MediaDeviceMgmtMode>Simple</MediaDeviceMgmtMode>
<MediaDeviceModel>GP2100F</MediaDeviceModel>
<MediaDeviceMode 1>GP2500D</MediaDeviceModel>
<MediaDeviceMode l>GP3000PTZ</MediaDeviceModel>
<MediaDeviceModel>GP3200FA</MediaDeviceModel>
<MediaDeviceMode I>GP3500PTZA</MediaDeviceModel>

</MediaDeviceSource>

<MediaDeviceSource>
<MediaDeviceMfgr>PSIA</MediaDeviceMfgr>
<MediaDeviceMake>Any PSIA compliant IP Media device

</MediaDeviceMake>

<MediaDeviceMgmtMode>Standard</MediaDeviceMgmtMode>
<MediaDeviceMgmtMode>PTZ</MediaDeviceMgmtMode>

</SupportedMediaDeviceSourceList>
</CMSourceSupport>

The above example represents a RaCM device that supports 17 different camera models from
4 different manufacturers. Please note that the “make” element is not used on every
manufacturer. Also, the “PSIA” 1P Media Device support is listed as a generic

manufacturer with Standard (i.e. non-PTZ) and a PTZ generic model support. This example
is only referential.

Accesses to the ‘sessionSupport’ resource returns a ‘CMSourceSupport’ schema document instance.
This schema document is primarily a list of the types and models of IP media devices that a RaCM
device supports as compatible input sources. Each element in a list element is comprised of the

following parameters:

Element name

Requirement

Description

“MediaDeviceMfgr” Mandatory XML string field that lists the manufacturer of the
supported IP Media Device. This field is treated as
case insensitive to aid in searching and matching (e.g.
Luminati = luminati, effectively).

“MediaDeviceMake” Optional Optional XML string field that lists the make of an IP

Media device. Some manufacturers come out with
‘lines’ (i.e. product lines) of cameras that share

Copyright PSIA 2010

protocol attributes. This field is to aid in identifying
products that belong to a certain product line
(where/when that information is pertinent and
relevant).

“MediaDeviceModel” Mandatory XML string that identifies the model of a certain IP
Media device.

“MediaDeviceMgmtMode” | Mandatory XML type restricted to “Simple” or “Proxy”. “Simple”
is the only valid value for version 1.1 RaCM devices.

Please note that all of the values contained in the above fields are treated in a case insensitive
manner to aid in better interoperability between management applications, clients and the RaCM
devices. The purpose of the “CMSourceSupport” schema is to provide consumers with a well
ordered list of the media devices that it can record and stream. It is also acceptable for ‘generic’
media device support to be listed where the RaCM device has an industry (or mfgr) standards-based
driver that supports compliant cameras generically (i.e. the “MediaDeviceMfgr” does not have to
contain a literal manufacturer; it could contain a value like “PSIA” or “PSIA PTZ”, etc.). The full
schema definition follows.

9.4.1 Source Support XML Schema Definition

XSD: To get the latest version of all RaCM XSDs, including this one (cmSourceSupport.xsd) please
download from the PSIA documents website: http://www.psialliance.org/documents_download.html

This schema definition is basically a list of elements that define the types of IP media devices that
are supported, or are compatible with, a RaCM device. The first element is a count of the number of
IP media device models (i.e. “MediaDeviceModel” entries) that are listed in a “CMSourceSupport”
document instance. This is important since the size of the schema can be huge, in some cases, and
due to the fact that consumers can ask for only the “‘count’ of the supported media devices (see
following section). Please note that each list element, which has one manufacturer value, can support
multiple model numbers/strings per that manufacturer value. The manufacturer name can also
identify standards organizations, not specific manufacturers.

9.4.2 Access and Operation of Source Support

The REST URI structure of the “/PSIA/ContentMgmt/sourceSupport” resource allows consumers to
ask for portions, or all, of the schema document information (see table in above Section 8.4). A
consumer accessing source support by a simple GET to the “/PSIA/ContentMgmt/sourceSupport”
resource will get the entire data list of all supported IP media devices in the “CMSourceSupport”
schema instance. However, due to the fact that the size of this XML list could be prohibitively large,
RaCM devices MUST support the following options for getting portions of the source support
information without requiring the entire data set. There are two query parameters that can be added
to the REST URI for getting portions of the overall information set. They are:

e “send=...”. The send designator identifies that the consumer only wants a portion of the

overall source support information. A value is supplied with the “send=" string as an NVP

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

that designates the portion of the information to be sent. This is discussed in more detail
below.
e “mfgr=...”. The data designator specifies a “filter’ for the information to be returned.
Basically, a consumer specifies what type of information it is looking for. This is described
in detail below.
Please note that the ‘send” and ‘mfgr’ query parameters are mutually exclusive; they cannot be used
in the same HTTP/REST GET message since they each counter-actively affect what, and how much,
of the source support information is returned by a RaCM device. Consumers of source information
are to use these query string parameters to govern the amount of source information that is
transferred since this information base can be very large. Each of the query string parameters is
described below, in detail

9.4.2.1 “Send=...” Query String Parameter

The “send=...” query string parameter (QSP) enables consumers to specify, or control, (in a coarse
manner) the amount of source support information that they desire to receive. If the “send=...” QSP
is not present when a GET to the “/PSIA/ContentMgmt/sourceSupport” resource is issued, ALL the
source support information will be returned in the CMSourceSupport schema instance. In order to
prevent data overrun, the “send=...” QSP is provided such that the consumer can ask for the source
support list information in “‘chunks’. The amount, and type, of information is specified by the value
tag supplied with the “send=...” QSP. The value tags that can be supplied are listed below with

descriptions.

Tag
Value

URI Example

Description

“head”

GET
/PS1A/ContentMgmt/sourceSupport?send=head

This tag value indicates that the
consumer only wants the returned
schema instance to contain the
count of the number of source
support models in its list; No
element data should be returned.
This allows consumers to gauge the
approximate size of the source
support information base, in total.

“top

GET
/PS1A/ContentMgmt/sourceSupport?send=top

This tag value indicates that the
consumer wants the top 1/3™
(roughly) of the source support list.
RaCM devices receiving this QSP
should provide, approximately, the
first one-third of the
“CMSourceSupport” list.

“middle”

GET
/PSIA/ContentMgmt/sourceSupport?send=middle

This tag value indicates that the
consumer wants the middle 1/3"

Copyright PSIA 2010

(roughly) of the source support list.
RaCM devices receiving this QSP
should provide, approximately, the
middle one-third of the
“CMSourceSupport” list data.

“bottom” | GET Similar to the two above tags, this
/PSIA/ContentMgmt/sourceSupport?send=middle | tag value indicates that the
consumer wants the last 1/3"
(roughly) of the source support list.
RaCM devices receiving this QSP
should provide, approximately, the
final one-third of the
“CMSourceSupport” list data.
Please note that it is up to the
RaCM device on how to apportion
the source support info into
‘chunks’.

When a RaCM device receives a “send=head” request, the returned schema should only contain the
“MediaDeviceModelCount” element and its value. For all of the other QSP strings, the RaCM
device is to provide portions of the schema document that align on list element boundaries (i.e.
manufacturer/make boundaries). This apportioning scheme prohibits the use of the “mfgr=...” QSP,
which is described in the following section. The following examples are provided as additional
descriptive information. These examples are based on the example XML schema instance listed in
the table at the top of Section 8.4.

Send ‘head’ Example:

(request)
GET /PSI1A/ContentMgmt/sourceSupport?send=head HTTP/1.1

(response)

HTTP/1.1 200 OK

Content-type:application/xml

Content-length :165

<?xml version="1.0" encoding="UTF-8"7>

<CMSourceSupport version="1.0" xmlns="urn:psialliance-org”>
<MediaDeviceModelCount>17</MediaDeviceModelCount>

</CMSourceSupport>

Send ‘top’ Example :

(request)
GET /PSI1A/ContentMgmt/sourceSupport?send=top HTTP/1.1

Eresponse)
HTTP/1.1 200 OK

Copyright PSIA 2010

Content-type:application/xml
Content-length :<nnn>
<?xml version="1.0" encoding="UTF-8"7>
<CMSourceSupport version="1.0" xmlns="urn:psialliance-org”’>
<MediaDeviceModelCount>6</MediaDeviceModelCount>
<SupportedMediaDeviceSourcelList>
<MediaDeviceSource>
<MediaDeviceMfgr>GoodVision</MediaDeviceMfgr>
<MediaDeviceMgmtMode>Simple</MediaDeviceMgmtMode>
<MediaDeviceModel>GVX-1000</MediaDeviceModel>
<MediaDeviceModel>GVX-1000PTZ</MediaDeviceModel>
<MediaDeviceModel>GVX-1070D</MediaDeviceModel>
<MediaDeviceModel>GVX-1150PTZ</MediaDeviceModel>
<MediaDeviceModel>GVX-1500D</MediaDeviceModel>
<MediaDeviceModel>GVX-2000D</MediaDeviceModel>
</MediaDeviceSource>
</SupportedMediaDeviceList>
</CMSourceSupport>

Send ‘middle’ Example :

(request)
GET /PSI1A/ContentMgmt/sourceSupport?send=middle HTTP/1.1

(response)
HTTP/1.1 200 OK
Content-type:application/xml
Content-length :<nnn>
<?xml version="1.0" encoding="UTF-8"7>
<CMSourceSupport version="1.0" xmlns="urn:psialliance-org”>
<MediaDeviceModelCount>4</MediaDeviceModelCount>
<SupportedMediaDeviceSourceList>
<MediaDeviceSource>
<MediaDeviceMfgr>ClearView</MediaDeviceMfgr>
<MediaDeviceMake>MaxView Series</MediaDeviceMake>
<MediaDeviceMgmtMode>Simple</MediaDeviceMgmtMode>
<MediaDeviceModel>MCV-100F</MediaDeviceModel>
<MediaDeviceModel>MCV-250PTZ</MediaDeviceModel>
<MediaDeviceModel>MCV-500</MediaDeviceModel>
<MediaDeviceModel>MCV-650PTZ</MediaDeviceModel>
</MediaDeviceSource>
</SupportedMediaDevicelList>
</CMSourceSupport>

Send ‘bottom” Example :

(request)
GET /PSI1A/ContentMgmt/sourceSupport?send=bottom HTTP/1.1

(response)

HTTP/1.1 200 OK

Content-type:application/xml

Content-length :<nnn>

<?xml version="1.0" encoding="UTF-8"7>

<CMSourceSupport version="1.0" xmlns="urn:psialliance-org”>

Copyright PSIA 2010

<MediaDeviceModelCount>7</MediaDeviceModelCount>
<SupportedMediaDeviceSourceList>
<MediaDeviceSource>
<MediaDeviceMfgr>Gotcha</MediaDeviceMfgr>
<MediaDeviceMake>Professional Series</MediaDeviceMake>
<MediaDeviceMgmtMode>Simple</MediaDeviceMgmtMode>
<MediaDeviceModel>GP2100F</MediaDeviceModel>
<MediaDeviceModel>GP2500D</MediaDeviceModel>
<MediaDeviceModel>GP3000PTZ</MediaDeviceModel>
<MediaDeviceModel>GP3200FA</MediaDeviceModel>
<MediaDeviceMode l>GP3500PTZA</MediaDeviceModel>
</MediaDeviceSource>
<MediaDeviceSource>
<MediaDeviceMfgr>PS1A</MediaDeviceMfgr>
<MediaDeviceMake>Any PSIA compliant IP Media device
</MediaDeviceMake>
<MediaDeviceMgmtMode>Standard</MediaDeviceMgmtMode>
<MediaDeviceMgmtMode>PTZ</MediaDeviceMgmtMode>
</MediaDeviceSource>
</SupportedMediaDevicelList>
</CMSourceSupport>

The above examples are for reference. The data set they contain is hypothetical and relatively small
for the sake of simplicity. Please note that in these examples the RaCM device made its own
arbitrary decision as to where to subdivide the CMSourceSupport information of ‘top’ versus
‘middle’ versus ‘bottom’. Also note that the “MediaDeviceModelCount” size varies since the
number of IP media device models varied per response. The next section describes the ability for
consumers to ask for specific forms of information.

9.4.2.1.1 “mfgr=" Query String Parameter

The “mfgr=...” QSP enables consumers to ask for supported IP media device information related to
a specific manufacturer or standards organization. Consumers using this capability can ask for
supported model information related to a specific manufacturer or standard. An example request
would look like:

GET /PS1A/ContentMgmt/souceSupport?mfgr=GoodVision

This type of request instructs the RaCM to only return a “CMSourceSupport” schema instance that
lists the supported models for the manufacturer “GoodVision”. The following is an example of what
IS expected to be returned:

(request)
GET /PSI1A/ContentMgmt/sourceSupport?mfgr=GoodVision HTTP/1.1

(response)

HTTP/1.1 200 OK

Content-type:application/xml

Content-length :<nnn>

<?xml version="1.0" encoding="UTF-8"7>

<CMSourceSupport version="1.0" xmlns="urn:psialliance-org”>
<MediaDevicelListSize>6</MediaDevicelListSize>

Copyright PSIA 2010

<SupportedMediaDeviceSourceList>
<MediaDeviceSource>
<MediaDeviceMfgr>GoodVision</MediaDeviceMfgr>
<MediaDeviceMgmtMode>Simple</MediaDeviceMgmtMode>
<MediaDeviceModel>GVX-1000</MediaDeviceModel>
<MediaDeviceModel>GVX-1000PTZ</MediaDeviceModel>
<MediaDeviceModel>GVX-1070D</MediaDeviceModel>
<MediaDeviceModel>GVX-1150PTZ</MediaDeviceModel>
<MediaDeviceModel>GVX-1500D</MediaDeviceModel>
<MediaDeviceModel>GVX-2000D</MediaDeviceModel>
</MediaDeviceSource>
</SupportedMediaDeviceList>
</CMSourceSupport>

Please note that the manufacturer name string is treated in a case insensitive manner. Also,
manufacturer strings that contain spaces must use the W3C special character replacement scheme.
For example, a fictitious vendor named “Volcano Vision” would have a QSP that looks like
“...mfgr=Volcano%?20Vision...”. RaCM devices must parse out, and convert, the special character
symbols just like the processing associated with a standard URI. Additionally, a consumer may place
multiple “mfgr=...” QSPs in a request. For example:

GET /PSI1A/ContentMgmt/souceSupport?mfgr=GoodVision&mfgr=Gotcha&mfgr=AccuMax

is a valid REST URI for the sourceSupport resource. The recommendation is that a consumer should
not send more than 3 manufacturer I1Ds per request. If a RaCM device cannot process the number of
‘mfgr’ QSPs sent in a single request, it should return an HTTP status code of ‘503 Bad Request’.

Copyright PSIA 2010

10.0 /PSIA/ContentMgmt/record (Recorder Configuration &
Control)

This section describes the REST Interfaces to configure the logical storage used for media archival,
along with the actual recording session configurations. A recording session is also known as a
“track” in the RaCM Device. A track archives media (Audio, Video, Metadata) from a Source. The
Source can be local (e.g. DVR recording from a local analog port) or remote (e.g. IP Network Media
Device).

10.1/PSIA/ContentMgmt/record/storageMounts (Storage Allocation)

This REST Interface is used to configure the total storage available to the RaCM Device to be used
to archive media. This storage is described as a List of Mount points, along with root directories and
sizes. There is no affinity specified, at this time, with regards to assigning tracks or range of tracks
to a particular Disk or Mount.

URI /PSIA/ContentMgmt/record/storageMounts ‘ Type |Resource
Requirement Basic
Level
i Description of the REST method parameters and formats available to functionally
Function - .)
manipulate the ‘record/storage’ resource.

Methods Query String(s) Inbound Data Return Result

GET None None <MountList>

PUT None <MountList> <ResponseStatus>

POST None <Mount> <ResponseStatus>
DELETE None None <ResponseStatus>

Notes This resource is used to manage the total storage allocation and logical mounts of the

Recorder. It is allowable to DELETE the entire list, though any implementation is free
to return an error for that operation if that capability is undesirable.

Low level drive configuration should be done through “/PSIA/System/storage”.
Low level diagnostics, such as drive temperatures, should be available in future (TBD)
extensions to IPMD, under “/PSIA/System...” or “/PSIA/Diagnostics...”

This resource manages the <MountList> XML object and follows the same scheme used for
<TrackList> manipulation and other similar examples from IPMD that manage a list-based XML
resource (see “PSIA-REST List-Entry <id> Creation method”, Error! Reference source not found.).
As such, GET and PUT methods are used to access the entire <MountList>. POST is used (with a
“dummy” <id> of 0) to create an individual entry within the list; where the newly created <id> is

returned in the <ResponseStatus> given for the POST request.

Once an <Mount> entry is created, it can be accessed by its <id>, using this resource:

Copyright PSIA 2010

URI /PSIA/ContentMgmt/record/storageMounts/<id> ‘ Type |Resource
Requirement Basic
Level
Function Description of the REST method parameters and formats available to access a single

<Mount> entry.

Methods Query String(s)

Inbound Data

Return Result

GET None None <Mount>
PUT None <Mount> <ResponseStatus>
POST N/A N/A <ResponseStatus w/ error code>
DELETE None None <ResponseStatus>

Notes POST (i.e. Create) is not allowed for individual <Mount> entry, with given explicit

<id>.

Example XML <MountList>:

<?xml version="1.0" encoding="UTF-8"?>

<MountList version="1.0" xmlns="urn:psialliance-org">

<Mount version="1.0">
<id>1</id>
<path>/dev/hda</path>

<dir>/racml/record_tracks</dir>

<size>200000000000</size>
<descr>master ide</descr>
</Mount>
<Mount version="1.0">
<id>2</id>
<path>/dev/sda</path>

<dir>/racml/record_tracks</dir>

<size>500000000000</size>
<descr>first scsi</descr>
</Mount>
<Mount version="1.0">
<id>3</id>
<path>d:</path>

<dir>/racml/record_tracks</dir>

<size>100000000000</size>

<descr>win-dos drive</descr>

</Mount>
</MountList>

XSD: To get the latest version of all RaCM XSDs, including this one (cmRacmMount.xsd) please
download from the PSIA documents website: http://www.psialliance.org/documents_download.html

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

10.2/PSIA/ContentMgmt/record/profile (new v1.1)

Version 1.1 compatible RaCM devices have the ability to support more than one type of ‘track’.
Since a track is nothing more than a named handle to a virtual content container, PSIA does not
specify how content is actually recorded, indexed, etc. However, the attributes and properties that
define how a track is configured, how a track’s content is understood, and how its contents may be
played, are critical to interoperability. The definitions and descriptions of track attributes and track
types are defined in Section 9.3 (specifically 9.3.6 following) and in Section 14. The REST resource
that advertises these recording attributes (i.e. track types) is defined here.

URI /PSIA/ContentMgmt/record/profile ‘ Type |Resource
Requirement|
Level
Function Des_cription of the REST resource that advertises the track types supported by a RaCM
device.
Methods Query String(s) Inbound Data Return Result
GET None None <CMRecordProfile>
PUT None None <ResponseStatus w/Error Code>
POST None None <ResponseStatus w/Error Code>
DELETE None None <ResponseStatus w/Error Code>
Notes This resource is read-only.
Example <?xml version="1.0" encoding="UTF-8"?>

<CMRecordProfile version="1.0" xmlns="urn:psialliance-org">
<trackType>standard</trackType>
<trackType>polymorphic</trackType>
<trackType>polytemporal</trackType>
</CMRecordProfile>

The above example XML response instance indicates that the RaCM device supports all
of track types defined by the version 1.1 RaCM specification. See
“/PSIA/ContentMgmt/record (Recorder Configuration & Control)” for details about the
attributes and behaviors of track types.

The “/PSIA/ContentMgmt/record/profile” REST resource is a read-only advertisement to
management applications (VMSs, PSIMs, etc.) of the supported track types which, in turn, governs
their configuration options. All RaCM devices are required to support at least one of the sanctioned
track types described in this specification. The “CMRecordProfile” schema definition also enables
vendors to provide their own extensions to this information using a structured extension mechanism.
The schema is described below.

Copyright PSIA 2010

10.2.1 /IPSIA/ContentMgmt/record/profile Schema Definition

XSD: To get the latest version of all RaCM XSDs, including this one (cmRecordProfile.xsd) please
download from the PSIA documents website: http://www.psialliance.org/documents download.html

RaCM devices list the track types they support which affects the configuration characteristics of the
tracks (i.e. polymorphic tracks can have video and audio sources mixed (for example) whereas
standard tracks contain only one form of media data). For vendors that desire to add their own track
type extensions, this is provided for in the schema with the following conditions:

e All RaCM devices MUST support at least one of the sanctioned version 1.1 track types
(standard, polymorphic, polytemporal). Any custom track type extensions must be in
addition to this requirement. This is to ensure that all RaCM have a base level of
interoperability.

e All custom extensions listed in a “CMRecordProfile” MUST have the following contents:

0 The listed track type of “other” for the custom/extended track type.
0 In the “profileExtension” element:
= A URI link to where the formal definition of the extension information can be
accessed.
= A brief description, embedded in the document instance, of what the
extension information means.
= The extension information itself.
The above requirements are levied to ensure that any vendor, or organization, specific extensions are
only embedded in the PSIA RaCM framework if there is proper definition for interoperability
amongst multiple parties.
Finally, the track type “group” is listed in the schema definition, but is not currently defined
for RaCM version 1.1. This track type is reserved for future use.

10.3 /PSIA/ContentMgmt/record/tracks (Recording Session
Configuration)

This REST interface is used to configure a recording session or “track”. A track is treated virtually
with regards to how the implementation may actually store the archived media on disk.

The track is generally accessed or referred to by its <id> or <TrackGUID>. The <Stream> number
is a logical (outbound streaming channel) number for the track and is not tightly coupled to the <id>,
which is treated as an index into the <TrackList>.

Note on GUIDs

All UUIDs/GUIDs MUST be universally unique. They can be assigned by a central VMS Server or
GUID broker or auto-generated locally. However, all UUIDs/GUIDs MUST be compliant with the
ISO/IEC 9834-8 / ITU X.667 formats and definitions.

