
1

Physical Security Interoperability Alliance
PSIA Specification: Common Metadata/Event Formats and Transports
Version 1.1, Rev. 0.3b
December 7, 2010

Confidential Information for PSIA Use Only

PSIA Common Metadata/Event Management
Specification
Version 1.1
Rev. 0.3b

2

Disclaimer
THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE. Without limitation, PSIA disclaims all liability, including liability for infringement of any
proprietary rights, relating to use of information in this specification and to the implementation of this
specification, and PSIA disclaims all liability for cost of procurement of substitute goods or services, lost
profits, loss of use, loss of data or any incidental, consequential, direct, indirect, or special damages,
whether under contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this
specification or any information herein.
No license, express or implied, by estoppel or otherwise, to any PSIA or PSIA member intellectual
property rights is granted herein.

Except that a license is hereby granted by PSIA to copy and reproduce this specification for
internal use only.

Contact the Physical Security Interoperability Alliance at info@psialliance.org for information on
specification licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

3

Revision
History

Description Date By

Version 1.1
Rev 0.1

Created initial v1.1. spec from CMEM spec v1.0,
Rev. 0.8b.
- Added a new Section 9.6 to cover pure
RTSP/RTP metadata streaming.
- Updated Section 10.2.2 for new Version 1.1
“MetaSessionSupport” XSD that indicates support
for querey string parameters or not,
- Updated Section 10.2.4.1 to describe use of new
query string paramters as part of stream session
setup.
All deltas to the v1.0 CMEM soec are in ‘Purple’.

June 4, 2010
– June 7,
2010.

Roger Richter

Version 1.1,
Rev. 0.2

Fixed minor typos from Rev 0.1;
Added nnew Section 10.3 to cover Event
Notification. This new service ‘Actions’
supercedes the Event notification currently
outlined in IP Media Device Specification v1.1,
Section 7.15, “/PSIA/Custom/Event”.

June 30 –
July 7, 2010

R. RIchter

Version 1.1,
Rev 0.3

-Added Section 11 to describe how to detect
CMEM services, and how to detect v1.1. support
versus 1.0 support.
- Updated External Document References
- Merged in review comments.
- Updated XSD files based on XSD to C#
compilation compatibility; also, merged in the use
of the new PSIA Common Types XSD file.
-For each XSD, added filenames in the resource
sections so that the XSD can be cut/copied
directly into files for use. This could be done
before, but the inclusion of XSDs with explicit file
references would’ve made it a ‘puzzle’ to be
solved by the user.
- Updated Event Schedule XSD definition to allow
multiple timespans per day.
- From review, changed ‘/PSIA/Metadata/Actions/
capabilities’ to ‘/PSIA/Metadata/Actions/attributes’
to not conflict with the PSIA Service Model
definition of ‘capabilities’ resources.

July 16 –
August 3,
2010

R.Richter

Version 1.1,
Rev. 0.3a

Added some new ‘types’ to the PSIA
defined/reserved Metadata classes listed in the
document’s appendices.
Added new ‘Network’ metadata class definitions
(Appendix 10).

Aug. 8, 2010 R. Richter

Version 1.1,
Revision
0.3b

- Updated embedded XSD files to match the
PSIA schema repository copies.

- Changed all GCMH Streaming over HTTP to
use a new MIME multipart content type. Web
tools prefer this method of content transfer vs
a new definition. Updates made to Sections
9.2 and 9.3; also to Table 9.4.1. Transactional
GMCH HTTP session remain unchanged.

- Updated Section 10.2.4 to allow support for
both GETs and POSTs for setting up session
parameters.

- Added new “sessionActive” type for the
‘Network’ class so that there can be a session
level keepalive event.

- Added Version attributes to key XSD objects
and rev’d ALL version governed objects to
version “1.1” irrespective of generation level to
synchronize all items to this spec level.
Changes are in RED.

Oct. 10/22,
2010

Dec. 7, 2010

R.Richter

J.Wang/R.Richter

4

1.0 Introduction .. 7
2.0 Metadata/Event Management Requirements ... 7

2.1 Design Objectives ... 8
3.0 PSIA REST Overview ... 9

3.1 HTTP Methods and CRUD ... 9
4.0 PSIA Metadata Resource Structure ... 10

4.1 Overview of Metadata Resources ... 11
4.1.1 /PSIA/Metadata/Actions Resource Hierarchy (new for v1.1) 11
4.1.2 Applicability of the Metadata Service Hierarchy .. 12

4.2 Metadata REST URI Examples .. 13
5.0 Metadata/Event Entities and Roles .. 13

5.1 Simple Metadata Source Access Model ... 14
5.2 Proxy/Broker-based Metadata Access Model ... 15

6 Metadata Specification Structure .. 15
7 Metadata/Event Architecture Overview ... 16

7.1 Common Metadata Format ... 16
Table 7.1.1: Common Metadata/Event Fields .. 16

7.2 Metadata Identity String (MIDS; “metaID”) ... 19
Table 7.2.1: MIDS Field Definitions .. 19
Figure 7.2.1: Domain/Class/Type Hierarchy .. 21
7.2.2 MIDS Usage... 21
7.2.3 Metadata/Event Uniqueness ... 22

7.3 Time ... 23
7.3.1 Time Management Scenario ... 23

7.4 Priorities ... 23
Table 7.4.1: Priority Definitions ... 24

7.5 Link IDs.. 24
8 Formats, Classification and Multi-Object Metadata/Events ... 25

8.1 PSIA Metadata/Event Information Formats ... 25
8.2 XML Metadata/Event Structure .. 26
Source 8.2.1: MetaHeader XSD (“metaHeader.xsd”) .. 26
8.3 General Metadata Classification Header (GMCH) ... 28