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

Note on Recording Modes

Currently, only 2 recording modes are defined:
e CMR - “Continuous Mode Recording” which implies recording media as it is available.
e EDR - “Event-Driven Recording” which implies recording media when events/alarms are
detected.

In either mode, the <LoopEnable> Boolean MUST be respected.
Track Size

The Track’s size is determined by the <Size> value. However, optionally, some flexibility is
allowed for best-effort by the implementation to honor the <Duration> value.

Copyright PSIA 2010

10.3.1 Custom Configuration Data (Extensions)

Custom configuration information can be added using <CustomExtensionL.ist>, but for
interoperability, the name is assigned to each extension object which MUST be registered with
PSIA, and a schema (XSD) MUST be provided for the “xs:any” object(s).

10.3.2 PSIA-REST List-Entry <id> Creation method

Track <id>’s, along with most other list-based <id>’s, are managed (SET) by the target RaCM
Device. The method for track creation (and return of <id> value is in accordance with other list-
based XML object examples in IPMD). See the “/PSIA/ContentMgmt/record/tracks” Resource

Description, Error! Reference source not found..

10.3.3 Streaming URL implied in <Track> configuration

There is an implied relationship between the REST URL’s and RTSP URL’s.

Within the <Track> configuration, the <Channel> value is used for “live” viewing of the media
stream being recorded to that track, using the URL described in section 14.1.1. The Track’s REST
<id> value is used for recorded (i.e. “archive”) media streaming (see below).

10.3.4 Recording Source Description

The source for a recording track is logically described by the <SourceDescriptor>, which is part of
the track configuration. The <SourceDescriptor> contains two important tags which help uniquely
identify the media source: <SrcGUID> and <SrcUrl>. The <SrcGUID> is a GUID/UUID for a
stream source, which may also provide multiple channels of output. The <SrcChannel> value allows
for more specific description of the input media-stream at a logical level.

For a local DVR analog port, the <SrcUrl> should contain a symbolic reference to a local stream

(encoded from a local /System/Video/inputs/channels) as follows:
rtsp://localhost/PSIA/Streaming/channels/<id>

Also, for both local and remote sources, the <SrcDriver> provides an optional, vendor specific, hint

with regards to the name of an executable/driver to use for stream acquisition.

10.3.4.1 Source Description Correlation For Status Queries

The status of Tracks, Channels, and Sources can be queried from the Status resource under the
ContentMgmt service.

Copyright PSIA 2010

The status of a <SrcChannel> can be queried via:
GET /PSIA/ContentMgmt/status/channels/<SrcChannel>

The status of a <Track> can be queried via:
GET /PSIA/ContentMgmt/status/tracks/<id>

The status of the <SrcGUID> can be queried via:
GET /PSIA/ContentMgmt/status/sources/<SrcGUID>

10.3.5 Recording Schedule overview

The <TrackSchedule> defines the recording schedule for the Track. It generally contains either
external-references to schedules in the schedule database (/PSIA/ContentMgmt/schedules) or an
embedded sequence of <ScheduleBlock>’s (typically just one). A <ScheduleBlock> is a single
logical schedule, identified by GUID. The default (embedded) <ScheduleBlock>, in the example,
contains the required identifiers <ScheduleBlockGUID> and <ScheduleBlockType>, along with a
sequence of <ScheduleAction>’s, which are used to build a day-of-week schedule.

This default, day-of-week schedule contains <Actions> to perform during the defined period. A
period is defined by a start-time and end-time, with each time expressed as Day-of-Week and Time-
of-Day. The Day-of-Week value is identified by a restricted name string. The Time-of-Day is
expressed in local time, in order to allow for a more human-intuitive definition of time from the local
administrators perspective and also account for Day-Light-Savings Time. Thus, for a time period
expressed as “midnight to 8am” local time, the intended elapsed time is 8 hours normally.

However, if Day-Light-Savings Time is enabled, on the morning of transition (in the Spring and
assuming the switch occurs at 2:00 am), the actual elapsed time would represent just 7 hours of time,
during this morning of transition. In the Fall, the reverse would be true, and the actual elapsed time,
for just that morning, would be 9 hours.

Example XML fragment (“lunch-time” period):

<ScheduleActionStartTime>
<DayOfWeek>Monday</DayOfWeek>
<I-- inclusive -->
<TimeOfDay>12:00:00</TimeOfDay>
</ScheduleActionStartTime>
<ScheduleActionEndTime>
<DayOfWeek>Monday</DayOfWeek>
<I-- exclusive -->
<TimeOfDay>1:00:00</TimeOfDay>
</ScheduleActionEndTime>
<ScheduleDSTEnable>true</ScheduleDSTEnable>

The start-time is inclusive of the time specified. The end-time is exclusive to allow aggregation of
time period definitions to create a continuum without overlap/conflict.

<ExternalScheduleBlockReferences> allow for reduction in size and simplification of the <Track>
configuration object, by enabling references to shared schedules in a database, as opposed to
embedding them within each <Track> configuration.

Copyright PSIA 2010

10.3.6 Track Description NVP

One of the key elements in each track’s parameter base is the “<Description>" element. This field is
a Comma Separated Variable (CSV) string which contains a list of Name-Value-Pairs (NVP of form
“Name=Value”. With this scheme, the comma (*,”) and equal (‘=") are treated as reserved
characters; however, if a Name or Value string must contain and these characters, the XML
encoding standard can be used to embed them if necessary (i.e. replace the ‘=" with &61, and replace
the *,” with &44).

Parameter Parameter Comments
Name Values
trackType » “standard” = normal, single content base track Required Field

» “polymorphic” = multi-content type track (v1.1)
» “polytemporal” = multi-time segmented track (v1.1)
» “group”= reference to a group of tracks (v1.1)

sourceTag Manufacturer specific device-type string (e.g. make/model) Optional
contentType » “video” Required Field
> “audio”
> “metadata”
> “text

NOTE: For polymorphic tracks this indicates the primary, or
predominant, content type.

codecType See Appendix A. Required Field
resolution Required for audio/video. Field indicating resolution of the data Required for
elements in a datastream. For video, this is the horizontal by Audio/Video

vertical resolution in a ‘Horizontal x Vertical’ format where
ASCII “x’ separates the horizontal and vertical integer numbers.
The assumed video format is progressive (i.e. frame based). For
video streams that are interlaced (i.e. field based) and ASCII
lower-case ‘i’ needs to be

For audio, it is the bit-width of the samples.

If a text protocol is enabled for double-byte characters, this field
should be used to indicate “2B” character sets.

framerate Frame rate of encoder output as a floating point number. Required for

Video
bitrate Bit rate of datastream (bps or kbps integer). Optional
Examples

<Description>trackType=standard,sourceTag=AX1S210a,contentType=video,codecType=MPEG4-
SP,resolution=640x480, framerate=25.0,bitrate=3200 kbps</Description>

Polymorphic and poly-temporal tracks are not defined in Version 1.0 of the RaCM specification.
Additional definitions are committed for Version 1.1.

Copyright PSIA 2010

10.3.7 <MetadataEvtCfgList> (used in EDR Mode)

The Metadata Configuration is required to implement Event-Driven Recording. The
<MetadataEvtCfgList> contains a list of <MetadataEvtCfg> items which describe the
Domain/Class/Type of events/alarms that drive the Recording track. The fields here should comply
with the PSIA Common Event Model Specification. The <evSrcGUID> and <evSrcUrl> identify
the source entity from which the Metadata events/alarms are subscribed. The method of subscription
is TBD, but should comply with PSIA Common Event Model. For legacy ip-cameras the
<evSrcUrl> may specify a “hanging GET” url to retrieve a vendor-specific, motion detection
metadata stream.

10.3.8 /IPSIA/ContentMgmt/record/tracks Resource Description
URI /PSI1A/ContentMgmt/record/tracks ‘ Type ‘Resource
Requirement Basic
Level
i Description of the REST method parameters and formats available to functionally
Function - .)
manipulate the ‘record/storage/tracks’ resource.
Methods Query Strin (s) Inbound Data Return Result
GET None None <TrackList>
PUT N/A <TrackList> <ResponseStatus>
POST N/A <Track> <ResponseStatus>
DELETE N/A N/A <ResponseStatus w/error code>

Notes Track Creation: POST (Create) will expect, as HTTP Payload, an individual <Track>
object instead of the <TrackList>. For the Create operation, the <id> tag, within the
<Track> XML, must contain a “dummy” value of 0 (zero).

To lessen possibility for ambiguity, it is not permissible for the Client (xMS) to set the
<id> during track creation, though it is possible for the Client to update (PUT) the entire
<TrackList> (with each entry containing valid <id>’s already set by the target).
This is in alignment with other such list-based REST Resources in IPMD.

Reference Example <ResponseStatus> from Service Model Specification:

<?xml version="1.0" encoding="UTF-8"?>

<ResponseStatus version="1.0" xmlns="urn:psialliance-org">
<requestURL>/Streaming/Channels</requestURL>
<statusCode>1</statusCode>

<I-- 0=1-OK, 2-Device Busy, 3-Device Error, 4-Invalid Operation, 5-Invalid XML Format, 6-Invalid
XML Content; 7-Reboot Required -->

Copyright PSIA 2010

<statusString>0K</statusString>
<ID>1</1D>
</ResponseStatus>

10.3.9 /IPSIA/ContentMgmt/record/tracks/<id> Resource Description

Once created, individual Tracks are managed via:

URI /PSI1A/ContentMgmt/record/tracks/<id> ‘ Type ‘Resource
Function |Resource to address (Read/Update) single <Track> by <id>.
Methods Query Strin (s) Inbound Data Return Result
GET None None <Track>
PUT None <Track> <ResponseStatus>
POST N/A N/A <ResponseStatus w/error code>
DELETE None None <ResponseStatus>

10.3.10 Example Track Creation Message Exchange

A. Client attempts track creation with “POST /PSIA/ContentMgmt/record/tracks™ containing:

<?xml version="1.0" encoding="UTF-8"?>

<Track version="1.0" xmlns="urn:psialliance-org'>
<!-- new dummy value: -->
<id>0</id>
<Channel>12345</Channel>
<Enable>true</Enable>

<Description>trackType=standard, sourceTag=AX1S210a,contentType=video,codecType=MPEG4-
SP,resolution=640x480, framerate=20.0,bitrate=6000 kbps</Description>

<TrackGUID>{A01AAAAA-BBBB-CCCC-DDDD-033595353625}</TrackGUID>
<Size>4000000000</Size>

<Duration>P10DT15H</Duration>
<DefaultRecordingMode>CMR</Defaul tRecordingMode>
<LoopEnable>true</LoopEnable>

<I-- .. REST OF OBJ NOT INCLUDED.. -->

</Track>

B. If creation is successful, RaCM Device responds with:

<?xml version="1.0" encoding="UTF-8"?>

<ResponseStatus version="1.0" xmlns="urn:psialliance-org">
<requestURL>/PSIA/ContentMgmt/record/tracks</requestURL>
<statusCode>1</statusCode>

Copyright PSIA 2010

<statusString>0K</statusString>
<ID>777</1D>
</ResponseStatus>

Note that the <ID> tag is uppercase. This is to match the example in Service Model Specification
(Section 10.1.4). The returned Track <id> value is 777, which will be used in the following Track
Deletion example.

Example Track Deletion Message Exchange

A. Client attempts track deletion with “DELETE /PSIA/ContentMgmt/record/tracks/777” (no
payload), using <id> previously given by the creation example response, above.

B. If deletion is successful, RaCM Device responds with:

<?xml version="1.0" encoding="UTF-8"?>

<ResponseStatus version="1.0" xmlns="urn:psialliance-org">
<requestURL>/PSIA/ContentMgmt/record/tracks</requestURL>
<statusCode>1</statusCode>
<statusString>0K</statusString>
<ID>777</1D>

</ResponseStatus>

More detailed Single Track XML example (<Schedule> incomplete)

<?xml version="1.0" encoding="UTF-8"?>
<TrackList version="1.0" xmlns="urn:psialliance-org">
<Track version="1.0">
<id>1</id>
<Channel>12345</Channel>
<Enable>true</Enable>

<Description>trackType=standard, sourceTag=AX1S210a,contentType=video,codecType=MPEG4-SP,
resolution=640x480, frameRate=20 fps,bitrate=6000 kbps</Description>

<TrackGUID>{A01AAAAA-BBBB-CCCC-DDDD-033595353625}</TrackGUID>

<Si1ze>4000000000</Size>

<Duration>P10DT15H</Duration>

<Defaul tRecordingMode>CMR</Defaul tRecordingMode>

<LoopEnable>true</LoopEnable>

<SourceDescriptor>
<SrcGUID>{E800A543-9D53-4520-8BB8-9509062C692D}</SrcGUID>
<SrcChannel>1</SrcChannel>
<StreamHint>video, mp4, 640x480, 20 fps, 6000 kbps</StreamHint>
<SrcDriver>RTP/RTSP</SrcDriver>
<SrcType>mp4 video</SrcType>
<SrcUrl>rtsp://10.3.2.26/mpeg4/media.amp</SrcUrl>
<SrcUrIMethods>DESCRIBE, SETUP, PLAY, TEARDOWN</SrcUrIMethods>
<SrcLogin>admin:admin</SrcLogin>

</SourceDescriptor>

<TrackSchedule>

Copyright PSIA 2010

<ExternalScheduleBlockReferences>
<ScheduleBlockReference>
<ScheduleBlockGUID>{F018AD02-BC04-4520-8BB8-123409AC5678%}</ScheduleBlockGUID>
</ScheduleBlockReference>
<ScheduleReference>
<ScheduleBlockGUID>{C2F37123-DD19-4520-8BB8-444307DB5565}</ScheduleBlockGUID>
</ScheduleReference>
</ExternalScheduleBlockReferences>
<ScheduleBlock version="1.0">
<ScheduleBlockGUID>{ABC12345-CDEF-4520-8BB8-7135789C8790}</ScheduleBlockGUID>
<ScheduleBlockType>/psia/recording/schedule/default</ScheduleBlockType>
<ScheduleAction>
<id>1</id>
<ScheduleActionStartTime>
<DayOfWeek>Monday</DayOfWeek>
<!-- inclusive -->
<TimeOfDay>00:00:00</TimeOfDay>
</ScheduleActionStartTime>
<ScheduleActionEndTime>
<DayOfWeek>Monday</DayOfWeek>
<I-- exclusive -->
<TimeOfDay>08:00:00</TimeOfDay>
</ScheduleActionEndTime>
<ScheduleDSTEnable>true</ScheduleDSTEnable>
<Description>PreMorning (Midnight to 8am, local time)</Description>
<Actions>
<Record>true</Record>
<Log>true</Log>
<Savelmg>true</Savelmg>
<ActionRecordingMode>EDR</ActionRecordingMode>
<PreRecordTimeSeconds>30</PreRecordTimeSeconds>
<PostRecordTimeSeconds>30</PostRecordTimeSeconds>
<Fps>30.0</Fps>
<RateKbps>3000</RateKbps>
</Actions>
</ScheduleAction>
<ScheduleAction>
<id>2</id>
<ScheduleActionStartTime>
<DayOfWeek>Monday</DayOfWeek>
<I-- inclusive -->
<TimeOfDay>08:00:00</TimeOfDay>
</ScheduleActionStartTime>
<ScheduleActionEndTime>
<DayOfWeek>Monday</DayOfWeek>
<!-- exclusive -->
<TimeOfDay>12:00:00</TimeOfDay>
</ScheduleActionEndTime>
<ScheduleDSTEnable>true</ScheduleDSTEnable>
<Description>Morning (8am to noon, local time) </Description>
<Actions>
<Record>true</Record>
<Log>true</Log>

Copyright PSIA 2010

<Savelmg>true</Savelmg>
<ActionRecordingMode>CMR</ActionRecordingMode>
<PreRecordTimeSeconds>30</PreRecordTimeSeconds>
<PostRecordTimeSeconds>30</PostRecordTimeSeconds>
<Fps>30.0</Fps>
<RateKbps>3000</RateKbps>
</Actions>
</ScheduleAction>
<ScheduleAction>
<id>3</id>
<ScheduleActionStartTime>
<DayOfWeek>Monday</DayOfWeek>
<I-- inclusive -->
<TimeOfDay>12:00:00</TimeOfDay>
</ScheduleActionStartTime>
<ScheduleActionEndTime>
<DayOfWeek>Monday</DayOfWeek>
<I-- exclusive -->
<TimeOfDay>1:00:00</TimeOfDay>
</ScheduleActionEndTime>
<ScheduleDSTEnable>true</ScheduleDSTEnable>
<Description>Lunch (noon to 1pm, local time)</Description>
<Actions>
<Record>true</Record>
<Log>true</Log>
<Savelmg>true</Savelmg>
<ActionRecordingMode>EDR</ActionRecordingMode>
<PreRecordTimeSeconds>30</PreRecordTimeSeconds>
<PostRecordTimeSeconds>30</PostRecordTimeSeconds>
<Fps>30.0</Fps>
<RateKbps>3000</RateKbps>
</Actions>
</ScheduleAction>
<ScheduleAction>
<id>4</id>
<ScheduleActionStartTime>
<DayOfWeek>Monday</DayOfWeek>
<!-- inclusive -->
<TimeOfDay>13:00:00</TimeOfDay>
</ScheduleActionStartTime>
<ScheduleActionEndTime>
<DayOfWeek>Monday</DayOfWeek>
<!-- exclusive -->
<TimeOfDay>17:00:00</TimeOfDay>
</ScheduleActionEndTime>
<ScheduleDSTEnable>true</ScheduleDSTEnable>
<Description>Afternoon (1pm to 5pm, local time)</Description>
<Actions>
<Record>true</Record>
<Log>true</Log>
<Savelmg>true</Savelmg>
<ActionRecordingMode>CMR</ActionRecordingMode>
<PreRecordTimeSeconds>30</PreRecordTimeSeconds>

Copyright PSIA 2010

<PostRecordTimeSeconds>30</PostRecordTimeSeconds>
<Fps>30.0</Fps>
<RateKbps>3000</RateKbps>
</Actions>
</ScheduleAction>
<ScheduleAction>
<id>5</id>
<ScheduleActionStartTime>
<DayOfWeek>Monday</DayOfWeek>
<I-- inclusive -->
<TimeOfDay>17:00:00</TimeOfDay>
</ScheduleActionStartTime>
<ScheduleActionEndTime>
<DayOfWeek>Tuesday</DayOfWeek>
<!-- exclusive -->
<TimeOfDay>00:00:00</TimeOfDay>
</ScheduleActionEndTime>
<ScheduleDSTEnable>true</ScheduleDSTEnable>
<Description>Night (5pm to midnight, local time)</Description>
<Actions>
<Record>true</Record>
<Log>true</Log>
<Savelmg>true</Savelmg>
<ActionRecordingMode>EDR</ActionRecordingMode>
<PreRecordTimeSeconds>30</PreRecordTimeSeconds>
<PostRecordTimeSeconds>30</PostRecordTimeSeconds>
<Fps>30.0</Fps>
<RateKbps>3000</RateKbps>
</Actions>
</ScheduleAction>
<Il-- _etc, rest of week, definined similar to Monday schedule items -->
</ScheduleBlock>
</TrackSchedule>
<MetadataEvtCfgList>
<MetadataEvtCfg>
<id>1</id>
<I-- Motion in Zone2 of src cam: Operate in (or switch to) Event-Driven Mode -->
<evDomain>metadata.psia.org</evDomain>
<evClass>vmd</evClass>
<evType>motionAny</evType>
<evAttribute>zone2</evAttribute>
<evSrcGUID>{E800A543-9D53-4520-8BB8-9509062C692D}</evSrcGUID>
<evSrcUrI>TBD-CEM XPORT</evSrcUrl>
<evPriority>4</evPriority>
<Actions>
<Record>true</Record>
<Log>true</Log>
<Savelmg>false</Savelmg>
<ActionRecordingMode>EDR</ActionRecordingMode>
<PreRecordTimeSeconds>30</PreRecordTimeSeconds>
<PostRecordTimeSeconds>30</PostRecordTimeSeconds>
<Fps>30.0</Fps>
<RateKbps>3000</RateKbps>

Copyright PSIA 2010

</Actions>
</MetadataEvtCfg>
<MetadataEvtCfg>
<id>2</id>
<I-- Motion in OTHER cam: Switch to Continuous Recording Mode -->
<evDomain>metadata.psia.org</evDomain>
<evClass>vmd</evClass>
<evType>motionAny</evType>
<evAttribute>zone2</evAttribute>
<evSrcGUID>{7611CAB6-16A9-441a-BC02-D5017F5F79EF</evSrcGUID>
<evSrcUrI>TBD-CEM XPORT</evSrcUrl>
<evPriority>4</evPriority>
<Actions>
<Record>true</Record>
<Log>true</Log>
<Savelmg>false</Savelmg>
<ActionRecordingMode>CMR</ActionRecordingMode>
<PreRecordTimeSeconds>30</PreRecordTimeSeconds>
<PostRecordTimeSeconds>30</PostRecordTimeSeconds>
<Fps>30.0</Fps>
<RateKbps>3000</RateKbps>
</Actions>
</MetadataEvtCfg>
<MetadataEvtCfg>
<I-- Any Emergency: switch to Continuous Recording Mode -->
<id>3</id>
<evDomain/>
<evClass/>
<evType/>
<evAttribute/>
<evSrcGUID>{E800A543-9D53-4520-8BB8-9509062C692D}</evSrcGUID>
<evSrcUr1>TBD-CEM XPORT</evSrcUrl>
<evPriority>0</evPriority>
<Actions>
<Record>true</Record>
<Log>true</Log>
<Savelmg>false</Savelmg>
<ActionRecordingMode>CMR</ActionRecordingMode>
<PreRecordTimeSeconds>30</PreRecordTimeSeconds>
<PostRecordTimeSeconds>30</PostRecordTimeSeconds>
<Fps>30.0</Fps>
<RateKbps>3000</RateKbps>
</Actions>
</MetadataEvtCfg>
</MetadataEvtCfgList>
</Track>
</TrackList>

Copyright PSIA 2010

10.3.11 Track List Schema

XSD: To get the latest version of all RaCM XSDs, including this one (cmTrackList.xsd) please
download from the PSIA documents website: http://www.psialliance.org/documents download.html

10.4/PSIA/ContentMgmt/record/control

This resource is used to send explicit control stimuli to the “record” service.