Table 8.3.1: GMCH Field Definitions .. 28
8.3.1 GMCH Structure/Type Indicator ... 29
8.3.2 GMCH Metadata/Event Structure ... 30
Figure 8.3.1: Event Structure (GMCH / MOH Object Relationship) 30
Table 8.3.2: MOH Field Definitions ... 31
Figure 8.3.2: Reference GMCH Metadata Example (Simple Event) 32
Figure 8.3.4: Reference GMCH Metadata Example (Complex Event) 33
8.3.2.1 Use of the General Metadata Classification Header (GMCH) 33
Figure 8.3.5: Domain Relationships ... 35

9 Metadata/Event Transports ... 35
9.1 Metadata Session Parameters and Support ... 36

5

9.1.1 Metadata Session Parameters ... 36
Table 9.1.1: Transport Information Elements ... 37

9.2 Simple Reliable Get Model (“RESTSyncSessionTargetSend”) ... 40
Figure 9.2.1: Simple Reliable Get Overview Diagram ... 40
Figures 9.2.2: Simple Reliable Get (Message Flow Examples) ... 41
Figures 9.2.3 Simple Reliable Get Examples in Transaction Mode 42
9.2.1 HTTP/REST Session Authentication ... 44

9.3 Asynchronous Reliable Notification Model (“RESTAsyncSessionBackSourceSend”) 45
Figure 9.3.1: Asynchronous Reliable Push Overview Diagram ... 45
Figures 9.3.2: Asynchronous Reliable Push (Stream Flow Examples) 46
Figures 9.3.3 Asynchronous Reliable Push Transaction Flows .. 47
9.3.1 Asynchronous HTTP/REST Session Management ... 49
9.3.2 Asynchronous HTTP/REST Authentication .. 51

9.4 HTTP/REST Protocol Flow Design ... 52
Table 9.4.1 HTTP/REST Formats and Flow Types ... 52
9.4.1 “Transaction Response” Schema Definition (XSD; “metaTransResponse.xsd”) 53

9.5 REST/RTP Streaming Transport Models (“RESTRTPStreamSrcOutUDP” and
“RESTRTPStreamSrcOutTCP”)... 55

Figure 9.5.1: Unicast Streaming (Overview) .. 56
Figure 9.5.2: Unicast-UDP Streaming (Message Flow Example) .. 57
Figure 9.5.3: Unicast-TCP Streaming (Message Flow Example) ... 58

9.6 RTSP/RTP Streaming (“RTSPRTPStreamingSrcOut”) ... 58
9.6.1 SDP Usage In Metadata ... 60
9.6.2 RTSP Usage for Metadata/Event Streams ... 62

9.7 Group/Mass Notification Model (“RESTRTPStreamSrcOutUDP” with Multicast IP) 66
Figure 9.7.1: Multicast Streaming (Message Flow Example) .. 66

9.8 Session/Transport Model Protocol Summary ... 67
Table 9.8.1: Metadata Transport Mode Summary .. 67
9.8.1 Session Authentication... 68

10 Metadata Resource Hierarchy Details ... 68
10.1 /PSIA/Metadata ... 69

10.1.1 /PSIA/Metadata/index .. 69
10.1.2 /PSIA/Metadata/description ... 70

10.2 /PSIA/Metadata Information Resource Objects.. 71
10.2.1 /PSIA/Metadata/metadataList .. 71
10.2.2 /PSIA/Metadata/sessionSupport .. 80
10.2.3 /PSIA/Metadata/channels ... 87
10.2.4 /PSIA/Metadata/stream .. 92
10.2.5 /PSIA/Metadata/broadcasts (optional resource) .. 103

10.3 /PSIA/Metadata/Actions (optional service hierarchy) .. 107
10.3.1 /PSIA/Metadata/Actions/index .. 107
10.3.2 /PSIA/Metadata/Actions/description ... 108
10.3.3 /PSIA/Metadata/Actions/attributes .. 109
10.3.4 /PSIA/Metadata/Actions/schedules.. 112
10.3.5 /PSIA/Metadata/Actions/schedules/<ID> ... 113
10.3.6 /PSIA/Metadata/Actions/triggers ... 117

6

10.3.7 /PSIA/Metadata/Actions/triggers/<ID> ... 118
10.3.8 /PSIA/Metadata/Actions/notifications ... 122
10.3.9 /PSIA/Metadata/Actions/notifications/<ID> ... 122
10.3.10 How Does This Trigger/Schedule/Notify Stuff Work? 135

11 How to Use CMEM (Metadata Services) ... 141
11.1 Detecting Metadata Services/Resources ... 141
11.2 Detecting Metadata Functional Support ... 141
11.3 Detecting CMEM v1.1 versus v1.0 Functionality .. 142
11.4 CMEM v1.1 Implementation Requirements .. 142

External Document References ... 143
Appendix A : PSIA Common Types XSD (psiaCommonTypes.xsd) 144
Appendix B: CRC32 Source Code ... 146
Appendix C: GMCH H/Include File ... 149
Appendix 1: “VideoMotion” Metadata Class Dictionary ... 152
Appendix 2: “Video” Metadata Class Dictionary ... 153
Appendix 3: “Config” Metadata Class Dictionary ... 154
Appendix 4: “IO” Metadata Class Dictionary .. 155
Appendix 5: “Audio” Metadata Class Dictionary .. 156
Appendix 6: “PointOfSale” Metadata Class Dictionary ... 157
Appendix 7: “System” Metadata Class Dictionary ... 158
Appendix 8: “Storage” Metadata Class Dictionary .. 160
Appendix 9: “Metadata” Metadata Class Dictionary .. 161
Appendix 10: “Network” Class Dictionary .. 162

7

1.0 Introduction
This document is the PSIA’s architectural specification for a common set of definitions

and methods for the processing and management of various forms of metadata information
within a cohesive, common PSIA system framework. This document also outlines definitions for
event information, in addition to metadata information, since the former is viewed as a subset of
the latter. This design philosophy is held based on the fact that all of the aforementioned data
types are descriptive, annotative, and correlative with respect to video, and audio, information,
whether live or recorded. Since this information is usually not ‘standalone’, but referential, it is
all treated under the same data processing umbrella.. In other words, these information types
become the notification instances, search criteria, the situation markers, the scene annotations
and the time point indicators that give overall reference to a given set of multimedia data.
Unifying the processing of metadata and event information also unifies the processes used to
manage the various forms of media-related, media qualifying information. This, in turn, enables
a common ability to view, record, and search metadata along with the media it relates to.

This document is based on the PSIA Service Model specification. Some, but not all, of the
information within the Service Model spec is repeated here in this document for the sake
completeness. However, readers and implementers are expected to be familiar with the PSIA
Service model and the REST concepts that form the foundation of the PSIA’s protocols.
Additionally, the streaming of media, and media-related, information is based on the IETF’s
RTSP/SDP/RTP protocol suite. The information contained in their respective RFCs is referenced
within this document, but not repeated.

2.0 Metadata/Event Management Requirements

 As with all standards initiatives, it is necessary to identify requirements. The following
items are considered to be requirements for metadata and event processing in the PSIA system
model which is projected to encompass Video, Access/Intrusion Control, Fire and Safety, Mass
Notification, and Emergency Response types of systems, and components.

Basically, the above requirements breakdown into enabling:

A) The orderly coexistence of various forms of metadata in a multi-domain system
B) Support for a common processing model for all metadata and events
C) The ability to register/publish/subscribe to forms of metadata and event information

dynamically
D) The ability to access metadata and event information in the appropriate method, flexibly

(i.e. based on information types, network characteristics, and application needs)
E) The ability to meet high-rate/high-demand processing scenarios in the most cost effective

manner possible
F) New capabilities that take PSIA standards well into the future.

8

2.1 Design Objectives

The outlined Requirements lead to the following Objectives (and design principles):

 Support for multi-domain event types and multiple event payload types (XML, binary,
plain text, etc.)

 Efficient, real-time hierarchical classification & processing of Events
 Support for dynamic registration of event class/types by multiple systems (i.e. no code

rebuilds and new versions for event updates)
 Flexible, extensible event/metadata design, including the ability to cross-correlate

events/metadata.
 Inherent versioning of event formats (backward compatibility)
 Uniform event/metadata format such that event and metadata formats are the same for

storage and messaging
 Efficient event design for generation, forwarding, searching and filtering
 Inherent support of event priorities for multi-domain and class differentiation
 Support for optional, variably sized, event objects (images, text, logs, etc.) as

‘attachments’
 Transport independence and flexibility for ‘push’, ‘pull’, ‘broadcast’, and ‘streaming’

support.
 The ability to multiplex various forms of metadata across single connections

9

3.0 PSIA REST Overview

REST is an approach to creating services that expose all information as resources in a uniform way. This
approach is quite different from the traditional Remote Procedure Call (RPC) mechanism which identifies
the functions that an application can call. Put simply, a REST Web application is noun-driven while an
RPC Web application is verb-driven. For example, if a Web application were to define an RPC API for
user management, it might be written as follows:

GET http://webserver/getUserList
GET http://webserver/getUser?userid=100
POST http://webserver/addUser
POST http://webserver/updateUser
GET http://webserver/deleteUser?userid=100

On the other hand, a REST API for the same operations would appear as follows:

GET http://webserver/users
GET http://webserver/users/user100
POST http://webserver/users
PUT http://webserver/users/user100
DELETE http://webserver/users/user100

Part of the simplicity of REST is its uniform interface for operations. Since everything is represented as a
resource, create, retrieve, update, and delete (CRUD) operations use the same URI.

3.1 HTTP Methods and CRUD

The CRUD operations are defined by the HTTP method as shown in the table below.

HTTP Method Operation

POST Create the resource

GET Retrieve the resource

PUT Update the resource

DELETE Delete the resource

Rules of thumb

 GET calls should never change the system state. They are meant to only return data to the requestor

and not to have any side effects
 POST calls should only be used to ADD something that did not already exist.
 PUT calls are expected to update an existing resource but if the resource specified does not already

exist, it can be created as well. This will be the assumed default behavior of PUT calls. If any
resource wishes to deviate from this behavior, it should be considered an exception and this should
be noted in the implementation notes of the resource.

10

4.0 PSIA Metadata Resource Structure

47 /
August 2, 2010

Metadata Resource/Service Structure

Metadata

System (Service Model spec.)

PSIA

Index, description

Actions
Index, description, attributes
triggers

Root service for
Metadata/Events

RESTful
resources

channels

Optional

metadataList, sessionSupport

stream

(Other device-dependent services, as needed)

broadcasts (functionally dependent)

schedules
notifications
exec (reserved)

The above diagram depicts the basic REST resources supported by a spec-compliant PSIA
Metadata Service as outlined in this document. The colored boxes in the diagram indicate
resources that are PSIA ‘Services’.