10.4.1 /PSIA/ContentMgmt/record/control/manual/start (Recording Manual Start)

URI /PSIA/ContentMgmt/record/control/manual/start/tracks/<id> ‘ Type ‘ Resource
Requirement Basic
Level

Function Description of the REST method parameters and formats available to

functionally manipulate the ‘record/control/manual/start’ resource.

Methods Query String(s) Inbound Data Return Result
GET N/A N/A <ResourceDescription>
PUT N/A None <ResponseStatus>
POST N/A N/A <ResponseStatus w/error

code>

DELETE N/A N/A <ResponseStatus w/error

code>

Notes This resource is used to manually Start the recording track, regardless of
recording mode. TBD: optional Metadata (Manual-Event xml) can be sent
with the PUT Inbound Data for the Recorder to save.

To Enable or Disable (i.e. permanent Stop) the track, the configuration
interface should be used to update the track configuration object to set the
enable/disable value accordingly.

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

10.4.2 /PSIA/ContentMgmt/record/control/manual/stop (Recording Manual Stop)

URI /PSIA/ContentMgmt/record/control/manual/stop/tracks/<id> | Type \ Resource
Requirement Basic
Level

Description of the REST method parameters and formats available to

AUEL functionally manipulate the ‘record/control/manual/stop’ resource.

Methods Query String(s) Inbound Data Return Result
GET N/A N/A <ResourceDescription>
PUT N/A None <ResponseStatus>

POST N/A N/A <ResponseStatus w/error
code>

DELETE N/A N/A <ResponseStatus w/error

code>

Notes This resource is used to manually Stop the recording track, regardless of
recording mode.

To Enable or Disable (i.e. permanent Stop) the track, the configuration
interface should be used to update the track configuration object to set the
enable/disable value accordingly.

10.4.3 /PSIA/ContentMgmt/record/control/lock (Record Track Locking)

URI /PSIA/ContentMgmt/record/control/locks | Type \Resource
Requirement Basic
Level

Description of the REST method parameters and formats available to
Function |functionally manipulate the ‘/PSIA/ContentMgmt/record/control/locks’

resource.

Methods Query String(s) Inbound Data Return Result
GET None None <RecordingLockList>
PUT None <RecordingLockL.ist> <ResponseStatus>
POST None <RecordingLock> <ResponseStatus>

DELETE N/A N/A <ResponseStatus>

Notes Used to manage the list of recording locks.
(see “PSIA-REST List-Entry <id> Creation method”, Error! Reference source
not found.)

Copyright PSIA 2010

URI /PSIA/ContentMgmt/record/control/locks/<id> | Type \Resource
Requirement Basic
Level

Function |Resource used to manage a single <RecordingLock> entry.

Methods Query String(s) Inbound Data Return Result
GET None None <RecordingLock>
PUT None <RecordingLock> <ResponseStatus>
POST N/A N/A <ResponseStatus w/error

code>

DELETE None None <ResponseStatus>
Notes

Example XML.:

<?xml version="1.0" encoding="UTF-8"?>
<RecordingLockList version="1.0" xmlns="urn:psialliance-org">
<RecordingLock version="1.0">
<I-- lock time range on particular Channel -->
<id>1</id>
<Trackld>12345</Trackld>
<StartDateTime>2009-01-1T09:00:00-06:00</StartDateTime>
<EndDateTime>2009-01-7T17:00:00-06:00</EndDateTime>
<SrcGUID/>
</RecordinglLock>
<RecordingLock version="1.0">
<I-- lock time range for all recorded channels -->
<id>2</id>
<Trackld>all</Trackld>
<StartDateTime>2009-07-4T09:00:00-06:00</StartDateTime>
<EndDateTime>2009-07-4T17:00:00-06:00</EndDateTime>
<SrcGUID/>
</RecordinglLock>
<RecordingLock version="1.0">
<I-- lock time range for particular source (GUID) -->
<id>3</id>
<Trackld>any</Trackld>
<StartDateTime>2009-07-7T09:00:00-06:00</StartDateTime>
<EndDateTime>2009-07-7T17:00:00-06:00</EndDateTime>
<SrcGUID>{E800A543-9D53-4520-8BB8-9509062C692D}</SrcGUID>
</RecordinglLock>
</RecordinglLockList>

XSD: To get the latest version of all RaCM XSDs, including this one (cmTrackLockList.xsd) please
download from the PSIA documents website: http://www.psialliance.org/documents_download.html

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

10.5/PSIA/ContentMgmt/record/metadata (manual event insertion)

This is a PLACEHOLDER for future development. Implementers can choose to implement this
resourse as an experimental/custom feature, but no compliance testing will be done against this
resource as of the v1.0-v1.1 timeframe.

This REST Interface is used push metadata into the Recorder’s archive. Normally a track can be
configured to record media (A/V) or metadata by having the recorder “subscribe” to a metadata
source (i.e. PULL model). This interface allows for an alternate means of getting metadata saved to
the archive. An example use of this function is the media tagging (annotation) scenario.

The saved metadata is retrieved using PSIA metadata transports, or, if recorded within a track, may
simply be streamed using the normal streaming transports (RSTP/RTP), though the data
encapsulation will comply with the forthcoming PSIA “Common Metadata/Event Management”
specification.

URI /PSIA/ContentMgmt/record/metadata \ Type |Resource
Requirement Eull
Level
Function Desqription of the REST method parameters and formats available to functionally
manipulate the ‘/PSIA/ContentMgmt/record/metadata’ resource.
Methods Query String(s) Inbound Data Return Result
GET N/A N/A <ResponseStatus w/error code>
PUT N/A N/A <ResponseStatus w/error code>
POST N/A Metadata(*) <ResponseStatus>
DELETE N/A N/A <ResponseStatus w/error code>

Notes This resource is used to push metadata into the Recorder for saving to the metadata
archive. The actual storage format and methodologies are implementation specific.

10.5.1 /IPSIA/ContentMgmt/record/metadata/description

URI /PSIA/ContentMgmt/record/metadata/description ‘ Type |Resource
Requirement Eull

Level

Optional descriptive resource that returns the <ResourceDescription> for the
Function |“/PSIA/ContentMgmt/record/metadata” resource. It advertises that acceptable metadata
formats in the recording device.

Methods Query String(s) Inbound Data Return Result
GET None None <ResourceDescription>
PUT N/A N/A <ResponseStatus w/error code>
POST N/A N/A <ResponseStatus w/error code>

Copyright PSIA 2010

DELETE N/A N/A <ResponseStatus w/error code>

Notes This is a read-only resource that returns a <ResourceDescription>.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<ResourceDescription version="1.0" xmlns="urn:psialliance-org">
<name>metadata</name>
<type>resource</type>
<get/>
<put/>
<post>GMCH</post>
<delete/>
</ResourceDescription>

Copyright PSIA 2010

11.0 /PSIA/ContentMgmt/schedules (new v1.1)

This resource is used to manage the recording schedule database (i.e. schedules that are not
embedded with the <Track> configuration objects).

URI /PSI1A/ContentMgmt/schedules ‘ Type ‘Resource
Requirement Eull
Level
i Description of the REST method parameters and formats available to functionally
Function .
manipulate the schedules resource.

Methods Query Strin (s) Inbound Data Return Result
GET None None <ScheduleBlockList>
PUT N/A <ScheduleBlockList> <ResponseStatus>
POST N/A <ScheduleBlock> <ResponseStatus>

DELETE N/A N/A <ResponseStatus w/error code>
Notes ScheduleBlock Creation: Unlike Target assigned <id>’s (e.g. <Track> id’s), the

ScheduleBlockGUID’s are assigned by the external Client. However, it is expected that,
for an individual <ScheduleBlock> POSTed during Creation, a successful operation will
cause the returned <ResponseStatus> to contain a matching copy of the POSTed
<ScheduleBlockGUID> value within the <ID> tag, for example:

<?xml version="1.0" encoding="UTF-8"?>

<ResponseStatus version="1.0" xmIns="urn:psialliance-org">
<requestURL>/PSIA/ContentMgmt/schedules</requestURL>
<statusCode>1</statusCode>
<statusString>0K</statusString>
<1D>{F018AD02-BC04-4520-8BB8-123409AC5678}</ 1D>

</ResponseStatus>

XSD: To get the latest version of all RaCM XSDs, including this one (ScheduleBlockList is defined
in cmTrackList.xsd) please download from the PSIA documents website:
http://www.psialliance.org/documents _download.html

11.1/PSIA/ContentMgmt/schedules/<ScheduleBlockGUID> (Resource
Description)

Once created,

individual <ScheduleBlock>’s are managed via:

URI

| /PSI1A/ContentMgmt/schedules/<ScheduleBlockGUID> ‘ Type ‘ Resource

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

Requirement

Level Basic
Function |Resource to address (Read/Update) single <ScheduleBlock> by <ScheduleBlockGUID>.
Methods Query Strin (s) Inbound Data Return Result

GET None None <ScheduleBlock>

PUT None <ScheduleBlock> <ResponseStatus>

POST N/A N/A <ResponseStatus w/error code>
DELETE None None <ResponseStatus>

Copyright PSIA 2010

12.0 /PSIA/ContentMgmt/search (Search Service and
Resources)

This section of the specification defines the operation and parameters associated with the
‘search’ service within the PSIA Content Management hierarchy. Tables, examples and schemas are
provided for defining and explaining the search functions.

12.1/PSIA/ContentMgmt/search/description

URI /PS1A/ContentMgmt/search/description "Type ‘Resource
Requirement .
q Basic
Level
: Mandatory description of the REST method parameters and formats available
Function . . . , :
to functionally manipulate the ‘search’ resource/object.
Methods Query String(s) Inbound Data Return Result
GET None None <ResourceDescription>
<ResponseStatus w/error
PUT N/A N/A P
code>
<ResponseStatus w/error
POST N/A N/A P
code>
<ResponseStatus w/error
DELETE N/A N/A P
code>
Notes See the PSIA Service Model specification, Sections 7.6, 8, and 10 for Resource lists
and description schema definitions. Examples follow for the required REST Content
Management resources.
<?xml version="1.0" encoding="UTF-8"?>
<ResourceDescription version="1.0"
xmlns=""psiallianxce.org:resourcedescription’>
<name>/ContentMgmt/search</name>
<version>l</version>
<type>resource</type>
<get>
<queryStringParameterList>none</queryStringParameterList>
E | <inboundXML>CMSearchDescription</inboundXML>
PSS <function>Search content for a specific track and provide match
results</function>
<returnResult>CMSearchResult</returnResult>
<notes>non-recursive</notes>
</get>
<put/>
<post/>
<delete/>
</ResourceDescription>

Copyright PSIA 2010

12.2/PSIA/ContentMgmt/search/profile (v1.1 changed)

Due to the complexity of the functions entailed in a recording and content management
(RaCM) device, all RaCM devices MUST provide a “profile’ resource (schema instance) such that
entities accessing them may determine their functional level and basic attributes. Details are outlined
below.

URI /PSI1A/ContentMgmt/search/profile ‘ Type |Resource
Requirement| ; pyofiles -
Level
Function RaCM Mandatory REST resource/object that publishes the functional
profile/level of a RaCM device and its operable service/resource structure.
Methods Query String(s) Inbound Data Return Result
GET None <CMSearchProfile>
<
PUT N/A N/A ResponseStatus w/error
code>
<
POST N/A N/A ResponseStatus w/error
code>
<
DELETE N/A N/A ResponseStatus w/error
code>
Notes The ‘GET’ request issued to retrieve an instance of the ‘CMCapabilities’ XML
schema.
<?xml ion="1.0" ding="UTF-8"7?>
Exarnple(s) <Cﬁgea¥§;§:82ile verg?gg=:290" xmIns="psiallianxce.org:resourcedescription’>

<searchProfile>full</searchProfile>
<textSearch>true</textSearch>
<maxSearchTimespans>2</maxSearchTimespans>
<maxSearchTracks>40</maxSearchtracks>
<maxSearchSources>40</maxSearchSources>
<maxSearchMetadatas>16</maxSearchMetadatas>
<maxSearchMatchResul ts>100</maxSearchMatchResults>
<maxSearchTimeout>120</maxSearchTimeout>
<maxConcurrentSearches>8</maxConcurrentSearches>
</CMSearchProfile>

The above example represents a hypothetical RaCM device that supports a ‘Full’
profile for search its functionality (see below for more details). The succeeding
“textSearch” parameter indicates that this device performs raw text string searches on
recorded text, and text-based metadata such as Point-of-Sale, or Automated Teller
Machine output. The next set of optional parameters (though recommended for Full
devices) indicates the maximum number of specific search parameters that can be
part of a single instance of a Search criteria. The following parameter,
“maxSearchResults” indicates the maximum number of results the RaCM will pass
back per search instance. The optional “maxSearchTimeout” parameter indicates that
the RaCM device will timeout searches that exceed two minutes (120 seconds) to
execute. The final parameter, which is optional, indicates the maximum number of

Copyright PSIA 2010

concurrent search operations the RaCM device can support.

12.2.1 IPSIA/ContentMgmt/search/profile Schema Definition

The ContentMgmt/search/profile schema is used to define the types of searches a RaCM
device supports. A device with a search profile of ‘Basic’ only performs searches with one timespan
per search request (see “/PSIA/ContentMgmt/search’). Devices that support the ‘Full’ search profile
must outline their parameter limits, as described in the following schema.

XSD: To get the latest version of all RaCM XSDs, including this one (cmSearchProfile.xsd) please
download from the PSIA documents website: http://www.psialliance.org/documents_download.html

12.3/PSIA/ContentMgmt/search

The Content Management ‘Search’ service is the primary component for conducting searches
of content bases managed by a PSIA recording device. Fundamentally, searches are initiated using a
parameter-based criteria set which is conveyed by the initiator to the device via the
‘CMSearchDescription” XML schema. Since not all programming languages allow content bodies
with HTTP GET methods, both ‘GET’ and ‘POST’ are supported as message types for initiating
searches. The responding device passes back the results in a ‘CMSearchResult” XML schema
instance for search requests that had valid syntax. If a search request is syntactically invalid (i.e. no
payload, malformed schema instance, etc.), an HTTP response with status code 400 (Bad Request)
and a corresponding ‘Response Status’ are returned to the requester. Please note that a syntactically
correct search, that has no matching criteria, returns a *CMSearchResult’ schema instance with a
‘NO MATCHES’ status string.

Essentially, most searches are conducted based on time and/or track and/or source related
search parameters. Full profile Content Management devices also support the potential for metadata
search related parameters. More details, and examples, follow.

URI /PS1A/ContentMgmt/search/ | Type ‘Service
Requirement| _)y profiles -
Level
i Mandatory description of the REST method parameters and formats available
Function . . . , ;
to functionally manipulate the ‘search’ resource/object.
Methods Ql_Jery Inbound Data Return Result
String(s)
GET None <CMSearchDescription> <CMSearchResult or...>
PUT N/A N/A <ResponseStatus w/error
code>
<CMSearchResult
POST None <CMSearchDescription> or...ResponseStatus w/error
code>

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

<ResponseStatus w/error

DELETE N/A N/A
code>
Notes The ‘GET’ or ‘POST’ messages require a “CMSearchDescription” XML document to
engage a search. The schema definition is described in Section 10.4.1. An example
XML document instance follows.
Exarnple(s) <?xml version="1.0" encoding="UTF-8"?>

<CMSearchDescription version="1.0" xmlns="urn:psialliance-org">
<searchID>{812F04E0-4089-11A3-9A0C-0305E82C2906}</search1D>

<trackIDList>
<tracklID>9</trackIlD>
<tracklID>22</trackID>
<tracklD>43</trackID>
</trackIDList>
<timeSpanList>
<timeSpan>
<startTime>2009-06-10T12:00:00Z</startTime>
<endTIme>2009-06-10T13:30:00Z</endTime>
<timeSpan>
</timeSpanList>
<contentTypelList>
<contentType>video</contentType>
</contentTypeList>
<maxResults>40</maxResults>

<metadatalList>
<metadataDescriptor>//metadata.psia.org/VideoMotion</metadataDescriptor>
<metadatalList>

</CMSearchDescription>

The above example is for a search of tracks 9, 22, and 43, between twelve noon and 1:30PM on June 10",
2009 for Video Motion events. The requester does not want more than 40 results passed back in the search
response, and, that matching results should only be video segments (based on the above
“contentTypelList”).

<?xml version="1.0" encoding="UTF-8"?>

<CMSearchDescription version="1.0" xmlns="urn:psialliance-org">
<searchID>{77E105E8-4C21-AA05-37B4-189A070A5B22}</search1D>
<sourcelD> {3F2504E0-4F89-11D3-9A0C-0305E82C3301} </sourcelD>

<timeSpanList>
<timeSpan>
<startTime>2009-07-12T09:00:00Z</startTime>
<endTIme>2009-07-12T17:30:00Z</endTime>
<timeSpan>
</timeSpanList>
<contentTypelList>
<contentType>video</contentType>
<contentType>audio</contentType>
</contentTypeList>
<maxResults>40</maxResults>
<metadatalList>
<metadataDescriptor>/metadata.psia.org/VideoMotion</metadataDescriptor>
<metadatalList>
</CMSearchDescription>

The above example is a search for Video Motion, between the hours of 9AM and 5:30PM, on July the 12",

Copyright PSIA 2010

with respect to a specific source whose ID (GUID) is: 3F2504E0-4F89-11D3-9A0C-0305E82C3301. This
example GUID corresponds to an input source which can be resolved to an IP address. Please note that in
this example, the search requester only wants video and audio segments returned for matches
(contenTypelList).

<?xml version="1.0" encoding="UTF-8"?>
<CMSearchDescription version="1.0" xmlns="urn:psialliance-org">
<searchID>{F44EC031-4F89-3D90-9A14-0305E828D902}</search1D>

<timeStatelList>
<trackState>inactive</trackState>
<trackState>locked</trackState>
<trackState>errored</trackState>
</timeStateList>
<searchTimeout>150</searchTimeout>
</CMSearchDescription>

The above example is a simple search for all tracks that are in an inactive, or locked, or errored state.
These states are described in detail in Section 11.4 of this document. Using track status as a search
parameter only makes sense with track-related parameters, or as a filter to remove unwanted tracks from a
search. Also noted in this example is the inclusion of the optional ‘timeout’ parameter (“searchTimeout”).
This parameter is only valid if the RaCM device indicates in its search “capabilities” that is supports
timeouts. In this example, the requester is indicating that is desires the search to take no longer than 2.5
minutes (150 seconds) to complete.

<?xml version="1.0" encoding="UTF-8"?>
<CMSearchDescription version="1.0" xmIns="urn:psialliance-org"
<search1D>{812F04E0-4089-11A3-9A0C-0305E82C2906}</search1D>

<timeSpanList>
<timeSpan>
<startTime>2009-06-10T12:00:00Z</startTime>
<endTIme>2009-06-10T13:30:00Z</endTime>
<timeSpan>
</timeSpanList>
<contentTypelList>
<contentType>text</contentType>
<contentType>metadata</contentType>
</contentTypeList>
<metadatalList>
<metadataDescriptor>//metadata.psia.org/PointOfSale</metadataDescriptor>
<metadataDescriptor>//metadata.psia.org/User</metadataDescriptor>
<metadatalList>
<searchText>"VOID”’</searchText>
</CMSearchDescription>

The above example is for a search of all text and metadata associated with the Source 812F04E0-4089-
11A3-9A0C-0305E82C2906 between twelve noon and 1:30PM on June 10‘“, 2009. The requester wants
recorded text and metadata (based on the “contentTypeList”) searched for the word “VOID”. The metadata
categories that the requester wants searched are restricted to Point-Of-Sale and User based metadata.
Please note that ALL text searches require a “contentTypeList” to specify the content types to be searhed;
valid types are “text” and/or “metadata”.

12.3.1 Search Query Parameter Schema Definition

The following XML schema definition defines the search parameters that are provided to the
ContentMgmt/search service. Basically, an entity can search based on time and/or source and/or
tracks and/or metadata. Basic profile devices are not required to support metadata in their search

Copyright PSIA 2010

criteria. Each search must be given a unique ID (“searchlD”) by the initiator. This ID is an ISO/IEC
9834-8/1TU X.667 compliant UUID/GUID. The responder echoes this value back in the search
response (see next section) to correlate the results to the corresponding query. Basic profile devices
are only required to support one query at-a-time. Full profile devices MUST advertise the number of
concurrent search queries they can support (via the “/PSIA/ContentMgmt/search/profile” Resource).

The ‘cmSearchDescription’ schema allows searches based on: track lists, track state lists,
source ID lists, channel ID lists, timespan lists, and metadata lists. Only one of these criteria is
required for a valid search.

Optional information includes the ability for an initiator to specify that it only wants to
receive a maximum number of responses to a search criteria (i.e. limit the potential number of
responses). This is specified by the “maxResults” element. When this limit is specified in a search
request, the responding device must not send more than the requested number of responses
(matches). If the querying entity specifies a “maxResult” limit that is less than the number of total
results that matched the original search criteria, it must re-issue the search query with the “search
ResultsPosition” parameter indicating the number of prior results the inquirer has already received.
For example, a client application searches for Video Motion events from the prior night and
indicates it only wants a maximum of ten results passed back. The ContentMgmt device, while
performing the search, discovers 23 matches. However, the device is only allowed to pass back the
first ten results based on the inquirer’s “maxResults” value. The device does so, but indicates in the
search response schema instance a status string of “MORE”. After this, if the inquirer desires to
retrieve the next set of matching results, it must do so with the same search criteria and a
“searchResultsPosition” value that indicates the cumulative number of results received by the
inquirer. In other words, the “searchResultsPosition” is a walking index used to indicate where an
inquirer desires the searching entity to resume the search.

Another optional search parameter that governs, or conditions, the search result contents is
the “contentTypeList”. This element allows one or more “contentType” designators. These
designators instruct the searching Content Manager to only provide matching result segments that
correspond to the designated content types. The supported content types are: “video”, “audio”,
“metadata”, “text”, “mixed” (polymorphic — v1.1) and “other”. If a search specifies one, or more
content types, the searching Content Manager will ignore matches to the search criteria if the content
segment/track does not match the specified content type(s).

If a RaCM device supports raw text searches, searches are allowed to pass in “searchText” as
a search criteria, but only for “text” and/or “metadata” content types. The following conditions and
restrictions apply regarding text searching:

e The “content type’ MUST be specified when conducting searches that involve text. The

applicable content types are “text” and “metadata”.

e There is an inherent limitation of one text string per search instance.

e The search string may not exceed 128 characters.

e ALL text searches are performed in a case insensitive manner such that any combination

of upper and lower casing can be matched (‘open matching’).

e Any search string that contains whitespace, or special characters, MUST be started and

ended with double-quotes (*).
Since raw text searches are compute intensive, requesters, and RaCM devices, that honor search
timeouts should either: A) ignore timeouts for text searches, or B) timeouts should be lengthened
significantly for text searches.

Copyright PSIA 2010

Finally, RaCM devices that support search timeout limits must allow requesters to
dynamically/optionally specify ‘desired’ timeout limits on a per-search basis. Please note that this is
a hint to the RaCM device to restrict, in a best effort manner, the search operation duration to the
time limit specified in the XML parameter set. If a RaCM device cannot honor the timeout it will
process the search as best it can. Additionally, a RaCM device that does not support search timeouts
should ignore a timeout if it errantly receives one on search request instance.

XSD: To get the latest version of all RaCM XSDs, including this one (cmSearchDescription.xsd)
please download from the PSIA documents website:
http://www.psialliance.org/documents_download.html

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

12.3.2 Search Query Results Schema

The response to a ContentMgmt/search operation, using the “CMSearchDescription”
schema, is defined by the “CMSearchResult” schema definition below. Fundamentally, the response
echoes the initiator’s search ID and an overall status value. The status consists of 2 parts: A) a
boolean, called “responseStatus”, indicates overall success or failure, which is followed by B) the
“responseStatusString” which indicates a readable status string that further qualifies the overall
status (e.g. TRUE + “OK”, or TRUE + “MORE?” [indicating more matches were found than the
initiator desired to receive], or FALSE + “NO MATCHES [search failed to find matches to specified
criteria], or FALSE + “INVALID TRACK ID” [indicating an invalid track ID had been provided]).
The combination of an overall Boolean status indicator, plus a qualifying string, allows a requester
to quickly determine if a search was successful and then have information detailing the operation.

After the response status, the responder provides the number of matches found, and a
list of “matchElements” that correspond the each matching multimedia segment. Each
“matchElement” contains the following information:

e The source ID of the input source that corresponds to the matching segment;

e The track ID of the multimedia track that corresponds to the matching segment;

e The timespan of the matching segment (since it is probably a subset of the overall search’s
timespan);

e A media segment descriptor that the search initiator can directly use to playback the
corresponding match segment. It contains the following:

0 The content type of the segment (video, audio, metadata, text, other);

0 The codecType of the content in the segment (e.g. “MPEG4-SP” or G.726);

0 The rate attribute of the segment, if applicable;

0 The playback URI for the match segment (i.e. a URI of the responder’s definition that
contains all the information necessary to ‘play’ the segment, via RTSP, without the
responder having to recommit another search).

Optionally, the responder can include the following information in a “matchElement” where
applicable and/or supported:
e The channel ID of the source corresponding the match segment, if the input channel is still
active (i.e. ‘live’);
e For metadata searches, the fully qualified PSIA Domain/Class/Type REST URI(s) of the
corresponding events that correlate to the match segment.

12.3.2.1 Search Response Examples

The following example XML schema instances describe some of the potential responses to search
queries. Please note that these examples are provided for reference but there are still many potential
scenarios not directly addressed.

<?xml version="1.0" encoding="UTF-8"?>

<CMSearchResult version="1.0" xmlns="urn:psialliance-org">
<search1D>{812F04E0-4089-11A3-9A0C-0305E82C2906}</search1D>
<responseStatus>true</responseStatus>

Copyright PSIA 2010

<responseStatusStrg>0K</responseStatusStrg>
<numOfMatches>4</numOfMatches>
<matchList>
<matchElement>
<sourcelD>{b049902e72-0049-1158-c0d2-7e330680d93c}</sourcelD>
<tracklD>27</tracklID>
<timeSpan>
<startTime>2009-05-18T10:31.26</startTime>
<endTIme>2009-05-18T10:32:54</endTime>
<timeSpan>
<mediaSegmentDescriptor>
<contenType>video</contenType>
<codecType>MPEG4-SP</codecType>
<rateType>"3 Mbps, 30 fps’</rateType>

<playbackURI>rtsp://144_.70.13.92:554/PS1A/Streaming/tracks/27?offset=a07724&endtime=2009-
05-18T10:31.25</playbackURI>

</mediaSegmentDescriptor>
<metadatalList>
<metadataDescriptor>//metadata.psia.org/VideoMotion/motion</metadataDescriptor>
</metadatalList>
</matchElement>
<matchElement>
<sourcelD>{b049902e72-0049-1158-c0d2-7e330680755e}</sourcelD>
<tracklD>30</tracklID>
<timeSpan>
<startTime>2009-05-18T10:40.03</startTime>
<endTIme>2009-05-18T10:41:04</endTime>
<timeSpan>
<mediaSegmentDescriptor>
<contenType>video</contenType>
<codecType>H.264-BP</codecType>
<rateType>’1 Mbps, 15 fps’</rateType>

<playbackURI>rtsp://144_.70.13.92:554/PS1A/Streaming/tracks/30?0ffset=a08c94&endtime=2009-
05-18T10:41.04</playbackURI>

</mediaSegmentDescriptor>

<metadatalList>
<metadataDescriptor>//metadata.psia.org/VideoMotion/motionLeft</metadataDescriptor>

</metadatalL ist>
</matchElement>
<matchElement>

<sourcelD>{b049902e72-0049-1158-c0d2-7e330680755e}</sourcel D>

<tracklD>31</tracklID>

<timeSpan>
<startTime>2009-05-18T10:40.03</startTime>
<endTIme>2009-05-18T10:41:04</endTime>

<timeSpan>

<mediaSegmentDescriptor>
<contenType>audio</contenType>
<codecType>G.726</codecType>
<rateType>"24 Kbps”</rateType>

<playbackURI>rtsp://144.70.13.92:554/PS1A/Streaming/tracks/31?offset=1446a90e& ;endtime=200
9-05-18T10:41.04</playbackURI>

</mediaSegmentDescriptor>

Copyright PSIA 2010

<metadatalList>

<metadataDescriptor>//metadata.psia.org/VideoMotion/motionLeft</metadataDescriptor>
</metadatalList>
</matchElement>
<matchElement>
<sourcelD>{b049902e72-0049-1158-c0d2-7e330680755e}</sourcelD>
<tracklD>32</tracklID>
<timeSpan>
<startTime>2009-05-18T10:40.03</startTime>
<endTIme>2009-05-18T10:41:04</endTime>
<timeSpan>
<mediaSegmentDescriptor>
<contenType>metadata</contenType>
<codecType>PS1A-GMCH</codecType>
<rateType>none</rateType>

<playbackURI>rtsp://144_.70.13.92:554/PS1A/Streaming/tracks/32?0ffset=93e6a90e& ; endtime=200
9-05-18T10:41.04</playbackURI>

</mediaSegmentDescriptor>
<metadatalList>

<metadataDescriptor>//metadata.psia.org/VideoMotion/motionLeft</metadataDescriptor>

</metadatalList>
</matchElement>
</matchList>
</CMSearchResult>

The above example is in response to a search query for video motion events, with respect to a set of
specific sources, i.e. b049902e72-0049-1158-c0d2-7e330680d93c and b049902e72-0049-1158-
c0d2-7e330680755e, for video motion events between 10:30 and 10:45AM on May 18", 2009. Four
matches (“matchElements”) were found that matched the search criteria. Three of the match
elements are video/audio/metadata segments corresponding to the same source (see “sourcelD”).
The status combination of “true” and “OK” indicate a complete response. If there had been more
matches than the requester had allowed for reply, the status would have been “true” and “MORE” in
the “responseStatus” and “responseStatusStrg” fields respectively. The “mediaURIDescriptor”s
provided are exemplary only.

The first match, for source b049902e72-0049-1158-c0d2-7e330680d93c, has a segment, on track
#27, that is an MPEG-4 video segment. The next two matches are tied to the same source,
b049902e72-0049-1158-c0d2-7e330680755¢, and are track segments (30 and 31, respectively) that
include both H.264 video and G.726 audio. The playback URIs within the match elements are
fictional examples that are syntactically correct. Match element playback URIs are opaque to the
requester; they are only required to contain whatever information the responder needs to playback
the corresponding media segment via RTSP.

<?xml version="1.0" encoding="UTF-8"?>

<CMSearchResult version="1.0" xmlns="urn:psialliance-org">
<search1D>{812F04E0-4089-11A3-9A0C-0305E82C2906}</search1D>
<responseStatus>false</responseStatus>
<responseStatusStrg>NO MATCHES</responseStatusStrg>

Copyright PSIA 2010

<numOfMatches>0</numOfMatches>
</CMSearchResult>

In this example, a valid search query had no matches for the original criteria provided.

<?xml version="1.0" encoding="UTF-8"?>
<CMSearchResult version="1.0" xmIns="urn:psialliance-org">
<search1D>{812F04E0-4089-11A3-9A0C-0305E82C2906}</search1D>
<responseStatus>true</responseStatus>
<responseStatusStrg>INVALID TRACK ID</responseStatusStrg>
<numOfMatches>1</numOfMatches>
<matchList>
<matchElement>
<sourcelD>{2040002e72-0049-1158-c0d2-7e3306803320}</sourcelD>
<tracklD>11</tracklID>
<timeSpan>
<startTime>2009-05-18T09:48.00</startTime>
<endT Ime>2009-05-18T09:52:33</endTime>
<timeSpan>
<mediaSegmentDescriptor>
<contentType>video</contentType>
<codecType>MPEG4-ASP</codecType>

<playbackURI>rtsp://144_.70.13.92:554/PS1A/Streaming/tracks/11?offset=a07724</playbackURI>
</mediaSegmentDescriptor>
<metadatal ist>

<metadataDescriptor>/metadata.psia.org/VideoMotion/motion</metadataDescriptor>

</metadatalL ist>
</matchElement>
</matchList>
</CMSearchResul t>

In the above example, a search query was initiated that contained both a valid, and an invalid, track
ID. The responder, in this case, did not fail the search, but found a single match for the valid track ID
that was provided; a 4 ¥2 minute segment within track 11. It indicated that the overall search was
successful, but that there was a partial failure since one of the track 1Ds was invalid. This example
does not require the Content Managers to support partial operations. It only outlines the potential for
using the “responseStatus” and “responseStatusStrg” fields to indicate various levels of completion.

12.3.2.2 Search Result Schema Definition

XSD: To get the latest version of all RaCM XSDs, including this one (cmSearchResult.xsd) please
download from the PSIA documents website: http://www.psialliance.org/documents_download.html

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

13.0 /PSIA/ContentMgmt/status (Status Service and Resources)

The Content Management resource hierarchy provides operational status information for the
following resources:

e The entire content base and the mount “volumes’ that comprise the content base, as a whole;

Each track within the content base;
Each input ‘channel’, which are the equivalent to input streams;
And, each input ‘source’ (device or port), which can provide more than one input channel.

This status data is provided in the 4 basic categories listed above. The status information indicates

wellness, resource utilization, and basic attributes regarding the configuration of each resource. The
description of each of these categories follows

Figure: Example relationship between ‘source’, ‘channel’, and ‘track’ Status values in NVR

<SourceStatus>
sourcelD (GUID)
sourcelPAddress

Camera

GUID-A

sourceURI <ChannelStatus>

<TrackStatus>
channelStatusList

\E
trackStatusList)

- “<TrackStatus>

<SourceStatus> “\‘

sourcelD (GUID) [> amera ,:

sourcelPAddress GUID-B /"
sourceURI

channelStatusList 3 :

trackStatusList

Copyright PSIA 2010

In the NVR case, if Multi-Media recording is desired, then each *channel’ must refer to a Multi-
Media stream, with the ‘channelURI’ capable of acquiring a Multi-Media stream.

Figure: Example relationship between ‘source’, ‘channel’, and ‘track’ Status values in DVR

Local (GUID)
<SourceStatus> k

sourcelD (GUID) >

sourcelPAddress

sourceURI

<TrackStatus>

channelStatusList

trackStatusList \

<ChannelStatus>

In the DVR case, the local stream being recorded may be Multi-Media. For example, the
<TrackStatus>/<trackSource>/<sourceChannel> value of 10 is referring to
[PS1A/Streaming/channels/10 which strongly recommended to be bound to local
“/PSIA/System/Video/inputs/channels/10” and *“/PSIA/System/Audio/channels/10” (if available).

Copyright PSIA 2010

13.1/PSIA/ContentMgmt/status/volumes

For each RaCM device, there is at least one mounted ‘volume’ that provides the logical storage
wherein the multimedia is managed (recorded, searched, played). The term *“content base” addresses
all of the ‘mount volumes’ that comprise the logical storage supporting the multimedia content. A
mount volume is referenced via configuration as a “‘Mount’ (see
“/PSIA/ContentMgmt/record/storageMounts (Storage Allocation)”) within the storage
configuration’s “MountList.” Each one of these configured “Mounts”, and the associated parameters,
comprises a “mountVolume”. The only difference is that in the configuration of each “Mount” a
“path”, and a directory (“dir”), are provided to setup recording of multimedia content. When status is
reported, the path and directory are concatenated a one complete path.

When reporting volume status, the overall state of the content base, as a whole, is always
reported, also. Querying entities may retrieve the status of the content base and all volumes via the
URI “/PSIA/ContentMgmt/status/volumes”, or for a specific volume via the URI
“/PSIA/ContentMgmt/status/volumes/<n>" where ‘<id>’ is the Mount ID number of a specific
mount volume.

/PSI1A/ContentMgmt/status/volumes or
URI /PSIA/ContentMgmt/status/volumes/<n> -rype Resource
Requirement| All -
Level
. Mandatory description of the REST method parameters and formats available
Function . . . , :
to functionally manipulate the “search’ resource/object.

Methods Query String(s) Inbound Data Return Result
GET None None <CMStatusVolume>
PUT N/A N/A <ResponseStatus w/error

code>
POST N/A N/A <ResponseStatus w/error
code>

DELETE N/A N/A <ResponseStatus w/error

code>

Volume status is relatively simple. A querying entity either issues a URI to get all
volume status (no Mount index is specified), or a URI is provided for a specific
Notes volumes using the configured mount index. An XML document is returned with the
content base and volume status. Examples follow.

<?xml version="1.0" encoding="UTF-8"?>
<CMStatusVolume version="1.0" xmIns="urn:psialliance-org">
<contentBaseStatus>
<contentBaseSize>970.6</contentBaseSize>
<contentBaseSizeUnit>GBs</contentBaseSizeUnit>
<contentBaselD>{409504E0-4F89-11D3-9A0C-
0305E82C3301}</contentBaselD>
<contentBaseStatus>
<mountVolumeStatusList>
<mountVolumeStatus>
<mountVolumePath>d:/archivel</mountVolumePath>
<mountVolumeSize>970.6</mountVolumeSize>

Example(s)

Copyright PSIA 2010

<mountVolumeSizeiUnit>GBs</mountVolumeSizeUnit>
<mountVolumeMountlD>1</mountVolume IDMountiD>
<mountVolumeState>active</mountVolumeState>
<mountVolumeDate>2009-05-18T10:31.26</mountVolumeState>
</mountVolumeStatus>
</mountVolumeStatusList>
</CMStatusVolume>

In the above example, a RaCM device has a content base that consists of a
single mount volume that is 970.6 GBs. The content base has a GUID to uniquely
identify it. The mount volume ID, which is 1, matches the storage configuration
(see “/PSIA/ContentMgmt/record/storageMounts (Storage

Allocation)”). The volume is “active” which indicates that it is
successfully recording, etc. The “mountVolumeDate” indicates the setup/creation
date of for this mount volume.

<?xml version="1.0" encoding="UTF-8"?>
<CMStatusVolume version="1.0" xmIns="urn:psialliance-org">
<contentBaseStatus>
<contentBaseSize>2.4</contentBaseSize>
<contentBaseSizeUnit>TBs</contentBaseSizeUnit>
<contentBaselD>{e6229504E0-4F89-11D3-9A0C-
0305E82C950c}</contentBaselD>
<contentBaseStatus>
<mountVolumeStatusList>
<mountVolumeStatus>
<mountVolumePath>/dev/hd0/archivel</mountVolumePath>
<mountVolumeSize>1.2</mountVolumeSize>
<mountVolumeSizeUnit>TBs</mountVolumeSizeUnit>
<mountVolumeMountlD>1</mountVolume lIDMountiD>
<mountVolumeState>locked</mountVolumeState>
<mountVolumeDate>2007-10-22T13:40.17</mountVolumeState>
</mountVolumeStatus>
<mountVolumeStatus>
<mountVolumePath>/dev/hd1/archivel</mountVolumePath>
<mountVolumeSize>1.2</mountVolumeSize>
<mountVolumeSizeiUnit>TBs</mountVolumeSizeUnit>
<mountVolumeMountlD>2</mountVolume IDMountiD>
<mountVolumeState>active</mountVolumeState>
<mountVolumeDate>2009-04-12T20:56.09</mountVolumeState>
</mountVolumeStatus>
</mountVolumeStatusList>
</CMStatusVolume>

In the above example, a RaCM device has a 2.4TB content base comprised of two
1.2TB mount volumes with the IDs “1” and “2”, respectively. The first volume
has been “locked”; content can be actively searched, etc., but it is iIn a read-
only mode. The second mount volume is active.

<?xml version="1.0" encoding="UTF-8"?>
<CMStatusVolume version="1.0" xmlns="urn:psialliance-org">
<contentBaseStatus>
<contentBaseSize>8</contentBaseSize>
<contentBaseSizeUnit>TBs</contentBaseSizeUnit>
<contentBaselD>{e6229504E0-4F89-11D3-9A0C-
0305E82C950c}</contentBaselD>
<contentBaseStatus>
<mountVolumeStatusList>
<mountVolumeStatus>
<mountVolumePath>/dev/hd0/contentl</mountVolumePath>
<mountVolumeSize>2</mountVolumeSize>
<mountVolumeSizeiUnit>TBs</mountVolumeSizeUnit>
<mountVolumeMountlD>1</mountVolume IDMountiD>
<mountVolumeState>active</mountVolumeState>
<mountVolumeDate>2009-02-12T03:57.01</mountVolumeDate>
</mountVolumeStatus>
<mountVolumeStatus>
<mountVolumePath>//serverl0/archivel</mountVolumePath>
<mountVolumeSize>6</mountVolumeSize>
<mountVolumeSizeiUnit>TBs</mountVolumeSizeUnit>

Copyright PSIA 2010

<mountVolumeMountlD>2</mountVolumelDMountiD>
<mountVolumeState>errored</mountVolumeState>
<mountVolumeDate>2009-02-12T03:57.53</mountVolumeDate>

</mountVolumeStatus>
</mountVolumeStatusList>

</CMStatusVolume>

In the above example, a RaCM device has an 8TB content base comprised of two
mount volumes with the IDs “1” and “2”, respectively. The first volume is
mounted on local hardware and
which is 6TBs in size, utilizes a remote mount (i.e. to a network-based
machine) which is currently in an “errored” state. This indicates that the
“mount” is broken and no content is being recorded, nor is any content on this

volume currently accessible.

is 2TBs in size.

It is active. The second volume,

13.1.1

/IPSIA/ContentMgmt/status/volume Attribute Definitions

The following tables and schemas define the attributes associated with reporting status for
each RaCM device’s content base and the mount volumes that comprise that content base. The
schema name for this information is “CMVolumeStatus.” This schema is comprised of two major
sections: A) the content base status, and , B) the mount volume status list. Each content base has the
following status properties:

13.1.1.1

Attribute
Content base
size

Content base
ID

Content base
name

Content base
creation time

Content Base Status Attributes Table

Element Name
“contentBaseSize”
“contentBaseSizeUnit”

“contentBaselD”

“contentBaseName”

“contentBaseCreationTime

Requirement Description

Mandatory

Mandatory

Optional

Optional

Two elements indicate the size of a

content base:

o “contentBaseSize” which is the size
indicated in

e “contentBaseSizeUnit” which
indicates the unit of measurement for
the size. This can be megabytes,
mebibytes, gigabytes, gibibytes,
terabytes, petabytes, or exabytes.

The 128-bit UUID/GUID that uniquely
identifies the content base. In simple
devices, this may be the same
UUID/GUID that identifies the device.

A human readable name for the content
base (if one is configured).

The “‘dateTime’ of the creation/setup of
the content base.

Copyright PSIA 2010

13.1.1.2

Mount VVolume Status Information Table

Following the content base status information, in the schema, is the mount volume status list. This
list contains one, or more, sets of information regarding the status of each mount volume in the
content base. For each mount volume, the following required status information is provided.

Attribute
Mount
path for
the volume

The mount
volume’s
size

The
‘mount ID’
of the
volume
The
operational
state of the
mount
volume

Mount
Volume
Date
Mount
volume ID
Mount
volume
status
string

Element Name
“mountVolumePath”

“mountVolumeSize”
“mountVolumeSizeUnit”

“mountVolumeMountID”

“mountVolumeState”

“mountVolumeDate”

“mountVolumelD”

“mountVolumeStateString

Requirement Description

Mandatory

Mandatory

Mandatory

Mandatory

Optional

Optional

Optional,
should be
present; see
description.

The complete mount path for the volume being
reported. This includes the “path” and “dir”
settings setup in the storage configuration (see
“/PSIA/ContentMgmt/record/storageMounts
(Storage Allocation)”™).

The total size of the mount volume. Just like the
content base size (see above) the size consists
of two elements: A) the decimal number, and
B) the unit used to report the size (e.g. MBs,
GBs, etc.).

This is the configured mount index of the
mount volume.