PSIA Services carry the predefined resources (see the PSIA Service Model specification).

Predefined Resources of a PSIA Core Service
Resource Name Description Mandatory/Optional
description Will respond to an HTTP GET with a

<ResourceDescription> datablock
Mandatory

capabilities Will respond to an HTTP GET with a
resource-specific datablock

Optional

index Will respond to an HTTP GET with a
<ResourceList> datablock

Mandatory

indexr Will respond to an HTTP GET with
<ResourceList> datablock

Optional

PSIA Services may contain other PSIA Resources, whereas non-Service resources must be “leaf”
nodes in the hierarchy. From the PSIA Core Service Model specification: “Viewed as a tree,
services are analogous to branches and resources are analogous to leaves.”

11

The resource hierarchy determines the REST URI structures used to interact with each resource.

4.1 Overview of Metadata Resources

Name Type Description Mandatory

/Optional
Metadata Service Base Service resource for all the functional

objects within the Metadata Service
hierarchy.

Mandatory

index resource Required PSIA defined resource that lists the
child-level resources within a service.

Mandatory

description resource Required PSIA-defined resource that
describes the functional attributes of a
service/resource.

Mandatory

metadataList resource Metadata resource that describes all of the
active Metadata/Event types active on a
particular device.

Mandatory

sessionSupport resource Metadata resource that defines all of the
transport, format and session parameters
offered by a device for transferring metadata
information.

Mandatory

channels resource Metadata resource that contains all of the
attributes and configuration information for
all metadata/event input channels to a device
or system.

Mandatory

stream resource Metadata resource that acts as the access point
for creating metadata/event data streams.

Mandatory

broadcasts resource If a source node indicates in its
‘sessionSupport’ properties that it supports
multicast sessions for metadata, then this
resource object contains the list of active
multicast sessions along with their session
attributes.

Optional/
Dependent

Actions
(defined in
v1.1; see next
section)

Service Metadata service that provides the ability to
query, configure and subscribe to specific
actions/notifications offered by a device’s
metadata service for asynchronous ‘push’
notification using non-PSIA protocol methods
(e.g. Email, FTP, etc.)

Optional
(See next
Section)

4.1.1 /PSIA/Metadata/Actions Resource Hierarchy (new for v1.1)

The ‘/PSIA/Metadata/Actions’ Service is optional. However, all nodes that support CMEM v1.1,
and provide asynchronous notification methods should implement this service. The ‘Actions’

12

service is described, in detail, in Section 10.3 of this document. The table below lists the
requirement levels for each ‘Actions’ resource, when the ‘Actions’ resource is implemented (i.e.
the ‘conditional’ requirement level).

Name Type Description Mandatory/Optional/

Conditional
..Actions/index resources Required PSIA defined

resource that lists the child-
level resources within a
service.

Required

..Actions/description resource Required PSIA-defined
resource that describes the
functional attributes of a
service/resource.

Required

..Actions/attributes resource Actions-specific resource that
describes functional limits
and attributes of the Actions
resources.

Required

..Actions/triggers
and
..Actions/triggers/<ID>

resources Definitions of conditions that
be classified as events and
thereby drive event
notifications.

Required

..Actions/notifications
and
..Actions/notifications/<ID>

resources Definitions of specific
notification methods that may
be employed for certain event
triggers.

Required

..Actions/schedules
And
../Actions/schedules/<ID>

resources Week-based calendar
definitions that govern when
‘triggers’ are dormat versus
active.

Optional

4.1.2 Applicability of the Metadata Service Hierarchy

Please note that the above REST resource hierarchy defines the PSIA’s ordained Metadata
service. This resource hierarchy is additional to the other PSIA REST services that a device may
be required to support to complete its functional definition. For example, a PSIA compliant IP
Media Device would implement this Metadata service hierarchy in addition to its System,
Streaming, Security, PTZ, and Diagnostics service groups for PSIA compliant support of motion
detection events (i.e. it will supplant the current ‘/Custom/MotionDetection’ and
‘/Custom/Event’ resources). PSIA RaCM devices that proxy/forward metadata and events must
implement this service in addition to their System, Streaming, Security, ContentMgmt, and other
services. As such, much thought has been employed in making the Metadata service hierarchy as
simple, and yet, as functional, as possible.

13

4.2 Metadata REST URI Examples

The following examples identify the correlation between the PSIA Metadata resource hierarchy
and the REST scheme for addressing these respective resources. Each layer of the Metadata
service hierarchy corresponds to a field in a REST URI used to access that resource. The
examples below detail this correlation.

 GET /PSIA/Metadata/metadataList

 Gets the schema instance describing all of the metadata properties for the
metadata domain/class/types active on a particular device or system.

 GET /PSIA/Metadata/Actions/index
 Returns a schema instance with the metadata event signaling types (denoted by

the resources listed) offered by a device. The ‘Actions’ service is optional.
 GET /PSIA/Metadata/sessionSupport

 Returns a schema instance with the supported transport types, formats, and
related session parameters supported by a device’s Metadata service.

 GET /PSIA/Metadata/channels
 Gets the schema instance information that describes each input/source channel of

metadata active on a device . If no channel number is provided in the URI, all of
the channels are listed in the response. Please note that ‘channels’ is not a
resource that provides a data stream; that is accomplished via the ‘stream’
resource.