Each mount volume must be in one of the

following states:

e ‘““‘active”: everything is OK. Content is
being actively managed on the volume.

e “inactive”: The mount volume is
setup/configured but is currently inactive
(not due to error). Content may be resident
on the mount volume.

e “locked”. The referenced volume is in
‘read-only’ mode.

e “errored”. A non-recoverable error has
taken the mount volume off-line and into an
inactive state.

e Mount volume active date: the date/time
the corresponding volume was “activated’
(i.e. put in service).

Creation/mount configuration data of the

referenced volume.

An optional 128-bit UUID/GUID that uniquely
identifies the associated mount volume.

For the “errored’, ‘inactive’, and ‘locked’ states
(see above), an optional human readable status
string may be provided to help better describe
the stimulus for the state. This string should be
provided for all errors (i.e. “errored’ states).

Copyright PSIA 2010

13.1.2

/IPSIA/ContentMgmt/status/volume XML Schema Definition

XSD: To get the latest version of all RaCM XSDs, including this one (cmVolumeStatus.xsd) please
download from the PSIA documents website: http://www.psialliance.org/documents download.html

13.2/PSIA/ContentMgmt/status/sources

Each channel and track within a RaCM device’s content base is correlated to a ‘source.” A
source is the input device that originated the multimedia content managed by the RaCM device. For
each source, the RaCM content manager maintains a set of status attributes. These status attributes
relate to the source itself, the channels that source is inputting, and the track(s) that correspond to
that source. All sources are addressed, or identified, by a 128-bit UUID/GUID (ISO/IEC 9834-8)
assigned to that particular device. Status requesters can either gather status for all active sources
using the “/PSIA/ContentMgmt/status/source” URI, or for a particular source using the
“/PSIA/ContentMgmt/status/sources/<GUID>" URI where “<GUID” is the UUID/GUID string for
the specific source being queried. The following attributes comprise the status information contained
in the XML schema for sources.

/PSIA/ContentMgmt/status/sources or
URI /PSIA/ContentMgmt/status/sources/<GUID> Type Resource
Requirement| All -
Level
Function Mandatory descri_ption of th(? REST, method parameters and formats available to
functionally manipulate the “search’ resource/object.
Methods Query String(s) Inbound Data Return Result
GET None None <CMSourceStatus>
PUT N/A N/A <ResponseStatus w/error code>
POST N/A N/A <ResponseStatus w/error code>
DELETE N/A N/A <ResponseStatus w/error code>
Notes
Exarnple(s) <?xml version="1.0" encoding="UTF-8"?>

<CMSourceStatus version="1.0" xmIns="urn:psialliance-org">
<sourceStatusList>
<sourceStatus>
<sourcelD>{9034c22e-0laa-3887-4151-b9002ce36d5d}</sourcelD>
<sourcelPAddress>144.70.13.92</sourcelPAddress>

<channelStatusList>
<channelStatus>
<channel ID>1</channel 1D>
<channelSource>{9034c22e-01aa-3887-4151-
b9002ce36d5d}</channelSource>

<channelURI>rtsp://144.70.13.92:554/PS1A/Streaming/channels/22</channelURI>
<channelState>active</channelState>
<channelType>

<channel InputType>stream</channel InputType>

<contentType>video</contentType>
<codecType>MPEG4-SP</codecType>
</channelType>

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

</channelStatus>
<channelStatus>
<channel ID>2</channel 1D>
<channelSource>{9034c22e-0laa-3887-4151-
b9002ce36d5d}</channelSource>
<channelURI>rtsp://144.70.13.92:554/PS1A/Streaming/channels/30</channelURI>
<channelState>active</channelState>
<channelType>
<channel InputType>stream</channel InputType>
<contentType>audio</contentType>
<codecType>G.726</codecType>
</channelType>
</channelStatus>
</channelStatusList>
<trackStatusList>
<trackStatus>
<trackld>1</tracklD>
<trackSize>620</trackSize>
<trackSizeUnit>MBs</trackSizeUnit>
<trackState>active</trackState>
<trackMode>CMR</trackMode>
<trackType>
<contentType>video</contentType>
<codecType>MPEG4-SP</codecType>
</trackType>
<trackSource>
<trackSourceGUID>{9034c22e-0l1laa-3887-4151-
b9002ce36d5d}</trackSourceGUID>
</trackSource>
<trackChannel ID>0</trackChannel 1D>
</trackStatus>
<trackStatus>
<trackld>2</trackID>
<trackSize>38</trackSize>
<trackSizeUnit>MBs</trackSizeUnit>
<trackState>active</trackState>
<trackMode>CMR</trackMode>
<trackType>
<contentType>audio</contentType>
<codecType>G.711</codecType>
</trackType>
<trackSource>{
<trackSourceGUID>{9034c22e-0l1laa-3887-4151-
b9002ce36d5d}</trackSourceGUID>
</trackSource>
<trackChannel ID>1</trackChannel 1D>
</trackStatus>
</trackStatusList>
</sourceStatus>
<sourceStatus>
<sourcelD>{e70144c03-01laa-3887-4151-3e550991d377}</sourcelD>
<sourcelPAddress>144.70.13.88</sourcelPAddress>
<channelStatusList>
<channelStatus>
<channel ID>3</channel 1D>
<channelSource>{e70144c03-0l1laa-3887-4151-
3550991d3778}</channelSource>
<channelURI>rtsp://144.70.13.88:554/PS1A/Streaming/channels/10</channelURI>

<channelState>active</channelState>
<channelType>
<channel InputType>stream</channel InputType>
<contentType>video</contentType>
<codecType>H.264-BP</codecType>
</channelType>
</channelStatus>
<channelStatus>
<channel ID>4</channel ID>
<channelSource>{e70144c03-01laa-3887-4151-
3550991d3778}</channelSource>
<channelURI>rtsp://144.70.13.88:554/PSI1A/Streaming/channels/11</channelURI>

Copyright PSIA 2010

<channelState>active</channelState>
<channelType>
<channel InputType>stream</channel InputType>
<contentType>audio</contentType>
<codecType>G.726</codecType>
</channelType>
</channelStatus>
</channelStatusList>
<trackStatusList>
<trackStatus>
<trackld>3</tracklD>
<trackSize>510</trackSize>
<trackSizeUnit>MBs</trackSizeUnit>
<trackState>active</trackState>
<trackMode>CMR</trackMode>
<trackType>
<contentType>video</contentType>
<codecType>H.264-BP</codecType>
</trackType>
<trackSource>
<trackSourceGUID>{e70144c03-01aa-3887-4151-
3550991d3778}</trackSourceGUID>
</trackSource>
<trackChannel ID>2</trackChannel ID>
</trackStatus>
<trackStatus>
<trackld>4</tracklD>
<trackSize>38</trackSize>
<trackSizeUnit>MBs</trackSizeUnit>
<trackState>active</trackState>
<trackType>
<contentType>audio</contentType>
<codecType>G.726</codecType>
</trackType>
<trackSource>
<trackSourceGUID>{e70144c03-01aa-3887-4151-
3550991d3778}</trackSourceGUID>

</trackSource>
<trackChannel ID>3</trackChannel 1D>
</trackStatus>
</sourceStatus>
</sourceStatusList>
</CMSourceStatus>

In the above example, a very simple scenario is depicted. A RaCM device has 2 input
sources. Each input source has 2 input channels (4 total), one each of video and audio.
Each source also has both of the video/audio channels being recorded as tracks. The first
source, “{9034c22e-0laa-3887-4151-b9002ce36d5d}”, is an MPEG-4 camera/encoder with G.711
audio. Its input “channels” are 1 & 2 as assigned by the RaCM device. These channels are
“active’ and are being recorded on tracks 1 & 2, respectively. Please note that the
channel and track numbers are indigenous to the RaCM device; i.e. they are not the
channel numbers of the IP media device. Additionally, second source, “{e70144c03-0Olaa-
3887-4151-3e550991d377}”, which is an H.264 camera/encoder, is inputting video and audio
(G.726) to the RaCM device on “channels” 3 and 4. These “channels” currently “active’ and
are being recorded on tracks 3 and 4. This example depicts the minimum status information
required. This example is also for a small, simple device that is supporting only 2
inputs. Obviously, more sources, channels, and tracks are possible, and probable. In this
case, the URI for requresting status was “/PSIA/ContentMgmt/status/sources” which
rendered all of the sources for the RaCM device.

<?xml version="1.0" encoding="UTF-8"?>
<CMSourceStatus version="1.0" xmIns="urn:psialliance-org">
<sourceStatusList>
<sourceStatus>
<sourcelD>{9034c22e-0laa-3887-4151-b9002ce36d5d}</sourcelD>
<sourcelPAddress>144.70.13.92</sourcelPAddress>
<channelStatusList>
<channelStatus>
<channel ID>8</channel 1D>
<channelSource>{9034c22e-0l1laa-3887-4151-

Copyright PSIA 2010

b9002ce36d5d}</channelSource>
<channelURI>rtsp://144.70.13.92/streaming/channels/55</channelURI>

<channelState>errored</channelState>
<channelType>
<channel InputType>stream
</channel InputType>
<contentType>video</contentType>
<codecType>H.264-BP</codecType>
</channelType>
<channelStatusString>>Network Connection Error”
</channelStatusString>
</channelStatus>
</channelStatusList>
<trackStatusList>
<trackStatus>
<trackld>10</trackID>
<trackSize>620</trackSize>
<trackSizeUnit>MBs</trackSizeUnit>
<trackState>idle</trackState>
<trackMode>CMR</trackMode>
<trackType>
<contentType>video</contentType>
<codecType>H.264-BP</codecType>
</trackType>
<trackSource>
<trackSourceGUID>{9034c22e-0l1laa-3887-4151-
b9002ce36d5d}</trackSourceGUID>
</trackSource>
<trackChannel ID>8</trackChannel 1D>
</trackStatus>
</trackStatusList>
</sourceStatus>
<sourceStatusList>
</CMSourceStatus>

The above example depicts a source specific query. The source, at IP address
144.70.13.3, has an error on its video input channel (channel 8 in this reference). Due
to the channel error, track “10” is currently in an idle state since it is receiving no
data from the input channel. The track status of “idle” indicates that the error is not
with the recording media or software (i.e. the track is active but receiving not data).
The REST URI used to retrieve this status info was:
“/PSI1A/ContentMgmt/status/sources/9034c22e-01aa-3887-4151-b9002ce36d5d™

13.2.1 IPSIA/ContentMgmt/status/sources Status Attributes

The following status information is returned for each source. The following descriptions cover the
information contained in the XML Schema definition which follows in the subsequent section of this
document. The name of the schema is “CMSourceStatus”. It is comprised of a list of one, or more,
sources with the each source having the following status information associated with it.

Copyright PSIA 2010

13.2.1.1 Source Status Attribute Definitions

Attribute Element Name Requirement Description

Source ID “sourcelD” Mandatory 128-bit UUID/GUID of the corresponding
source device

Source IP “sourcelPAddress” Mandatory IPv4/1Pv6 address of the source device. For

Address DVRs this is the IP address of the RaCM
device.

Source URI “sourceURI” Optional URI of the source stream. This isa

convenience attribute. It cannot properly
describe the URI used for actual media
acquisition, if the Source produces multiple
streams. In that case, each produced stream
must be captured by different ‘channels’ in
RaCM. The channelURI in the ChannelStatus
is the actual URI for media acquisition.

Source “sourceDescription” Optional Informative description of the source since it
Description may be local or remote, on a DVR or NVR.
(Source’s) “channelStatusList” Mandatory Status list for input channels associated with the
Channel status source device. The format is covered in Section
list 11.3

(Source’s) “trackStatusL.ist” Mandatory Status list for the tracks associated with the
Track Status source device. The format is coverd in Section
List 11.4.

As noted above, the specific formats of the channel and track status information are described in the
following sections of this document. The IP address and URI information is provided such that a
source can be uniquely identified on a network, and the information used to access the source device
can be validated.

13.2.2 /IPSIA/ContentMgmt/status/sources XML Schema Definition

As mentioned above, the status information for a source device consists of three primary categories:
A) source device information, B) channel status information for input channels associated with the
source device, and B) track status information for the tracks (recorded multimedia content)
associated with the referenced device.

XSD: To get the latest version of all RaCM XSDs, including this one (cmSourceStatus.xsd) please
download from the PSIA documents website: http://www.psialliance.org/documents_download.html

13.3/PSIA/ContentMgmt/status/channels

As defined in the opening section of this document, the term “channels’ refers to input data
streams for a RaCM device. These ‘channels’ may be incoming IP-based multimedia streams (NVR
scenario) or physical input ports (DVR scenario). Either way, a channel corresponds to a specific

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

instance of a data stream. In other words, each video, audio, serial, and metadata input is a channel
unto itself. Sources (see prior Section) may originate multiple channels within one session, but each
data stream is its own ‘channel’.

/PSI1A/ContentMgmt/status/channels or
URI /PSIA/ContentMgmt/status/channels/<id> Type Resource
Requirement| All -
Level
Function Mandatory descri_ption of th(? REST, method parameters and formats available to
functionally manipulate the “search’ resource/object.
Methods Query String(s) Inbound Data Return Result
GET None None <CMChannelStatus>
PUT N/A N/A <ResponseStatus w/error code>
POST N/A N/A <ResponseStatus w/error code>
DELETE N/A N/A <ResponseStatus w/error code>
Notes
Example(s) $Z?Q:Oxi£8iggi”l.0” encoding="UTF-8"?>

<CMChannelStatus version="1.0" xmlns="urn:psialliance-org”>
<channelStatusList>
<channelStatus>
<channel ID>1</channel ID>
<channelSource>{9034c22e-01aa-3887-4151-
b9002ce36d5d}</channelSource>
<channelURI>rtsp://120.71.23.52/streaming/channels/10</channelURI>
<channelState>active</channelState>
<channelType>
<channel InputType>stream</channel InputType>
<contentType>video</contentType>
<codecType>MPEG4-SP</codecType>
</channelType>
</channelStatus>
<channelStatus>
<channel ID>2</channel ID>
<channelSource>{9034c22e-0l1laa-3887-4151-
b9002ce36d5d}</channelSource>
<channelURI>rtsp://120.71.23.52/streaming/channels/11</channelURI>
<channelState>active</channelState>
<channelType>
<channel InputType>stream</channel InputType>
<contentType>audio</contentType>
<codecType>G.726</codecType>
</channelType>
</channelStatus>
<channelStatus>
<channel ID>3</channel ID>
<channelSource>{e70144c03-01laa-3887-4151-
3e550991d377}</channelSource>
<channelURI>rtsp://150.81.23.12/streaming/channels/1</channelURI>
<channelState>active</channelState>
<channelType>
<channel InputType>stream</channel InputType>
<contentType>video</contentType>
<codecType>H.264-BP</codecType>
</channelType>
</channelStatus>
<channelStatus>
<channel ID>4</channel ID>

Copyright PSIA 2010

<channelSource> e70144c03-0l1laa-3887-4151-
3e550991d377}</channelSource>

<channelURI>rtsp://150.81.23.12/streaming/channels/2</channelURI>

<channelState>active</channelState>

<channelType>

<channel InputType>stream</channel InputType>

<contentType>audio</contentType>

<codecType>G.726</codecType>
</channelType>
/channelStatus>
<channelStatus>
<channel ID>5</channel I1D>
<channelSource> ff0144c03-01aa-3887-4151-
33950991d38c}</channelSource>
<channelURI>rtsp://110.30.15.77/streaming/channels/22</channelURI>
<channelState>active</channelState>
<channelType>
<channel InputType>stream</channel InputType>
<contentType>video</contentType>
<codecType>MPEG4-ASP</codecType>
</channelType>
/channelStatus>
<channelStatus>
<channel ID>6</channel 1D>
<channelSource>{108144c03-01laa-3887-4151-

33950991 f81f}</channelSource>
<channelURI>rtsp://110.30.15.77/streaming/channels/23</channelURI>
<channelState>active</channelState>
<channelType>

<channel InputType>stream</channel InputType>

<contentType>video</contentType>

<codecType>H.264-MP</codecType>
</channelType>
/channelStatus>
</channelStatusList>
</CMChannelStatus>

The above example is for a hypothetical NVR that has 6 input SINGLE-MEDIA streams (3
video + 3 audio) coming in from 3 different sources. All tracks are active.

<?xml version="1.0" encoding="UTF-8"?>
version="0.1">
<CMChannelStatus version="1.0" xmlns="urn:psialliance-org”>
<channelStatusList>
<channelStatus>
<channel ID>1</channel ID>
<channelSource>{a534c22e-01aa-3887-4151-
b9002ce36d72}</channelSource>
<channelURI>rtsp://localhost/PSIA/Streaming/channels/1</channelURI>
<channelState>active</channelState>
<channelType>
<channel InputType>port</channel InputType>
<contentType>video</contentType>
<codecType>H.264-BP</codecType>
</channelType>
</channelStatus>
<channelStatus>
<channel ID>2</channel ID>
<channelSource>{a534c22e-01aa-3887-4151-
b9002ce36d72}</channelSource>
<channelURI>rtsp://localhost/PS1A/Streaming/channels/2</channelURI>
<channelState>errored</channelState>
<channelType>
<channel InputType>port</channel InputType>
<contentType>video</contentType>
<codecType>H.264-BP</codecType>
</channelType>
<channelStatusString>"No Video Signal”</channelStatusString>
</channelStatus>
<channelStatus>
<channel ID>3</channel 1D>

Copyright PSIA 2010

<channelSource>{a534c22e-0l1laa-3887-4151-
b9002ce36d72}</channelSource>
<channelURI>rtsp://localhost/PSIA/Sstreaming/channels/3</channelURI>
<channelState>active</channelState>
<channelType>
<channel InputType>port</channel InputType>
<contentType>video</contentType>
<codecType>H.264-BP</codecType>
</channelType>
</channelStatus>
<channelStatus>
<channel ID>4</channel ID>
<channelSource>{a534c22e-01aa-3887-4151-
b9002ce36d72}</channelSource>
<channelURI>rtsp://localhost/PSIA/Streaming/channels/4</channelURI>
<channelState>inactive</channelState>
<channelType>
<channel InputType>port</channel InputType>
<contentType>video</contentType>
<codecType>H.264-BP</codecType>
</channelType>
<channelStatusString>"Disabled”</channelStatusString>
</channelStatus>
</channelStatusList>
</CMChannelStatus>

The above scenario is for a 4-port DVR. All of the channels are hardware based, not IP-
based. The source ID for all of the channels/ports is the UUID/GUID of the RaCM DVR
device (i.e. a self reference). Channel #1 (2™ channel) is in an “errored” state because
it is not receiving a video signal. Channel #3 is inactive because an administrative
action disabled the port (i.e. forced it to an “inactive” state).

The “CMChannelStatus” schema defines all the related channel status information. Channels
report status via a channel status list. Each enty in the list utilizes the following status attribute

definitions.

13.3.1

Attribute
Channel ID
Channel
Source

Channel
URI
Channel
State

Channel

/IPSIA/ContentMgmt/status/channels Status Attributes

Element Name Requirement Description
“channellD” Mandatory Integer ID (index) of the input channel
“channelSource” Mandatory 128-bit UUID/GUID of the source device. For

NVRs this is the UUID/GUID of the remote source
device. For DVRs, this is the UUID/GUID of the
DVR device itself.

“channelURI” Mandatory URI used to access this ‘channel’s media.

“channelState” Mandatory The state of the input channel: State values are:

e “active”: normal operative state.

e “idle”: channel is OK and active, but not
data is being received in the present state.

e “inactive”: the channel is inoperative due to
recording mode or administrative
intervention (i..e. a non-error condition).

e “errored”: the channel has encountered and
error and is not receiving data.

“channel Type” Mandatory All input channels are one of 2 possible types:

Copyright PSIA 2010

Type e “port”: a physical input port is the source of
the stream (e.g. composite video).
e “stream”: the input stream is logical; i.e. it
is an IP-based data stream (RTP, HTTP,

etc.)
Channel “channelStatusString” Mandatory / Optional human-readable text string describing the
Status Optional; current channel state. This string is MANDATORY
String Mandatory for ~ for the channel state “errored” (see above).
Channel State
“errored”

The above status information is reported for the channels on a RaCM device in a list
(“channelStatusList™). When a status requester ‘GETS’ channel status, it can either A) get all of the
channels on a RaCM device (URI:”/PSIA/ContentMgmt/status/channels™), or B) it can get status for
a particular channel. In the latter case, the requester must specify the target channel by referencing
the channel ID in the URI (e.g. “/PSIA/ContentMgmt/status/channels/<id>") where “<id>" is the
channel ID (see above) for the target channel. Information regarding the specifics of the status
information is contained in the following schema definition section.

13.3.2 /IPSIA/ContentMgmt/status/channels XML Schema Definition

XSD: To get the latest version of all RaCM XSDs, including this one (cmChannelStatus.xsd) please
download from the PSIA documents website: http://www.psialliance.org/documents download.html

13.4/PSIA/ContentMgmt/status/tracks

All recorded information for a given RaCM device is recorded onto one, or more, ‘tracks’.
As described earlier in this specification, tracks are virtual containers. They may, or may not,
correspond to a file, or set of files, etc. Basically, a track is a handle to specific type of multimedia
information (e.g. video or audio) from a specific source. The PSIA places no other constraints on the
implementation of tracks. For status information, tracks, just like channels, render specific status
attributes for each track, in a list. For generic status queries (i.e. all tracks), the list contains
information about all tracks on a RaCM device. The URI for gathering status on all tracks is
“/PSIA/ContentMgmt/status/tracks.” A specific track can be queried for its status information using
the URI “/PSIA/ContentMgmt/status/tracks/<id>" where “<id>" is the ID number of the target track.
In order to keep status gathering simple, no schemas are employed to query status; only the REST
URIs are employed. If an entity needs to gather information on subsets of all the tracks, then
individual queries need to be made per track, track information needs to be gathered by source (see
above Section 11.2).