 PUT /PSIA/Metadata/channels/13
 This transaction updates the configuration of source/input channel #13. A schema

instance bearing the configuration information accompanies this message.
 POST /PSIA/Metadata/channels

 This transaction creates the configuration of a source/input channel. The ID of
the channel, if successfully created, is returned to the creator in the response
message. A schema instance containing the required parameters accompanies this
message for the creation of a channel.

 GET /PSIA/Metadata/broadcasts
 Gets schema instance listing all of the active broadcast session parameters, etc.

 GET /PSIA/Metadata/stream
 URI for setting up REST-initiated metadata sessions; the associated schema

specifies the transport parameters, MIDS and/or channel info.
 POST /PSIA/Metadata/stream/channels/7

 Creates an input/inbound metadata session for metadata on previously created
channel #7 based on session parameters supplied in the associated schema
instance. This example is only valid for devices that allow inbound ‘push’ models
for receiving metadata/events.

5.0 Metadata/Event Entities and Roles

14

This PSIA specification covers the formats, protocols, and functional behaviors of PSIA
compliant devices that deliver metadata and/or events. Operationally, there are 3 primary entities
involved in the origination, delivery and consumption of metadata. These entities are:

 Sources: Those devices, or systems, that originate metadata and/or event information.
This origination may be based on internal processes or attached ‘dumb’ (i.e. serial based)
devices. Either way, the source is the PSIA compliant originator of the information.

 Proxies: Proxies receive and forward metadata/event information. Proxies are typically
aggregators of metadata/event information and allow consumers to subscribe to specific
types of metadata/event information. A common form of a proxy is a PSIA Recording
and Content Management (RaCM) device that records audio/video/metadata information
from multiple sources and supports sessions to consumers of this information. Proxies are
also known as ‘brokers’.

 Consumers: Consumers subscribe to, and receive, metadata/event information from
either sources or proxies.

5.1 Simple Metadata Source Access Model

1 /
GE /

October 6, 2009

Metadata/Event Source

Source

Consumer

NetworkNetwork

Session Flow

15

5.2 Proxy/Broker-based Metadata Access Model

48 /
GE /

October 6, 2009

Metadata/Event Proxy

NetworkNetwork

Sources

Proxy/Broker

ConsumerInput streams
Input streams

Output streams
Output streams

Source

6 Metadata Specification Structure

This specification is broken into four primary parts. They are listed in order below.

 The introduction and basic overview. This consists of the first 5 sections of this
document leading up to this point.

 The architecture overview. This following part consists of Sections 7, 8, and 9. These
sections comprise the architectural and design overview of the PSIA Common
Metadata/Event Model (CMEM) which covers data formats, operational behavior, and
protocol functionality. Data definitions and protocol/session types are defined in these
sections.

 The interface and data specifications. Section 10, is the interface and data definition
section where the PSIA Metadata Resource Hierarchy is described via the data, protocol
and interface definitions. This section (Section 10) is the implementation-oriented section
where explicit details are specified.

 The ‘dictionaries’ of reserved Metadata/Event categories and types are specified in the
final appendices of this document.

Readers should have an understanding of the CMEM architecture as defined in the next three
sections prior to covering the data definitions specified in Section 10.

16

7 Metadata/Event Architecture Overview

The integration of VMS products with Access Control, Intrusion, Fire and Safety, and
Building Automation products drives each of the requirements. Add to these product classes the
inclusion and management of Point-of-Sale, ATM, and dry contact state information and you
have a picture of the current data types that need to be managed, presently. Even without current
standards, the integration activity for merging these many types of disparate information is
already underway in the industry. Given this coalescing of product types into multi-domain
information systems, the subsequent definitions follow well accepted, and proven, enterprise and
network management practices.

7.1 Common Metadata Format

The concept of merging metadata and event information into a common data type is based

on the fact that both forms of information are descriptive and correlative to multimedia
information. In other words, audio/video information is just a ‘bunch of bits’ without additional
information used to add more meaning for searching, extracting, indexing, etc. Consider the
following query commands:

“Show all the video clips that coincide with badged entries at the front lobby

 yesterday between 1:30 – 2:30 PM.”

“Find video that has a red car in the main parking lot this morning.”

The first query command can be conducted using access control events for badge entries, within
a given timespan. From the positive matches of this metadata search, matched time points can be
used to index into the corresponding audio and/or video segments. For the second query
command, analytics metadata would be used to find scene descriptive information that matches
the query criteria. Once the matches have been found, the correlating time points for the matches
can be used to index into the associated audio and/or video information. Please note that the
above queries assume the VMS software resolves the respective fields-of-view to the appropriate
camera(s). Given the fact that both event and metadata information is ultimately used for similar
purposes, and the fact that security information is already merging in the industry, it is logical to
merge them into a common, but flexible, information class.

 The first requirement for uniform management and processing of metadata and event
information is the need for a basic, common set of fields that are present in each metadata/event
‘atom’. The common fields optimally occupy a fixed area, or ordinal placement, in each ‘atom’.
Basically, a header that always carries the common data that precedes the other metadata/event-
specific information. The recommended common header fields are:

Table 7.1.1: Common Metadata/Event Fields

Field Description
Version Metadata format version/revision

17

Metadata ID
String (MIDS)

Domain(format)/Class/Type of the corresponding Metadata/Event (see
below). Also known in shorthand as “metaID.”

Source ID UUID/GUID of the metadata/event source (ISO/IEC 9834-8, ITU
X.667)

Source’s Local ID
(LID)

Channel/stream/track/zone/area/ROI ID of the relevant originating

Time Absolute time of the generation of the metadata/event info in
“xs:dateTime” format

Priority Needed for differentiating events in a multi-domain environment
Link Multi-event correlation/reference/linkage ID (UUID/GUID)

For cases where metadata/event information is conveyed in XML format, such as the

current PSIA practice, an exemplary XML metadata header would look like the following:

<MetadataHeader>
 <MetaVersion>1.0</MetaVersion>
 <MetaID> /psialliance.org /PtOfSale/void/Register9 </MetaID>

 <MetaSourceID>
{C15768C8-E695-4315-A06E-CF49E1409654}

</MetaSourceID>
<MetaSourceLocalID>0</MetaSourceLocalID>

 <MetaTime>2009-03-24T12:29:06.001Z</MetaTime>
 <MetaPriority>4</MetaPriority>
 <MetaLink>0</MetaLink>
</MetadataHeader>

The above example references a ‘Point of Sale’ event. It could reference any metadata or event
type. The “MIDS” (see following section) field, referenced by the “MetaID” element name,
identifies the metadata/event type via a URI format that guarantees uniqueness via a flexible
hierarchical namespace. This is discussed in more detail in the next section (Section 7.2). The
MIDS is followed by the ‘Source ID’ (“MetaSourceID”) of the event’s origin source. All of the
source IDs are 128-bit GUIDs such that unique identities are maintained for all nodes. The
format of the GUIDs is compatible with ISO/IEC 9834-8/ITU X.667(UUIDs). The
“MetaSourceLocalID” is the source’s local ID (LID) for the channel, stream, zone, area, or
whatever other object originated, or is associated with, the metadata information. For most PSIA
devices this field is a channel number. If one is not applicable, an ASCII zero (“0”) should be
used. Next, the “MetaTime” field, in ‘xs:dateTime’ format, lists the origin time of the event. This
field is followed by the priority field, “MetaPriority”, which lists the associated priority of this
event (priorities are covered in Section 3.2). Finally, a link ID, “MetaLink”, is listed though it is
NULL (NULL = zero) in this example. Since the link ID is NULL it could’ve been left out of the
event information altogether, or terminated as an unpopulated element (e.g. “<MetaLink/>”).
Link IDs correlate multiple event occurrences together (i.e. related occurrences share a common
link ID). Please note that the required version field is extracted from the ‘MetadataHeader’
element’s version identifier string, “version=”1.0”.”
 The purpose of common ‘MetadataHeader’ is for this information to be included at the
head of all XML schemas/documents that are used for defining metadata and event information.
The information specific to a given metadata or event instance follows the MetadataHeader.

18

Only the header information would be required to comply with the proposed format. The
following example of a potential Analytics event is given as more complete example.

An example of the inclusion and use of the above XML header definition (type) is outlined in the
following hypothetical example (please reference Section 8.2 for the XSD details):

<SomeAnalyticsEvent version=”1.0”>
 <MetadataHeader>
 <MetaVersion>1.0</MetaVersion>

<MetaID>/psialliance.org /VideoAnalytics/Alert/Rule%2023</MetaID>
 <MetaSourceID>{C15768C8-E695-4315-A06E-CF49E1409654}

 </MetaSourceID>
<MetaSourceLocalID>99</MetadataSourceLocalID>

 <MetaTime>2009-03-24T12:29:06.001Z</MetaTime>
 <MetaPriority>4</MetaPriority>
 <MetaLink>0</MetaLink>
 </MetadataHeader>
 <AnalyticsEvent>

 <EventType> alert </EventType>
 <ID> 12345 </ID>
 <TimeStamp> 2009-04-10T09:00:00 </TimeStamp>
 <AlertHeader>

 <ReferenceID> 67890 </ReferenceID>
 <Priority> 4 </Priority>
 <AlertMessage> unusual activity in parking lot

 </AlertMessage>
 <Confidence> 0.9 </Confidence>
 </AlertHeader>

 <SourceInfo>
 <Device> {38a52be4-9352-453e-af97-5c3b448652f0}

 </Device>
 <ChannelNo> 99 </ChannelNo>
 <ViewNo> 4 </ViewNo>
 <VideoSource> {2f1e4fc0-81fd-11da-9156-00036a0f876a}

 </VideoSource>
 </SourceInfo>
 <RuleList>

 <RuleInfo>
 <RuleID> Rule 23 </RuleID>
 <RuleName> Red Car Detector </RuleName>
 <RuleElementList>
 <RuleElement>
 <RuleType> Area </RuleType>
 <Coordinates>
 <Point>
 <X> 10 </X>
 <Y> 20 </Y>
 </Point>
 <Point>
 <X> 600 </X>
 <Y> 400 </Y>
 </Point>
 </Coordinates>
 </RuleElement>
 </RuleElementList>

19

 <Action> send PSIA Alert </Action>
 <RuleDescription> Send alert when red car is found

 in main parking lot </RuleDescription>
 <Duration> 10000 </Duration>
 </RuleInfo>

 </RuleList>
 <ObjectList/>
 <VendorInfo>

 <VendorName> PSIA </VendorName>
 </VendorInfo>
 </AnalyticsEvent>
 </SomeAnalyticsEvent>

The use of a standardized header enables common processing, searching, filtering and
interrogation of metadata and events without forcing strict, or inflexible, requirements on the
subsequent type-specific data.
 The above common header fields have been covered, generally. And, most of the fields
are obvious as to their function. However, three fields within the header are to be described in
more detail. These fields are: A) the MIDS information ID, B) the priority, and C) the link ID.
These are covered in the following sections of this document.