URI /PSIA/ContentMgmt/status/tracks or T R
/PSIA/ContentMgmt/status/tracks/<id> yp€ | kesource
Requirement
- All -
Level

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

Mandatory description of the REST method parameters and formats available to

AUEL functionally manipulate the ‘search’ resource/object.
Methods Query String(s) Inbound Data Return Result
GET None None <CMChannelStatus>
PUT N/A N/A <ResponseStatus w/error code>
POST N/A N/A <ResponseStatus w/error code>
DELETE N/A N/A <ResponseStatus w/error code>
Notes
Exarnple(s) <?xml version="1.0" encoding="UTF-8"?>

<CMTrackStatus version="1.0" xmlns="urn:psialliance-org">
<trackStatusList>
<trackStatus>
<tracklD>19</channel 1D>
<trackSize>320.6</trackSize>
<trackSizeUnits>MBs</trackSizeUnits>
<trackState>active</trackState>
<trackType>
<contentType>video</contentType>
<codecType>MPEG4-SP</codecType>
</trackType>
<trackMode>CMR</trackMode>
<trackSource>
<trackSourcelD>{9034c22e-01aa-3887-4151-
b9002ce36d5d}</trackSourcelD>
</trackSource>
<trackChannel ID>11</trackChannel ID>
</trackStatus>
</trackStatusList>
</CMTrackStatus>

The above example is for a status query for a specific track; in this case track #19.
This track contains MPEG-4 video data. This example contains the minimum information
required for a track.

<?xml version="1.0" encoding="UTF-8"?>
<CMTrackStatus version="1.0" xmIns="urn:psialliance-org'">
<trackStatusList>
<trackStatus>
<tracklD>12</tracklID>
<trackSize>416</trackSize>
<trackSizeUnits>MBs</trackSizeUnits>
<trackState>active</trackState>
<trackType>
<contentType>video</contentType>
<codecType>H.264-BP</codecType>
</trackType>
<trackMode>CMR</trackMode>
<trackSource>
<trackSourceGUID>{9034c22e-0laa-3887-4151-
b9002ce36d5d}</trackSourceGUID>
</trackSource>
<trackChannel ID>8</trackChannel 1D>
<trackTimeRange>
<trackOldestTime>2009-05-12T09:17:06</trackOldestTime>
<trsckNewestTime>2009-06-14T13:22:43</trackNewestTime>
</trackTimeRange>
<trackObjects>2608012</trackObjects>
<trackVersion>1l.1</trackVersion>
<trackCreationDate>2009-05-12T09:17:06</trackCreationDate>
<trackMountVolumelD>1</trackMountVolumelD>
<trackUtilization>79.6</trackUtilization>
</trackStatus>

Copyright PSIA 2010

</trackStatusList>
</CMTrackStatus>

The above example is for a status query for a specific track; in this case track #12.
This track contains H.264 video data. This example contains the maximum information that
can be reported for a track.

13.4.1 IPSIA/ContentMgmt/status/tracks Status Attributes

Status information for each track consists of both mandatory status attributes, and optional
items. The optional items provide greater insight into the status of the content of a track and its basic
storage attributes. The track status attributes are listed in the following table

Attribute Element Requirement Description
Track ID “trackID” Mandatory Track ID number of the specific track being
reported
Track Size “trackSize” Mandatory The size of the track. This is reported in 2 parts:
“trackSizeUnit” e A number in “trackSize” indicating the

current size of the referenced track in

e The unit used to report the size
(“trackSizeUnit”). Units are MBs. GBs,
TBs, PBs, MiBs, GiBs, and XBs.

Track “trackState” Mandatory The operating state of the track. State choices
State are:
e “active”: track is OK and actively
recording.:
o “idle”: track is OK but not receiving
data.:

e “inactive”: track is dormant.
o “locked”: track has been put into “read-
only” mode.
e “errored”: track has encountered an
error and is not recording.
Track “trackType” Mandatory The type of the reported track:
Type o “contentType” indicates of the track is
video, audio, metadata, text or mixed
(polymorphic).
e “codecType” indicates the primary
codec format / protocol of the track.
(see Appendix A)
Track “trackMode” Mandatory The recording mode of the track:
Mode e “CMR”: Continuous Mode Recording
(time-lapsed, or loop-based recording).
o “EDR”: Event Driver Recording.
e “CMR-Scheduled”: track is in CMR
mode based on a schedule (track is
multi-modal).

Copyright PSIA 2010

Track “trackSource”
Source

Track’s “trackChannelID”
Channel
ID

Track “trackStatusString”
Status
String

Track “trackTimeRange”
Time

Range

Track’s “trackObjects”
Number of

Objects

Track “trackVersion”
Version

Track’s “trackCreation”
Creation

Date

Track’s “trackMountVolumelD”
Mount

Volume ID

Track “trackUtilization:
Utilization

Mandatory

Mandatory /
Optional

Mandatory /
Optional

Optional

Optional

Optional

Optional

Optional

Optional

e “EDR-Scheduled”: track is in EDR
mode based on a schedule (track is
multi-modal).

o “Manual Recording”: track is
recording based on user driven activity.

The track source varies based on whether the
input is an IP-based device (NVR scenario), or a
hardware based input port (DVR scenario). The
following are used to identify track sources:

o |P-based input = 128-bit UUID/GUID
of the source device.

o Hardware based input = Channel ID of
the local port-based stream RaCM
device.

For all scenarios where the channels are still
operative/configured on a RaCM device, the
channel ID must be provided. Otherwise, this
data is not required.

For the “errored” track state (see above), this is
a required string that provides a human readable
status description of the error encountered. For
all other states, this string is optional.
Oldest/newest timestamps of the data contained
within a track.

Number of objects (i.e. frames, GOPs/GOVs,
events, etc.) contained in the track.

Version of the track’s format/implementation.

Creation ‘dateTime’ of the track.

One, or more, Mount VVolume ID numbers
referencing the mount volumes that the track
occupies.

Float indicating the percentage of utilization of
the allocated track space (i.e. “24.7” = %24.7).

13.4.2 /IPSIA/ContentMgmt/status/tracks XML Schema Definition

XSD: To get the latest version of all RaCM XSDs, including this one (cmTrackStatus.xsd) please
download from the PSIA documents website: http://www.psialliance.org/documents_download.html

http://www.psialliance.org/documents_download.html

Copyright PSIA 2010

14.0 Streaming and Playback

RaCM devicea must offer PSIA compliant streaming services for the playback of recorded
media information. For RaCM devices that also offer the ability to serve live streams to clients, and
other multimedia consumers, as a proxy server, these streams must also be provided in a PSIA
compliant manner. The requirements for multimedia streaming are specified in the “PSIA IP Media
Device API Specification.”, Sections 5.1 (“Media Streaming, Streaming with RTSP and SDP”) and
7.12 (*/Streaming”) and its subsections. These sections of the IP Media Device specification cover
just live streaming. Additionally, a RaCM device has the ability to stream recorded data, and the
ability to configure incoming streams (i.e. “channels”) indirectly via track configuration using the
‘/ContentMgmt/record’ service. Due to these unique functional differences, the following
exceptions, qualifications, and additions to the IP Media Device specification

14.1 Streaming URIs

14.1.1 Live Streams

The IP Media Device specification, Section 5.1.2, specifies the following URI structure for a
client/consumer to initiate and RTSP Streaming session:

rtsp://<address>:<port>/Streaming/Channels/<id>(?parml=valuel&parm2-=value2..)

This is compatible with channel definitions for RaCM devices as well. All input streams, port or
network-based, are mapped to RaCM device ‘channels’ identified by channel IDs. Each track, in its
configuration, and status, information also contains the corresponding channel ID for its input
stream. So, channel IDs can be obtained by reading either the track configuration information (see
“/PSIA/ContentMgmt/record/tracks (Recording Session Configuration)”) or the track status
information (see “/PSIA/ContentMgmt/status/tracks™).

Additional support for the description of multiple channels, not necessarily from the same
source is provided by adding channel IDs to an RTSP URI. In these cases, the parameter tag
“channel=""is used for each additional channel. The following example depicts this case.

rtsp://10.1.2.55/Streaming/channels/7?channel=8&channel=11&channel=20

In the above example, a client desires to retrieve an RTSP description of channels 7, 8, 11, and 20.
Please note that this RTSP URI construct will only work for the RTSP DESCRIBE message/method.

14.1.2 Archive Streams

RaCM devices record multimedia information onto ‘tracks’ which are accessible for RTSP
Streaming via 2 identification methods: A) track IDs, and B) source device UUID/GUIDs. The first

Copyright PSIA 2010

requirement is obvious; a consumer desires a playback stream from a specific track. The URI
structure for Streaming this media information is:

rtsp://<address>:<port>/Streaming/tracks/<id>(?parml=valuel&parm2-=value2..)

The above 2 URI constructs are direct derivatives of the PSIA REST resource hierarchy for media
information and match the RaCM notations described herein. Additionally, a client/consumer that
establishes an RTSP session to a RACM device and issues a “DESCRIBE” (see RFC 2326), for a
channel or track, only receives an SDP description of the media information for that specific,
channel or track, not for an entire “presentation” (see RFC 2326). For the use of time as a parameter
in the management of streaming sessions, please see “Time-related Streaming” below

Also, as is noted for live streaming, above, requesters may gather RTSP descriptions for
multiple tracks by appending additional track IDs to the end of an RTSP DESCRIBE URI as query
parameters. The parameter value tag for each additional track ID is “track=". The URI below is an
example of a multi-track RTSP DESCRIBE URI.

rtsp://10.1.2.55/Streaming/tracks/19?track=20&track=27&track=28

In the above URI example, a requester is attempting to retrieve an RTSP/SDP description of multiple
tracks via a single message. In this case, the requester wants an SDP description for tracks 19, 20,
27, and 28. This prevents a requester/client from having to issue multiple ‘DESCRIBES’ to get
multi-track media attributes. There is one restriction: when imposing a time range on a DESCRIBE,
all of the tracks, in a multi-track URI, must share the same time range. This is described in more
detail in Section 12.1.4 below.

14.1.3 Source-based Streaming

For clients/consumers that desire to receive RTSP-based streamed media information for all
channels, or tracks, from a specific source device, the following URI structure

rtsp://<address>:<port>/Streaming/sources/<GUID>/<type>

The field “<GUID>" in the above URI template references the 128-bit UUID/GUID of the target
source device. The “<type>” field is required to differentiate between ‘live’ and “archived’ media
content via the following tags:

e “channels”: indicates ‘live’ media data, and

e “tracks”: indicates archived content.
The following source-based URI examples are provided:

rtsp://10.1.2.55/Streaming/sources/{91c0822d4-033f-5a01-00a7-498330c09f5b}/channels

The above example references a client’s desire to receive an RTSP DESCRIBE that lists all of the
live media streams that a source device provides via a RaCM device. This is useful for source
devices that are originating video and audio, and potentially, metadata/events. The DESCRIBE’s
SDP response would list all of the available channels for that specific input device. This enables

Copyright PSIA 2010

client/consumers to SETUP multiple channels in a single RTSP session (see RFC 2326; setup via
multiple RTSP sessions is also supported, though less efficient).

rtsp://10.1.2.39:554/Streaming/sources/{91c0822d4-033f-5a01-00a7-498330c09f5b}/tracks

The above example references a URI that causes an RTSP DESCRIBE operation to return an SDP
description of all the tracks on a RaCM device that may be streamed to a client/consumer associated
with a specific source device.

All source-based Streams MUST utilize the above URI structure complete with the “type” tag for
RTSP session initiation and setup. A source-based URI that does not list the “type” tag is an error
and will result in an RTSP failure. For client/consumers that desire to see all of the channels and
tracks associated with a specific source device, the following section

Copyright PSIA 2010

Streaming Operations.

14.1.4 Time-related Streaming

For archive streams, whether track or source-based in notation, there usually is a time
component that indicates the desired time range with respect to a track or source. In the cases where
a consumer needs to specify the specific time range associated with a streaming session, URI request
line parameters are employed for defining the specific time range. The following parameter tags are
used:

e “starttime”: This parameter tag indicates that it will be followed by and ISO 8601
timestamp indicating the start time of the media stream the consumer is targeting for
description, setup, or playing.

e “endtime”: This parameter tag indicates that it will be followed by an ISO 8601 time
stamp indicating the ending time the consumer desires to be the termination point for a
media stream. This parameter field is optional. If it is not present, the stream is to proceed
from the start time until the session is manually terminated, or paused, by the consumer.

The format of the time stamps is 1SO 8601 as specified in Section 3.7 of RFC 2326, “Absolute
Time.” This format is almost identical to XML ‘dateTime’ except there are no dashes to separate the
fields. Basically, the format is: YYYYMMDD”T”HHmmSS.fraction”Z” where Y=year, M=month,
D=day, “T” is the time separator, H=hour, m=minutes, S=seconds, and “Z” is the optional field
indicating Zulu (GMT) time. A time stamp example is: “20090526T13:42.58Z” which represents
May 26", 2009 at 1:42.58 PM GMT.

Given the above formatting information, a client using RTSP session management would
append the time stamps to the end of its URI (either track or source-based) as a way of designating
the target timeframe associated with a streaming session. A track-based example follows:

rtsp://10.1.2.39:554/Streaming/tracks/18?starttime=20090731T092241.06Z&endtime=20090731T093000Z

In the above example, a requester desires to describe/setup/play a media stream that spans the time
range on July 31%, 2009 from 9:22.06AM GMT to 9:30AM GMT.

As noted in Section 12.1.2, when multiple tracks are identified in a single RTSP URI, they
can only share one time range. This restriction is instated to prevent run-on URIs that exceed
standard buffer length allocations.

The appending of timestamps as parameters to a URI request line is pertinent for all URIs,
even those returned by the ‘SearchResponse’ since a requester may not desire an entire time
segment. Please reference RFC 2326 for more details on URI and parameter formats.

14.2 Streaming Configuration and Status

All RaCM devices must support the ability to play live input video/audio streams to clients as a live
stream server as outlined in the IP Media Device specification. However, the ability to modify codec
settings, that affect the corresponding streams, varies with respect to DVR versus NVRs. These areas

Copyright PSIA 2010

are covered in Sections 7 and ?? of this document. Streaming parameters that are independent of the
source codec setting are described in this section of the document.

14.2.1 Streaming Status

The IP Media Device specification in IPMD Sections 7.12.1and 7.12.4 specifies REST
interfaces for getting status information on live channels and on sessions. Since RaCM devices
already provide the equivalent information in the ContentMgmt/status service functions, these
sections are optional and not required for implementation by RaCM devices. It is recommended that
RaCM devices implement these interfaces for interoperability reasons.

14.2.2 QoS Parameter for playback (new v1.1)

See the IP Media Device specification in Sections 7.4.22 — 7.4.25 for static QoS settings per network
interface and per media class/type (i.e. /PSIA/System/Network/interfaces/<ID>/qos/cos and
[PS1A/System/Network/interfaces/<ID>/qos/dscp). The values set here for <TrafficType>‘s of
“video” and “audio” will apply.

In addition to IPMD, RaCM allows the following overrides, on a per-request basis, via the Query
String parameters shown here:

rtsp://<uri_base>?dscp=<code>
rtsp://<uri_base>?cos=<priority>
rtsp://<uri_base>?dscp=<code>&cos=<priority>

Where <uri_base> refers to the URI’s described in Section 14.1.

(Note also that, in a XML document, the ampersand must be encoded as “&” -- See “XML
Reserved Characters”)

Differentiated Services

The “dscp="" Query String parameter is used to request use of a DiffServ codepoint value (6 bit
value, given in decimal range of 0-63) for the data stream.

RFC2597 (Assured Forwarding) defines the following codepoints:

Class 1

Class 2

Class 3

Class 4

Low Precedence

Binary 001010
“AF11” / dscp=10

Binary 010010
“AF21” [dscp=18

Binary 011010
“AF31” / dscp=26

Binary 100010
“AF41” | dscp=34

Medium Precedence

Binary 001100
“AF12” [dscp=12

Binary 010100
“AF22” [dscp=20

Binary 011100
“AF32” [dscp=28

Binary 100100
“AF42” [dscp=36

High Precedence

Binary 001110
“AF13” / dscp=14

Binary 010110
“AF23” [dscp=22

Binary 011110
“AF33” /dscp=30

Binary 100110
“AF43” [dscp=38

Copyright PSIA 2010

Note that for translation to simple priority levels, the priority number generally increases to the
right/bottom of the table.

RFC2598 (Expedited Forwarding) defines codepoint: Binary 101110, “EF” / dscp=46.

RFC2474 (Differentiated Services) also defines “Class Selector” code points, Binary xxx000, using
the upper precedence bits in same was as legacy TOS Precedence values.

IEEE 802.1p / 802.1g — Class of Service

The “cos="" Query String parameter is used to request an IEEE 802.1p priority level (3 bit value, if
supported by the local network) for the data stream.

Priority Traffic Type

Best Effort

Background

Spare

Excellent Effort

Controlled Load

Video

Voice

~NOoO|OIRAWINFP O

Network Control

Multiple QoS Parameters

It is possible to specify both QoS override parameters (e.g. both Class of Service and a DiffServ
codepoint), which would be interpreted as enabling both, wherever applicable; however, the actual
behavior will be dependent on the network capability and administrative guidelines.

Copyright PSIA 2010

14.3Streaming Operations

This section provides an operational overview of some of the key design aspects regarding
how client, management applications, and consumers can “‘find” and access the live media streams
they desire to receive from a compliant PSIA RaCM device that provide streaming proxy/server
functionality. Streams are usually accessed via parameters associated with one of the following
methods:

Media type
Source
Track association
e Search
A description of each of these methods, and how they can be employed using the standard RaCM
interfaces, follows.

Media type: The Media type method identifies operations where an entity wants to see all, or some,
channels of a particular media/content type (e.g. ‘video’, ‘audio’, ‘metadata’, etc.). An entity can
detect the appropriate channel types via 2 RaCM interfaces: A) “/PSIA/ContentMgmt/record/tracks
(Recording Session Configuration)”, or B) “/PSIA/ContentMgmt/status/channels”. The first interface
supplies track configuration information which contains the media/content type parameters and the
associated channel ID for each track (also the Source’s UUID/GUID). The second interface provides
the content/media type information for each channel along with the codec type and the Source
UUID/GUID of the source device. Using this information an entity can the access the desired
channel using the supplied channel IDs.

Source: The Source method refers to entities that desire to get the attributes of all the streams
associated with a particular source device/endpoint. These types of operations are usually related to a
particular scene or field-of-view (FoV). Information regarding the streams assocated with one, or
more, sources can be obtained 2 primary ways: A) via Source status information
(“/PSIA/ContentMgmt/status/sources”), or B) via track configuration information
(“/PSIA/ContentMgmt/record/tracks (Recording Session Configuration)”). Using the source status
interface, an entity can get the status information on all sources. For each source, the status
information containts the UUID/GUID of the associated source plus a complete channel list and
track list. Each channel and track list has their IDs, content/media types and codec types. Using
track configuration information is a less direct way to get the source IDs, but the information is
present. Once an entity has a source’s UUID/GUID, it can issue an RTSP streaming session using
the URI structure outlined in “Streaming URIs”, above, and receive an SDP description of all the
source’s media streams.

Track Association: All track information in both the track configuration attributes
(“/PSIA/ContentMgmt/record/tracks (Recording Session Configuration)”) and in the status
information provided for tracks, and sources, contains the corresponding channel IDs for the input
streams linked to the respective track.

Search: Presently, the Content Management Search services are only for recorded content.
However, the Search responses always contain the track 1Ds for each of the ‘matches’ to a search

Copyright PSIA 2010

(see Section “/PSIA/ContentMgmt/search (Search Service and Resources)”). Using these track 1Ds,
an entity deciding to access the corresponding live media can get the channel ID for a particular
track using either: A), the track’s configuration information (“/PSIA/ContentMgmt/record/tracks
(Recording Session Configuration)”), or B) track status information
(“/PSIA/ContentMgmt/status/tracks”). Once the channel ID is obtained, the appropriate RTSP
Streaming URI can be constructed (see “Streaming URISs”).

14.4Playback

14.4.1 Playback Requirements

This section describes the requirements for the replay protocol. Note: These requirements apply to
the protocol itself, not any implementation of it.

1. The replay mechanism must support the following client operations:
e Start playback from a specific source, from a specific time.
e Play forwards at any speed (both faster and slower than real time)
e Play backwards at any speed (both faster and slower than real time)

e Play I-frames only, or a subset of the I-frames, to reduce bandwidth and client processing
requirements and allow very fast playback in either direction.

e Pause/resume playback
e Step forwards by a single frame (when in paused mode)
e Step backwards by a single frame (when in paused mode)

Note that this does not imply that the replay protocol must include methods corresponding to
each of these operations, only that the protocol must facilitate the implementation of these
operations by the client application.

2. The replay mechanism shall allow lossless playback. It must be possible to play back
stored footage with no loss of information, regardless of network conditions, such that clients
are always able to display every frame that was successfully recorded. (This does not
preclude a “lossy” mode in addition to this).

3. Every frame shall have an stable, absolute timestamp. Each frame must carry a timestamp
indicating the absolute time at which it was captured by the NVT. These timestamps must be
communicated to the client during replay (either directly or indirectly). The replay
mechanism shall support timestamps with at least millisecond accuracy.

4. Synchronization of audio/video/metadata. The replay mechanism must make it possible for
a client to accurately synchronize audio and video streams, and to associate timestamped
metadata items with individual frames.

5. Synchronization of multiple streams. The replay mechanism must make it possible for a
client to accurately synchronize playback of media streams from different sources, and to
allow users the same playback control operations with synchronized streams (as detailed in
requirement 1 as are available with single streams.

Copyright PSIA 2010

6. The replay mechanism shall support standard players. It shall be possible for standard
players such as QuickTime and VLC to replay stored footage, although not necessarily with
the same functionality that might be available to an ONVIF-aware client.

14.4.2 Usage patterns

The usage patterns for video replay within a CCTV context are significantly different from those of
most internet video applications, where users typically play a clip or presentation from start to finish,
perhaps pausing occasionally. When reviewing CCTV footage on the other hand, users typically play
forwards for only short periods of time, but frequently pause, single step, jump to different points in
time, fast forward and rewind.

14.4.3 Use of RTSP

The replay protocol is based on RTSP [RFC 2326]. However because RTSP does not directly
support all of the requirements, there are defined several extensions to the protocol; these are
detailed below.

In addition, we make the following stipulations on the usage of RTSP:

Interleaved mode ([RFC 2326] section 10.12) MUST be supported by the RACM DEVICE.

Clients SHOULD use either interleaved mode or RTP/TCP (if supported) in order to satisfy
requirement 2 above.

3. The RACM DEVICE MAY elect not to send RTCP packets during replay. In typical usage, at least with
an ONVIF-aware client, RTCP packets are not required, because usually a reliable transport will be
used, and because absolute time information is sent within the stream, making the timing information
in RTCP sender reports redundant.

14.4.4 RTP header extension

. In order to satisfy requirement 3, we need to be able to associate an absolute timestamp with
each packet, or each group of packets with the same RTP timestamp (e.g. a video frame). This is
achieved using an RTP header extension containing an NTP timestamp and some additional
information also useful for replay.

o The replay mechanism uses the extension ID OXABAC (tbd) for the replay extension.
. Below shows the general form of an RTP packet containing this extension:
v=2 [P X=1] cC [M] PT | sequence number
Timestamp
synchronization source (SSRC) identifier
O0XABAC | length=3

NTP timestamp...

...NTP timestamp

C|E|D] mbz | Padding/Frame Type Indicator (FTI, optional)
Payload...
. The fields of this extension are as follows:

e NTP timestamp. An NTP [RFC 1305] timestamp indicating the absolute UTC time associated with
the access unit.

e C: 1 bit. Indicates that this access unit is a “clean point”, e.g. the start of an intra-coded frame in
the case of video streams.

Copyright PSIA 2010

e E: 1 bit. Indicates the end of a contiguous section of recording. The last access unit in each track
before a recording gap, or at the end of available footage, SHALL have this bit set.

e D: 1 bit. Indicates that this access unit follows a discontinuity in transmission. It is primarily used
during reverse replay; the first packet of each GOP has the D bit set since it does not
chronologically follow the previous packet in the data stream.

e Frame Type Indicator (FTI): This optional field provides additional information about the type of
video unit (frame, slice) that is present in the MTU payload. Since this field is optional, if an FTI
is present, the first 2 octets of this field, which is treated as a 3-octet string, are set to 0x46, 0x49
(“FI” ASCII) to indicate the presence of the frame type. The last octet, the on adjacent to the
Payload, has the following format:

e The high order bit is the Frame bit. If this bit is ON (mask |= 0x80), then the
video unit is a frame. If this bit is OFF (mask =0x7F), the video unit is a sub-
frame indicating for H.264 media streams that it is a slice. Where a slice equals
a frame, the frame bi applies.

e The low order 7 bits indicate the type of frame or slice. The values are:
o0 0x00: Intra-frame (I-frame, I-VOP).
0 0x01: Predictive Inter-frame (P-frame, P-VOP);
0 0x02: Bidirectional Predictive Inter-frame (B-frame, B-VOP);
0 All other values are reserved.

If the FTI is not supported by an implementation, then the first 2 octets of Padding MUST not be
equal to 0x46, 0x49. Zero-based padding is recommended.

. The replay header extension MUST be present in the first packet of every access unit (e.g.
video frame). It MAY NOT be present in subsequent packets of an access unit.

14.4.4.1 Compatibility with the JPEG header extension

The replay header extension may co-exist with the header extension used by the JPEG RTP profile;
this is necessary to allow replay of JPEG streams that use this extension. The JPEG extension is
simply concatentated with the replay extension; its presence is indicated by an extension length field
with a value greater than 3, and by the extension start codes of OxFFD8 or OXFFFF at the start of the
fourth word of the extension content.

The following illustrates a JPEG packet that uses both extensions:

v=2 [P X=1] cC [M] PT | sequence number

Timestamp

synchronization source (SSRC) identifier

O0XABAC | length=N+3

NTP timestamp...

...NTP timestamp

C|E|D] mbz | Padding

OxFFD8 | length=N

extension payload: sequence of additional JPEG marker segments padded with OxFF to the total
extension length

Payload...

Copyright PSIA 2010

14.4.4.2 NTP Timestamps

The NTP timestamps in the RTP extension header MUST increase monotonically over successive packets
within a single RTP stream. They SHOULD correspond to wallclock time as measured at the RaCM device,
adjusted if necessary to preserve monotonicity.

14.4.5 Initiating Playback
Playback is initiated by means of the RTSP PLAY method. For example:

PLAY rtsp://192.168.0.1/path/to/recording RTSP/1.0
CSeq: 123

Session: 12345678

Range: clock=20090615T114900.440Z-

Rate-Control: no

Reverse playback is indicated using the Scale header field with a negative value. For example to
play in reverse without no data loss a value of —1.0 would be used.

PLAY rtsp://192.168.0.1/path/to/recording RTSP/1.0
CSeq: 123

Session: 12345678

Range: clock=20090615T114900.440Z-

Rate-Control: no

Scale: -1.0

14.45.1 Range header field

The Range field MUST be expressed using absolute times only; the other formats defined by [RFC
2326] SHALL NOT be used.

Either open or closed ranges may be used. In the case of a closed range, the range is increasing
(end time later than start time) for forward playback and decreasing for reverse playback. The
direction of the range MUST correspond to the value of the Scale header.

In all cases, the first point of the range indicates the starting point for replay.

Examples:

PLAY rtsp://192.168.0.1/path/to/recording RTSP/1.0
CSeq: 123

Session: 12345678

Range: clock=20090615T114900.440Z-20090615T7115000
Rate-Control: no

PLAY rtsp://192.168.0.1/path/to/recording RTSP/1.0
CSeq: 123

Session: 12345678

Range: clock=20090615T115000.440Z-20090615T114900
Rate-Control: no

Scale: -1.0

14.45.2 Rate-Control header field

The Rate-Control field is an ONVIF extension and may be either “yes” or “no”. If this field is not
present, “yes” is assumed, and the stream is delivered in real time using standard RTP timing
mechanisms. If this field is “no”, the stream is delivered as fast as possible, using only the flow
control provided by the transport to limit the delivery rate.

Copyright PSIA 2010

14.45.3 Frames header field

The Frames header field may be used to request that only key frames be played, and optionally a
minimum interval between successive key frames in the stream. The latter can be used to limit the
number of frames received even in the presence of “I-frame storms” caused by many receivers
requesting frequent I-frames.

The format of this header is
Frames: frametype[/interval]

where frametype may be “key” or “all”, and interval is a time interval expressed in milliseconds. The
interval argument SHALL NOT be present if the frametype is “all”.

Example:

Frames: key/4000

The RACM DEVICE MUST support the Frames header field. This does not preclude the use of the
Scale header field as an alternative means of limiting the data rate. The implementation of the Scale
header field may vary between different RACM DEVICE implementations, as stated by [RFC
2326].

14.45.4 Clean points

The transmitted video stream MUST begin at a clean point. The rules for choosing the starting frame
are as follows:

o If the requested start time is within a section of recorded footage, the stream starts with the first
clean point at or before the requested start time. This is the case regardless of playback
direction.

o |If the requested start time is within a gap in recorded footage and playback is being initiated in
the forwards direction, the stream starts with the first clean point in the section following the
requested start time.

e If the requested start time is within a gap in recorded footage and playback is being initiated in
the reverse direction, the stream starts with the last clean point in the section preceding the
requested start time.

14.45.5 Time-gapped Playback

When playback occurs for tracks, or media segments, that contain time gaps within them (i.e. for tracks that
employ ‘Event Driven’ recording), the following rules apply:

¢ RaCM devices shall play back the audio/video/metadata with the NTP timestamps reflecting the
relative time (i.e. time between media packets in the RTP clock field), and indicating the absolute time
in the RTP extension header (see above). As a note, clients can obtain the RaCM device’s local time
via the ‘System/time/localTime’ and ‘/System/time/timeZone’ resources. The RaCM device shall
playback the stream(s) as a contiguous, back-to-back media stream.

e Consumers of a media playback stream that notices a time jump/gap based on the RTP clock, and
NTP timestamp fields, may RTSP ‘PAUSE’ the stream if they desire to manage the time gap
sequences. For each PAUSE the consumer MUST either issue a PLAY, to resume media streaming,
or issue a TEARDOWN to destroy the media streaming session.

e As noted above, all time gaps MUST start with a clean point, i.e. a key/intra frame.

Copyright PSIA 2010

14.4.6 Reverse replay
Reverse replay is initiated using the Range header field as described above.

14.4.6.1 Packet transmission order

The order in which video packets are transmitted during reverse replay is based on GOPs, where a
GOP consists of a clean point followed by a sequence of non-cleanpoint packets.

During reverse playback, GOPs are sent in reverse order, but packets within a GOP are sent in
forward order. The first packet of each GOP MUST have the “discontinuity” bit set in its RTP
extension header. The last packet of a GOP immediately following a gap (or the beginning of
available footage) MUST have the E bit set in its RTP extension header.

When transmitting only key frames, or when the codec is not motion-based (e.g. JPEG), a GOP is
considered to consist of a single frame, but may still be composed of multiple packets. In this case
the packets within each frame are again sent in forward order, while the frames themselves are sent
in reverse order.

Audio and metadata streams MAY be transmitted in an order mirroring that of the video stream, or
alternatively in simple reverse order. However where a metadata document is split over multiple
packets, those packets MUST be transmitted in forward order.

14.4.6.2 RTP sequence numbers

The RTP sequence numbers of packets transmitted during reverse playback SHALL increment
monotonically in the order of delivery, not in the intended order of playback.

14.4.6.3 RTP timestamps

The RTP timestamps of packets transmitted during reverse playback SHALL be the same as they
would be if those same packets were being transmitted in the forwards direction, following the rules
laid out in [RFC 3550] and supporting documents. Unlike the sequence numbers, the RTP
timestamps correspond to the intended playback order, not the delivery order. The RACM DEVICE
MAY use the same RTP timestamps that were originally received when the stream was recorded.

14.4.7 Currently recording footage

If the client commences playback from the current real world time or shortly before it, it can end up
playing footage in real time as it is being recorded. In this event the server simply continues to send
stream data to the client as it receives it.

Note that the E bit is not set on access units currently being recorded even though each access unit
sent to the replay client will typically be the last one known to the RACM DEVICE. If recording
stops however, the E bit is set on the last access unit of the recording.

14.4.8 End of footage

If playback reaches a point after which there is no further data in one or more of the streams being
sent, it stops transmitting data but does not enter the “paused” state. If the RACM DEVICE resumes
recording after this has happened, delivery will resume with the new data as it is received.

Copyright PSIA 2010

14.4.9 Go To Time

As stated in [RFC 2326] section 10.5, a PLAY command received when replay is already in progress
will not take effect until the existing play operation has completed. This specification adds a new
RTSP header, “Immediate”, which overrides this behaviour:

PLAY rtsp://192.168.0.1/path/to/recording RTSP/1.0
CSeq: 123

Session: 12345678

Range: clock=20090615T114900.440Z-

Rate-Control: no

Immediate: yes

If the RACM DEVICE receives a PLAY command with the Immediate header set to “yes”, it will
immediately start playing from the new location, cancelling any existing PLAY command. The first
packet sent from the new location SHALL have the D (discontinuity) bit set in its RTP extension
header.

Copyright PSIA 2010

15.0 Polymorphic/Poly-temporal Track Support (new v1.1)

This section of the document specifies the PSIA RaCM design for a standards compliant
design that accommodates and supports both polymorphic “tracks’ and poly-temporal (multi-time
segmented) ‘tracks’.

A ‘track’, as described in the prior section of this specification (in RaCM nomenclature), is a
virtual container. It does not bear any direct association with how content (video, audio, metadata,
text, etc.) is stored, managed, searched, played, and configured. Basically, this renders a track as
essentially a “handle’ to a set of parameters and attributes that define the characteristics and content
of a media repository. The RaCM specification does not infer, nor prescribe, any aspects of the
implementation of content management except for the external interface definitions which are
accessible via the network.

Presently, the RaCM specification prescribes a 1-to-1 match between a specific form of media
content, i.e. MPEG-4 video, G.726 audio, text, etc., and a track. This 1-to-1 correlation of a track 1D
and attribute set to a specific form of content is spawned from the RTSP/SDP requirements to
describe all “tracks’ (now using the SDP RFC 2327/4556 nomenclature) with unique attribute sets
such that media decoders (primarily video and audio) can be setup to receive their particular
datastreams on specific RTP connections. Additionally, each RTP connection, in itself, has its own
indigenous set of parameters associated with each datastream (e.g. time, payload ID, socket
connection, SSRC ID, etc.). It is noteworthy to cite that certain codec related attributes can change
within a stream/track without ‘breaking’ that codec instance. For video codecs, as long as the codec
profile and resolution do not change, the frame rate, bit rate, and quality levels (i.,e. quantization)
can vary within a given stream/track. Some items that cannot change within a specific stream/codec
instance are: entropy encoding method, codec profile, pixel/sample width, resolution, color format
(e.g. from YUV 4:2:0 to YUV 4:2;2).

The above track/stream mapping to one specific set of track parameters across the recording
and streaming functions does not handle 2 functional cases, well. These cases are:

e Polymorphic content tracks/streams: Tracks, or streams, that bear content that has more

than one set of codec-related content attributes.

e Poly-temporal temporal media sessions: This term addresses RTSP sessions that need to
stream several tracks, or datastreams, that do not share the same “start’ times. They may be
chained, or cascaded, from a time perspective, potentially with overlap, but the streams do
not start, and in many cases, stop, at the same time. Since RTSP’s design assumes a
common start time for all the advertised (‘DESCRIBE’d) streams, it does not encompass
the poly-temporal concept.

These 2 scenarios require additional definition in the RaCM specification such that a standards
compliant, or nearly standards compliant, method for configuring, advertising and playing
polymorphic and poly-temporal media can be accomplished. For the rest of this specification, unless
the terms polymorphic or poly-temporal are specifically cited, the term ‘poly-attribute’ covers both
cases.

Copyright PSIA 2010

15.1Poly-attribute Tracks and Stream Management

This section of the document covers the following areas that are related to poly-attributed content
management and poly-attributed stream management.
e Track attributes and parameter definitions;
e Accessing descriptions of poly-attribute characteristics via searching and session
management mechanisms and data definitions;
e Correlating poly-attributed datastreams to network/RTP stream parameters, per session,
Each of the above areas is covered in the order described above.

15.1.1 Poly-attribute Tracks and Streams

For recording devices, tracks not only have inherent attributes associated with the recorded
content, but also with respect to the live input that feeds, or fed, that content base. Therefore, the
data characteristics associated with a track, “contentType”, “codecType”, “Description”, etc., also
advertise the attributes of any active live stream (i.e. “channel”) that is feeding that track. Given this
relationship, there are 3 ways for a potential data consumer to get the attribute information necessary
to setup a data session:

e Read the track attributes for a set of one, or more, tracks
e Perform a search and utilize the “‘SearchResponse’ information to get the specific
attributes for a data session;
e Directly issue an RTSP DESCRIBE for a specific source (via its UUID/GUID) or
track.
Usually the last two methods are performed, as needed, after track attribute information has been
read (though not always). All data sessions require codec and format attributes as part of the setup
parameters. This is due to the fact that audio/video decoders must know certain codec attributes prior
to decoding an incoming stream. The most detailed information comes in the SDP response to an
RTSP DESCRIBE request. However, general attributes related to content and codec types are
needed prior to RTSP session initiation in order that basic attributes can be verified or validated prior
to committing the creation of an RTSP session. Track parameters assist in this process.

Copyright PSIA 2010

15.1.2 Track attributes

Each track, as described in Section 9, has its own schema definition for defining the parameters

associated with its content base, and the input channel from which the content originated. One of the

key elements in each track’s parameter base is the “Description” element. This field is a string

comprised of up to 7 AVP (“Attribute-Value Pair”) tokens. An AVP token has the following format:
<attribute>"="<value>

where “<attribute>" and “<value>" represent UTF-8 strings. The definition of each field token

follows:

Field Field Name Field Description
Position
1 Track type Required: Indicates type of track. Valid tags are:
(“trackType”) » “standard” = norma.l, single content base track
> “polymorphic” = multi-content type track
> “polytemporal” = multi-time segmented track
2 Source Tag Optional: Tag to indicate device type, if known. Usually a
(“sourceTag”) mfgr/make/model tag.
3 Content Type Required: Indicates base (for polymorphic track the initial
(“contentType”) | content type) content type for the track. Values are:
> “video”
> “audio”
> “metadata”
> “text”
> “other” (private definition)
4 Codec Type Required for all non-text content types. See Appendix A for
(“codecType™) | details
5 Resolution Required for audio/video. Field indicating resolution of the
(“resolution”) data elements in a datastream. For video, this is the horizontal
by vertical resolution in an “‘Horizontal xVertical’ format
where ASCII ‘X’ separates the horizontal and vertical integer
numbers. The assumed video format is progressive (i.e. frame
based). For video streams that are interlaced (i.e. field based)
and ASCII lower-case ‘i’ needs to be
For audio, it is the bit-width of the samples.
If a text protocol is enabled for double-byte characters, this
field should be used to indicate “2B” character sets.
6 Frame rate Required for video. Frame rate of encoder output.
(“frameRate”)
7 Bit rate Optional, but recommended. Bit rate of audio/video data
(“bitRate”) stream.

Any field tokens not populated in the “Description” string are left absent. However, a RaCM device
SHOULD provide as much useful information as possible for describing a poly-attributed track. The

Copyright PSIA 2010

following example “Description” element indicates a standard MPEG-4, VGA video track, from an
AXIS IP camera. The video stream is rated at 3.2Mbps and 25 frames/second.

<Description>trackType=standard,sourceTag=AX1S210a,contentType=video,codecType=MPEG4-SP,
resolution=640x480, frameRate=25fps,bitRate=3200kbps</Description>

The following example has no source tag for an H.264 VGA IP camera.

<Description>trackType=standard,contentType=video,codecType=H.264-BP
,resokution=640x480, frameRate=30fps, bitRate=3600kbps</Description>

The next example is for a polymorphic video track. The initial video is from an H.264 video encode
source doing NTSC-based 2CIF (720x240) @ 15 fps during normal recording, but moving to 4CIF
@ 30 fps during event/alarm recording.

<Description>trackType=polymorphic,sourceTag=ABCodec,contentType=video,codecType=H.264-
BP/G.711a, resolution=640x240/640x480,frameRate-15/30fps</Description>

Please note that in the above example, there is no specific bit rate cited, so it is therefore absent.
Additionally, multiple attribute fields, such as ‘codecType’, the varying resolutions, and frame rates
are listed as sets of choices where a ‘slash’ is utilized to separate the choices. So, all multiple
attribute fields are to use the ASCII/UTF-8 ‘slash’ character (“/”) to separate the attributes in a list.

The following example is for a poly-temporal video track. The parameters of the “Description”
string indicate that the video segments change frame rate with respect to the time segments (though
the codec type never changes).

<Description>trackType=polytemporal ,sourceTag=ABCodec,contentType=video,codecType=H.264-
BP, resolution=640x480, frameRate=15/30fps,bitRate=360/700kbps</Description>

The above track description indicates that the codec type does not change, but the frame rate does
vary per each temporally related video segment within the track. The bit rate listed is an optional
reference which helps indicated the approximate codec output rate at the corresponding frame rates.
Since poly-temporal tracks can vary in structure, the guidelines for the track description field
variables are only that the initial *‘contentType’ and ‘codecType’ characteristics are listed. However,
as much useful information should be provided to help describe the contents and behavior of a track.
No further requirements are levied on track description fields due to the fact that the SDP response
to an RTSP DESCRIBE, or the ‘SearchResponse’ parameters, indicate the necessary internal details
regarding the content, and temporal, structure of archived and live datastreams. Additionally, tracks
and streams that are polymorphic and poly-temporal should list a compound track type of
“polymorphic/polytemporal’” such that interrogators can understand the nature of a track. An
example follows.

<Description>trackType=polytemporal/polytemporal,sourceTag=1PCam9000,contentType=video,
codecType=H.264-BP/G.711,resolution=320x240/640x480, frameRate=15/30fps/Description>

This track description example is the type would typically be coupled to a track that records in
Event-Driven mode. The description indicates this is a polymorphic track that is comprised of
multiple temporal segments. In this case, this track is comprised of video and audio. The video

Copyright PSIA 2010

varies, per segment, from QVGA to VGA, and from 15fps to 30fps. In this example, no overall bit
rates are supplied as information in this description.

15.2Poly-attribute Stream Description

This section of the document deals with the rendering the attributes of datastreams (both live
and archived) for streaming via RTSP and SDP. The constructs discussed in this section are taken
from RFC 2326 (RTSP), RFCs 2327/4566 (SDP) and RFC 3388 (Grouping Media Lines in SDP).
The internals of these specifications are not covered here in detail and it is expected that the reader
will familiarize themselves with these specifications. Some basic concepts are covered here for
description’s sake.

RTSP is the control session protocol for managing streaming sessions. This protocol uses
SDP as the format and syntactical standard for advertising stream attributes for media-based
sessions. Whenever a potential consumer issues an RTSP DESCRIBE message/request, the server
entity responds with all of the necessary attributes related to all of the media forms it may provide
for streaming in SDP format. As time has passed, additional definitions have been added to SDP
grammar for managing more complex media session types. Some of these additions are outlined in
RFCs 3388 and 5583. These primarily relate to identifying multiple media types possible within a
single session. This capability parallels the need to identify the multiple media types for poly-
attribute datastreams. This section describes the process for enabling both polymorphic and poly-
temporal datastreams. The four areas covered are:

» Session type identification;

» Media type descriptions and identification;

» Media level time management;

» Session and connection management for poly-attribute sessions.

15.2.1 SDP Session Section

Each SDP descriptor instance has two primary sections: 1) the session section (which comes first),
and 2) the media sections. All PSIA stream sessions that have poly-attribute capabilities MUST
include the session information attribute (“i=... “) line in the SDP session section. The construction
of this session information string only requires that the first word indicate the session type. The 4
possible tags that are to be used for the first field are:

> “polymorphic”, or...

> “polytemporal”, or...

> “polymorphic/polytemporal”, or...