7.2 Metadata Identity String (MIDS; “metaID”)

DATA TYPE: UTF-8 string

In order to have a large variety of metadata types, that can be commonly processed, and yet
allow flexibility in designing and developing metadata product components, a hierarchical
namespace, forming a metadata taxonomy, is employed. This notation is based on a URI
structure. The format is:

 /<domain>/<class>/<type>[/attribute/LID][/TransID][/…]

Definitions for the above URI fields are:

Table 7.2.1: MIDS Field Definitions

Field/Name Requirement

Level
Comments

Domain Mandatory The ‘virtual domain’ name of the ordaining body for the
format and definitions that are used for the associated
metadata/event information. The domain determines the
format, and thus the processing and interpretation, of
metadata/event instance data.

Class Mandatory Domain-specific ‘Class’ of the metadata/event
information. Some examples are: “VideoMotion”,
“AccessCtl”, “PtOfSale”, “Intrusion”,

20

“VideoAnalytics”, etc.
Type Mandatory Class-dependent type of metadata/event information.

For example, within a class called “VideoMotion” there
would be types such as: “motion”, “motionStart”,
“motionStop”, “zoneActive”, “zoneInactive”, etc.

Attribute/LID
(‘Local ID’)

Dependent /
Optional

Free-form field that is available for use as additional
descriptive information using the following rules:
> The convention is that this field MUST be used as the
‘Local ID’ field for all metadata/event occurrences that
are related to, or associated with, a channel/port/stream
ID (i.e. the ‘source local ID’; see Section 7.1).
> For metadata/event occurrences that have no
correlation to a channel or port (etc.), this field is
optional.

TransID
(Transaction
ID)

Optional A string field that uniquely identifies this occurrence
instance to the source. If a source entity requires a
transactional level acknowledgement, then this field
MAY be used as an identifier for expressly
acknowledging a specific metadata/event instance.
Please note that the source UUID/GUID and timestamp
of a metadata/event instance are the standard fields used
for uniqueness. Additional fields are optional.

In this hierarchical namespace scheme, the Domain, Class and Type fields are REQUIRED. The
Attribute/LID and TransID fields are optional. To provide consistent parsing and decoding, the
above described fields are ‘positonal’ within an MIDS URI. Empty slots after the
Domain/Class/Type need not be present. Intervening slots that are empty (e.g. an ID field is
present but there is no attribute/LID field) are note by adjacent ‘slashes’ (“//”). The following
example depicts an ‘empty’ URI Attribute/LID field:

/psialliance.org/Intrusion/alarm//C1EB2D39

In the above example, a hypothetical intrusion alarm carries a TransID field (“C1EB2D39”) in
its MIDS, but no attribute/LID field. As such, the empty attribute/LID field is noted by the
adjacent slashes (“//”) after the type field of “alarm.”

Other information may be appended to the end of an MIDS, as needed (though it is not
encouraged). Any appended, after the ID field, is ignored by the common processing code and
considered instance or manufacturer specific.

The figure below depicts the relationship between domains, classes, and types.

21

Figure 7.2.1: Domain/Class/Type Hierarchy

7 /
GE /

April 7, 2009

Metadata Taxonomy:
A Hierarchical Namespace

Domain:
//metadata.psia.org

Class:
/VideoMotion

Type:
/Motion

Type:
/Motion.start

Type:
/Motion.stop

…….

Class:
/System

Type:
/Boot

Type:
/Fault

Type:
/Shutdown

…….

The aforementioned taxonomy enables a vast amount of flexibility in the definition of
numerous classes, types, and versions, of metadata information while avoiding ‘collisions’
among metadata publishers. It also advantageously lends itself to subscribing, filtering, and
forwarding logic since it is hierarchical in nature with ordinally positioned fields. Additionally,
the MIDS design follows well known URI definitions in a REST-like manner, while providing a
level of user friendliness via its self-declaring structure. A final benefit is that this structure can
be optimized for extremely fast ‘look-ups’ via a technique described in Section 8. The term
metadata ‘category’ covers a specific ‘domain/class’ pair.

For procedural definitions, Classes, within a virtual domain, are allocated by the domain
authority. In many cases this is the core group, working group or governing committee in a
standards body. Typically, working groups that encompass forms of metadata, are allocated one,
or more, pertinent classes as part of their charter. Types within classes are defined and posted for
public awareness for all entities by the relevant working groups. Additionally, the allocation of
ad-hoc, or vendor specific (i.e. ‘roll your own’), is not prohibited by the PSIA. However, any
entity publishing its own categories and types, needs to make the PSIA, or the relevant PSIA
working group, aware of this activity to prevent confusion and potential definition ‘collisions.’

7.2.2 MIDS Usage

The hierarchical nature of the MIDS structure is premeditated. As previously noted, it
enables large namespaces for metadata and event definitions in a compartmentalized fashion that
prevents definition ‘collisions’ while being flexible and backwards-compatible. Additionally, it

22

lends itself to the processes associated with publishing, or advertising, the data types that
comprise the metadata./event definitions governed by PSIA, and other entities. Moreover, the
ability to subscribe, describe, and filter metadata/event information is deftly accomplished using
its segmented notational syntax.