» “standard”;
Some example session information strings are:

“1=polymorphic media session description”

“i=polytemporal media session”

Copyright PSIA 2010

The first example string indicates to a client or consumer that the session parameters that will follow
in an SDP instance describes the polymorphic media session attributes. The second string indicates
that an SDP instance contains attributes for a poly-temporal session. For standard sessions, no
session information line is required, yet if one is present it MUST start with the “i=standard...” tag.

15.2.2 SDP Media Section

Each media section within a poly-attributed SDP session descriptor MUST identify its codec specific
attributes that require a specific codec instance. Each such media instance MUST identify the
following identity information:

» Track ID (“trackID’): This line correlates a media instance with the track it is associated
with. This is the PSIA RaCM track ID outlined for each track as described in Section 9. For
poly-attributed tracks, this is the over-arching track that the media instance (datastream) is
associated with. Please note that the term ““track 1D’ has 2 meanings: A) it is the term used
by SDP definitions (RFCs 2327/4566) to identify a handle to particular multimedia stream,
and B) RaCM further correlates the prior SDP term to the specific ‘track’ (i.e. the identifier
to a specific container of recorded media) on a RaCM device. Therefore, a(n) SDP ‘track
ID” = a RaCM ‘track ID’ within a(n) SDP instance such that the 2 terms are unified in
meaning.

» Media ID (“mid”): As specified in RFC 3388, the media ID is uniquely associated with each
media instance parameter set. This field, in PSIA usage, is an ASCII unsigned integer unique
to the server for the described media stream/instance. Please note that, per RFC 3388, media
IDs are members of a set of one, or more IDs, that comprise a ‘Flow ID’ (“FID’*). The term
‘Flow ID’ is used to define the set of media IDs that comprise a “group” (e.g.
“a=group:FID 6 7 8 9” is a Flow ID group comprised of 4 media IDs, six , seven, eight and
nine, respectively).

The above IDs are used in a hierarchical manner. The track ID identifies the root poly-attributed
track correlated to each media instance. The media id, however, uniquely identifies the specific
media instance, and its characteristics, as a parameter set. This enables correlation to the original
RaCM track instance while enabling the ability to setup each media instance as its own stream
(i.e.RTP port number and payload ID). In summary, for recorded content, the SDP “track ID” is the
RaCM track ID, and the SDP *‘media ID’ identifies a specific set of stream attributes. The following
example depicts 4 unique media instances:

a=group:FID 7001 7002 7003 7004

m=video 5002 RTP/AVP 97

a=mid:7001

a=tracklID:7

a=control:rtsp://PSIA/Streaming/tracks/7/mid=7001

a=rtpmap:97 H264/90000

a=fmtp:97 packetization-mode=1;profile-level-1d=4D400C;sprop-
parameter-sets=J01ADKKYUI1/LgDUGAQa2wrXvfAQ=,KN4JF6A=a=
b=AS:110

Copyright PSIA 2010

a=framerate:15

a=framesize:97 320-240

a=cliprect:0,0,240,320

m=video 5004 RTP/AVP 98

a=mid:7002

a=tracklID:7
a=control:rtsp://PSIA/Streaming/tracks/7/mid=7002
a=rtpmap:98 H264/90000

a=fmtp:98 packetization-mode=1;profile-level-1d=4D400C;sprop-
parameter-sets=J01ADKKYUI1/LgDUGAQa2wrXvfAQ=,KN4JF6A=a=
b=AS:1200

a=framerate:30

a=framesize:98 640-480

a=cliprect:0,0,480,640

m=video 5005 RTP/AVP 98

a=mid:7003

a=tracklID:7
a=control:rtsp://PSIA/Streaming/tracks/7/mid=7003
a=rtpmap:99 jpeg/90000

a=framerate:5

a=framesize:99 960-720

a=cliprect:0,0,720,960

m=audio 5003 RTP/AVP 8

b=AS:64

a=mid:7004

a=tracklID:7
a=control:rtsp://PSIA/Streaming/tracks/7/mid=7004

In the above example there are 4 media instances within a ‘group’ (“a=group:FID”) all of which are
associated with track #7: three video instances and one audio instance that share the same ‘track’.
Each stream is uniquely identified by its own media ID {“a=mid:...””) which is associated with the
specified group. The group lists its flow ID (“FID”) set which indicates which streams are
interrelated media streams. This Flow ID set lists the media IDs that comprise the *group’. In this
case the flow ID set is comprised of media IDs 7001, 7002, 7003, and 7004. Media instance #7001
represents a QVGA, 110Kbps, 15fps H.264 video datastream mapped to socket port number 5002,
and RTP payload ID 97. Media instance #7002 represents a VGA, 1.2Mbps, 30fps H.264 video
datastream mapped to socket port number 5004 using RTP payload ID 98. Finally, media ID #7003
is a motion JPEG video stream with a frame rate of 5fps and a resolution of 960x720 (no bandwidth
estimation is provided; i.e. “b=AS:...”). This MJPEG media stream is mapped to socket port number
5005 and has an RTP payload ID of 99. Additionally, a G.711 A-law (RTP payload ID = “8”) audio
stream, associated with track ID #7 is mapped to socket port number 5003 using RTP payload ID 8.
All of these payload IDs are in the dynamic RTP payload ID allocation range. Also note that the
RaCM device uses all of the well known SDP mechanisms for advertising frame size/resolution (i.e.
“framesize” and the older “cliprect”) since both mechanisms have been used in the industry.

Copyright PSIA 2010

In the next example, the above data streams are archived and have a polymorphic nature with respect
to time (i.e. each of the media attributes correlates to a specific time segment).

a=group:FID 7001 7002

m=video 5002 RTP/AVP 97

a=mid:7001

a=tracklID:7
a=control:rtsp://Streaming/tracks/7/mid=7001
a=rtpmap:97 H264/90000

a=fmtp:97 packetization-mode=1;profile-level-i1d=4D400C;sprop-
parameter-sets=J01ADKKkYUIl/LgDUGAQa2wrXvfAQ=,KN4JF6A=a=
b=AS:100

a=framerate:15

a=framesize:97 320-240

a=cliprect:0,0,240,320
a=range:clock=20090722T103002.5472-20090722104431.68Z
m=video 5004 RTP/AVP 98

a=mid:7002

a=tracklID:7
a=control:rtsp://PSI1A/Streaming/tracks/7/mid=7002
a=rtpmap:98 H264/90000

a=fmtp:97 packetization-mode=1;profile-level-1d=4D400C;sprop-
parameter-sets=J01ADKkYUI1/LgDUGAQa2wrXvTAQ=,KN4JF6A=a=
b=AS:1200

a=framerate:30

a=framesize:98 640-480

a=cliprect:0,0.480.640
a=range:clock=20090722T104431.712-20090722111723.09Z
m=audio 5003 RTP/AVP 96

b=AS:32

a=control :trackID=8;uri=rtsp://PS1A/Streaming/tracks/8
a=rtpmap:96 G726-32/8000
a=range:clock=20090722T103002.542-20090722111723.09Z

In the above example, we have a polymorphic and poly-temporal set of media streams. The ‘range’
attribute (“a=range...), used within a media section, denotes the time span for that media instance;
typically the range attribute is used at the session layer, but poly-temporal media The PSIA uses
UTC time for its ‘range’ attribute which is noted by the “clock="tag. The time notation is in ISO
8602 format similar, but not identical, to XML *‘dateTime’ (see RFC 2326 for more details).

The first video instance, which is QVGA H.264 video @ 15fps, ranges from July 22, 2009
10:30.02.54AM to 10:44.31.68AM. This is followed, chronologically, by a VGA H.264 video
segment, @ 30fps, that ranges from July 22, 10:44.31.71AM to 11:17.23.09AM the same day.
Please note that the accompanying audio track (track ID #8) spans both of the video media segments.
This audio track is not part of the Flow/media ID group because it is a member of a separate track
(#8). The implementation of poly-attributed tracks is up to the manufacturer. However, media

Copyright PSIA 2010

content that is a member of a different, or separate RaCM track, should not be included in flow
group unless it was explicitly configured, or allocated, in a track with other media content.

The next example is a pure poly-temporal example. It could possibly represent an event
driven recording session. The video instances have the same characteristics, but they are ‘gapped’
with respect to time.

a=group:FID 701 702

m=video 5002 RTP/AVP 97

a=mid:701

a=tracklID:7
a=control:rtsp://PSIA/Streaming/tracks/7/mid=701
a=rtpmap:97 H264/90000

a=Ttmtp:97 packetization-mode=1;profile-level-1d=4D400C;sprop-
parameter-sets=J01ADKKYUI1/LgDUGAQa2wrXvfAQ=,KN4JF6A=a=
b=AS:640

a=framerate:15

a=framesize:97 640-480

a=cliprect:0,0,480,640
a=range:clock=20090824T113002.5472-20090824114431.68Z
m=video 5002 RTP/AVP 97

a=mid:702

a=tracklID:7
a=control:rtsp://PSIA/Streaming/tracks/7/mid=702
a=rtpmap:98 H264/90000

a=fmtp:98 packetization-mode=1;profile-level-1d=4D400C;sprop-
parameter-sets=J01ADKKYUI1/LgDUGAQa2wrXvfAQ=,KN4JF6A=a=
b=AS:640

a=framerate:15

a=framesize:98 640-480

a=cliprect:0,0,480,640
a=range:clock=20090824T125131.712-20090924131723.09Z
m=audio 5003 RTP/AVP O

b=AS:64

a=tracklID:8

a=control:rtsp://PSIA/Streaming/tracks/8
a=range:clock=20090924T103002.5472-20090824131723.09Z

In the above example, the server has a VGA H.264 video track,. @ 15fps, that has 2 media
instances/segments. Both occur on August 24™, 2009. The first media segment is from 11:30.02AM
t0 11:44.31.68AM. The next video segment is from 12:51.31.71PM to 1:17.23.09PM. Please note
that due to the fact that both of the video media segments share the same codec attributes, they also
share the same network socket connection (port #5002) and RTP payload ID (97). The media
segments (i.e. separate media IDs) are only used to notify the consumer that there are time gaps in
the video media. Also in the above example, the accompanying audio track (since it falls within the

Copyright PSIA 2010

corresponding time frame) is a G.711 Mu-law (PCMU; RTP Payload ID of zero) that does NOT
have a media ID, in this case, since it has its own separate track ID.

Please note that in the above SDP segments, each media instance should MUST have an attribute
line indicating the format parameters (“a=fmtp:...”) for that specific codec instance. For MPEG-4
codecs this includes the VOS/VOL codec parameters; for H.264 this includes sequence properties
(“sprop...”) parameter sets..

Also of note, though it is allowable according to RFC 3388 to include audio in a flow group, this
practice is not supported by the PSIA. Audio is always considered to be either related track to some
set of video tracks and requires lip-synch, or independently play-able as a standalone stream.

15.2.3 Stream Session Management

The final major aspect of poly-attributed tracks, and channels, is in the stream setup, teardown and
management mechanics. As defined above, each media instance/stream is mapped to a set of media
attributes that are correlated to an RTP session (i.e. socket) and payload ID. This gives the consumer
the ability to know what the codec parameters, time associations (if any) and mappings to network
connections are: Fundamentally, consumers of poly-attributed streams MUST issue RTSP SETUP
messages for each media instance (“mid”) that they plan to receive, and, they MUST use the media
segment’s specified URI which is defined by the “a=control:...” attribute (e.g.
“a=control:rtsp://PSIA/Streaming/tracks/7/mid=4"). All of the setup is done irrespective of when a
particular stream may occur with respect to time (i.e. poly-temporal tracks or channels).

The following example RTPS SETUP messages indicate the construction of the SETUP URI
when activating each media instance an entity plans on receiving. Note that in the example which for
archived video, i..e. “tracks’, this field could be replaced for ‘channels’ when consuming live poly-
attributed data.

RTSP SETUP rtsp://Streaming/tracks/7/mid=7001..
RTSP SETUP rtsp://Streaming/tracks/7/mid=7002..

ﬁTSP SETUP rtsp://Streaming/tracks/7/mid=7003..

In the above example, a consumer desires to receive 3 media streams within a flow group. Each
identified with its own media ID (“mid”). The above examples correlate to the exemplary SDP
segments used in the prior section of this document. All of the media streams are correlated to track
#7 though each is specifically controlled since the consumer can reassign socket numbers per stream
if needed. The stream once set, can flow in any order since they may, or may not be, ‘wall clock’
independent of each other. The consumer must be ready to receive any stream at any time designated
by its SDP description, if any is present. Consumers must correlate the payload IDs to the codec-
specific instances.

Copyright PSIA 2010

16.0 /PSIA/Security (Security Service and Resources)

RaCM devices are required to provide session-level security for the management operations,
such as configuration, status, etc., on a RaCM unit. The requirements fall into 2 basic categories:
e HTTP security/authentication: Per the PSIA Service Model Specification, Section 4.3,
PSIA devices shall support HTTP and HTTPS session modes for all REST sessions.
Additionally, PSIA devices, systems and applications are required to support both HTTP
basic and digest-based authentication (RFC 2617).
e User-based security: RaCM devices are required to support the setup of user logins on
the device itself per the IP Media Device API Specification, Sections 4.2.4, 7.10, and
7.11. Per the IP Media specification, only the “/Security/AAA/users” and the
“/Security/AAA/users/<id>" resources are required to be supported. Support for
administrative access, “/Security/adminAccesses” and “/Security/adminAccesses/<id>"
are highly recommended.
RaCM devices implementing the above meet the minimum PSIA requirements and are functionally
equivalent, from a session level security perspective, PSIA IP Media devices.

Copyright PSIA 2010

17.0 Appendix A: Codec Type (“codecType”) Dictionary

The ‘Codec Tag’s below represent the literal ASCII strings employed to identify the specific codec

standards listed below.

Codec Tag (Literal) Codec Tag Description

Audio Codecs
G.711

G.711a
G.711u

G.726

G.723.1

G.728
G.722,G.722.1,
G.722.2

G.728

G.729, G.729.1
MP3

AAC

Video Codecs
MPEG4-SP
MPEG4-ASP
MPEG4-MP
H.264-BP
H.264-MP
H.264-HP
H.264SVC-BP

H.264SVC-MP

MPEG2-MP
MJPEG
JPEG
JPEG2000

ITU G.711 (PCM) audio codec format (a-/u-law determined by SDP or XML
ITU G.711(PCM) audio codec format; a-law encoding

ITU G.711 (PCM) audio codec format; u-law encoding

ITU G.726 (ADPCM)audio codec format (bitrate advertised by SDP or
XML)

ITU G.723.1 audio codec format

ITU G.728 audio codec format

ITU G.722/.1/.2 audio codec formats (SB-ADPCM)

ITU G.728 (LD-CELP) audio codec format
ITU G.729/.1 (CS-ACELP) audio codec format
MPEG-1/Layer 3 audio codec format
MPEG-2/4 Advanced Audio Codec format

ISO/IEC 14496-2 MPEG-4 Simple Profile

ISO/IEC 14496-2 MPEG-4 Advanced Simple Profile

ISO/IEC 14496-2 MPEG-4 Main Profile

ISO/IEC 14496-10/1TU H.264 Baseline Profile

ISO/IEC 14496-10/1TU H.264 Main Profile

ISO/IEC 14496-10/ITU H.264 High Profile

ISO/IEC 14496-10/1TU H.264 Scalable Video Codec (SVC), Baseline
Profile encoding (Must read s-props/p-props and SDP for embedded stream
info)

ISO/IEC 14496-10/1TU H.264 Scalable Video Codec (SVC), Main Profile
encoding (Must read s-props/p-props and SDP for embedded stream info)
ISO/IEC 13818 MPEG-2 Main Profile

Motion version (multi-frame) of ISO/IEC JPEG video encoding (see below)
ISO/IEC 10918 JPEG video encoding

ISO/IEC 15444-5 JPEG-2000 encoding format

	1.0 Introduction
	2.0 Conformance
	2.1 References
	2.2 REST Overview
	2.3 HTTP Methods and CRUD

	3.0 RaCM Glossary and Relationships
	3.1 Glossary of Terms
	3.2 Relationship of Entities and Terminology
	3.3 Arbitrary Stream and Track Associations
	3.4 Name Case (non) Recommendation
	3.5 PSIA Service Root
	3.6 XML Reserved Characters

	4.0 Resource Structure
	5.0 PSIA Content Management REST Examples
	6.0 Content Management (RaCM) Device Discovery
	7.0 Event streaming
	8.0 General Rules, Guidelines, Operation and API Behavior
	8.1 DVR & NVR Design Considerations
	8.2 Input Source Management (Remote Camera Configuration)

	9.0 ContentMgmt Base Service
	9.1 /PSIA/ContentMgmt/index
	9.2 /PSIA/ContentMgmt/description
	9.3 /PSIA/ContentMgmt/profile (changed v1.1)
	9.3.1 /PSIA/ContentMgmt/profile Schema Definition

	9.4 /PSIA/ContentMgmt/sourceSupport (new v1.1)
	9.4.1 Source Support XML Schema Definition
	9.4.2 Access and Operation of Source Support
	9.4.2.1 “Send=…” Query String Parameter
	9.4.2.1.1 “mfgr=” Query String Parameter

	10.0 /PSIA/ContentMgmt/record (Recorder Configuration & Control)
	10.1 /PSIA/ContentMgmt/record/storageMounts (Storage Allocation)
	10.2 /PSIA/ContentMgmt/record/profile (new v1.1)
	10.2.1 /PSIA/ContentMgmt/record/profile Schema Definition

	10.3 /PSIA/ContentMgmt/record/tracks (Recording Session Configuration)
	10.3.1 Custom Configuration Data (Extensions)
	10.3.2 PSIA-REST List-Entry <id> Creation method
	10.3.3 Streaming URL implied in <Track> configuration
	10.3.4 Recording Source Description
	10.3.4.1 Source Description Correlation For Status Queries

	10.3.5 Recording Schedule overview
	10.3.6 Track Description NVP
	10.3.7 <MetadataEvtCfgList> (used in EDR Mode)
	10.3.8 /PSIA/ContentMgmt/record/tracks Resource Description
	10.3.9 /PSIA/ContentMgmt/record/tracks/<id> Resource Description
	10.3.10 Example Track Creation Message Exchange
	10.3.11 Track List Schema

	10.4 /PSIA/ContentMgmt/record/control
	10.4.1 /PSIA/ContentMgmt/record/control/manual/start (Recording Manual Start)
	10.4.2 /PSIA/ContentMgmt/record/control/manual/stop (Recording Manual Stop)
	10.4.3 /PSIA/ContentMgmt/record/control/lock (Record Track Locking)

	10.5 /PSIA/ContentMgmt/record/metadata (manual event insertion)
	10.5.1 /PSIA/ContentMgmt/record/metadata/description

	11.0 /PSIA/ContentMgmt/schedules (new v1.1)
	11.1 /PSIA/ContentMgmt/schedules/<ScheduleBlockGUID> (Resource Description)

	12.0 /PSIA/ContentMgmt/search (Search Service and Resources)
	12.1 /PSIA/ContentMgmt/search/description
	12.2 /PSIA/ContentMgmt/search/profile (v1.1 changed)
	12.2.1 /PSIA/ContentMgmt/search/profile Schema Definition

	12.3 /PSIA/ContentMgmt/search
	12.3.1 Search Query Parameter Schema Definition
	12.3.2 Search Query Results Schema
	12.3.2.1 Search Response Examples
	12.3.2.2 Search Result Schema Definition

	13.0 /PSIA/ContentMgmt/status (Status Service and Resources)
	13.1 /PSIA/ContentMgmt/status/volumes
	13.1.1 /PSIA/ContentMgmt/status/volume Attribute Definitions
	13.1.1.1 Content Base Status Attributes Table
	13.1.1.2 Mount Volume Status Information Table

	13.1.2 /PSIA/ContentMgmt/status/volume XML Schema Definition

	13.2 /PSIA/ContentMgmt/status/sources
	13.2.1 /PSIA/ContentMgmt/status/sources Status Attributes
	13.2.1.1 Source Status Attribute Definitions

	13.2.2 /PSIA/ContentMgmt/status/sources XML Schema Definition

	13.3 /PSIA/ContentMgmt/status/channels
	13.3.1 /PSIA/ContentMgmt/status/channels Status Attributes
	13.3.2 /PSIA/ContentMgmt/status/channels XML Schema Definition

	13.4 /PSIA/ContentMgmt/status/tracks
	13.4.1 /PSIA/ContentMgmt/status/tracks Status Attributes
	13.4.2 /PSIA/ContentMgmt/status/tracks XML Schema Definition

	14.0 Streaming and Playback
	14.1 Streaming URIs
	14.1.1 Live Streams
	14.1.2 Archive Streams
	14.1.3 Source-based Streaming
	14.1.4 Time-related Streaming

	14.2 Streaming Configuration and Status
	14.2.1 Streaming Status
	14.2.2 QoS Parameter for playback (new v1.1)

	14.3 Streaming Operations
	14.4 Playback
	14.4.1 Playback Requirements
	14.4.2 Usage patterns
	14.4.3 Use of RTSP
	14.4.4 RTP header extension
	14.4.4.1 Compatibility with the JPEG header extension
	14.4.4.2 NTP Timestamps

	14.4.5 Initiating Playback
	14.4.5.1 Range header field
	14.4.5.2 Rate-Control header field
	14.4.5.3 Frames header field
	14.4.5.4 Clean points
	14.4.5.5 Time-gapped Playback

	14.4.6 Reverse replay
	14.4.6.1 Packet transmission order
	14.4.6.2 RTP sequence numbers
	14.4.6.3 RTP timestamps

	14.4.7 Currently recording footage
	14.4.8 End of footage
	14.4.9 Go To Time

	15.0 Polymorphic/Poly-temporal Track Support (new v1.1)
	15.1 Poly-attribute Tracks and Stream Management
	15.1.1 Poly-attribute Tracks and Streams
	15.1.2 Track attributes

	15.2 Poly-attribute Stream Description
	15.2.1 SDP Session Section
	15.2.2 SDP Media Section
	15.2.3 Stream Session Management

	16.0 /PSIA/Security (Security Service and Resources)
	17.0 Appendix A: Codec Type (“codecType”) Dictionary