7.2.2.1 MIDS Usage in Subscription/Consumption

Advertising/publishing the support for various metadata/event categories requires,

minimally, the domain and class identifiers. Providing the type identifiers is desirable, in many
case, but not required. However, for a consumer to specify the criteria for which
domain/class/types it desires to receive can also be performed via ‘shorthand’ notation.
Examples follow of how MIDS shorthand notation affects consumption/output.

o “/psialliance.org/IO/active”: This MIDS when used as a subscriber notation (see later
in this specification, Section 10), indicates the consumer only wants “I/O Active”
occurrences.

o “/psialliance.org/Video”: This MIDS indicates that the consumer/subscriber wants all
of the Video class metadata/event occurrences.

o “//Config”: This MIDS indicates that the consumer/subscriber wants all
‘Configuration’ occurrences irrespective of the domain (a safe bet when all the
domains are known). Fundamentally, this notation specifies ‘all’ domains that have a
“Config” class.

o “/psiallance.org/Video//1”: This notation indicates interest in all metadata/event
occurrences related to ‘Video’ that occur on input channel #1 (Local ID =1),
irrespective of type.

These examples are provided to highlight and explain how the hierarchical structure of MIDS’
are used to help specify subscription requirements.

7.2.2.2 MIDS Extensions

PSIA does not restrict Working Groups from adding fields to any MIDS beyond the

currently defined ‘domain/class/type/LID/TID’ structure defined above. Obviously, any extended
fields would need to be ‘suffixed’ to the end of the currently defined MIDS fields. The only
requirement is that the definitions be published by each working group, or manufacturer (for
their own domains), in their respective specifications.

7.2.3 Metadata/Event Uniqueness

It is significant to note that metadata instances are unique from all other occurrences

based two fields:
 The instance’s Source ID, and
 The instance’s timestamp.

Though the MIDS indicates ‘what’ an occurrence is, with respect to a specific metadata source,
each instance is specifically unique via the timestamp associated with that given occurrence.
Time is discussed in the next section. Please note that the “TransID” is optional information that

23

may be shared between two entities to provide a ‘handle’ for each event. However, the
timestamp for all metadata/event information from a particular source is required to be unique.

7.3 Time

DATA TYPE: XML ‘dateTime’ (W3C format, ISO 8601 compliant), and NTP Time (GMCH)

Every metadata and event instance MUST bear the time of the occurrence. Since the time
is one of the two elements used to ensure uniqueness amongst event occurrences, the time
granularity of an occurrence, from a specific source, MUST be of such a granularity that no two
metadata/event instances, irrespective of category, share the exact same timestamp from the
same source. Since there many forms of metadata that may be correlated to video information,
the guideline is that all metadata/event occurrences SHOULD have a timestamp that has
millisecond granularity (e.g. 2010-02-05T13:27:49.001Z). If a metadata/event source can
generate metadata instances at a rate that exceeds the millisecond granularity, additional trailing
decimal digits MUST be added to guarantee chronological uniqueness for each instance from
that particular source. Please note that the trailing fractional time digits do not have to
necessarily reflect perfect sub-millisecond time accuracy – just instance uniqueness. In other
words, since most OS’s update time on 10 millisecond, or greater, intervals, the least significant
digits of a timestamp are not required to be perfectly accurate, but they are required to be unique
between to metadata/event instances while being as accurate as is reasonably possible. An
example of metadata time management follows.

7.3.1 Time Management Scenario

In this example, a hypothetical metadata source has the ability generate event-based metadata

information every 412 microseconds. In order to maintain timestamp uniqueness, the source can
potentially use either the “GetSystemTimeAsFileTime()” API in Windows (and adjust for the
epoch differences between NTP (Jan.1, 1900) epoch and the NTFS time epoch (Jan.1, 1601)), or,
if it is Linux based, use the Linux “gettimeofday()” API (and adjust for the UTC epoch versus
the NTP epoch). By maintaining an internal NTP-esque 64-bit timestamp, the lower order 21-bits
provide a level of granularity that the source can manage to ensure time-level uniqueness per
metadata/event occurrence. All of these low order bits are below the millisecond boundary so
they can be reasonably managed without perturbing millisecond level accuracy. For example, a
source could use CPU cycle counts to update the low-order time bits, or simply auto-increment
the 64-bit timestamp, per event, between OS time updates to keep the timestamp unique. Either
method, and potentially others, would be acceptable since devices and systems are not required
to keep the timestamp perfectly accurate below millisecond level accuracy; it just has to be
unique. Also, it should be noted that sources that do not have occurrence rates at a level that can
cause timestamp ambiguity (i.e. at rate greater than the environment’s time update capabilities)
are not required to keep an internal time level of sub-millisecond accuracy.

7.4 Priorities

24

DATA TYPE: Unsigned short int

In a multi-domain system environment, many types of events can occur simultaneously

with the potential traffic associated with metadata. For instance, in a system that manages Video,
Access Control, Video Analytics, and Point Of Sale information processing, not all information
is of the same importance; though it all provides information that correlates to specific instances
of audio and/or video data. Additionally, the monitoring of information in a multi-domain system
can vary based on the roles and functions of operators, and based on client application types. Just
as networks allow the assignment of QoS levels, priorities enable known behavior types for the
occurrences of certain events irrespective of other system and metadata activities.

All metadata instances MUST have a priority set in the ‘MetaPriority’ field. There are 8
priorities ranging from 0 -7 in descending order of priority. The priority levels match the
priorities specified by the SysLog facility (RFC 5424). These priority levels are:

Table 7.4.1: Priority Definitions

Priority
Value

Priority Name Priority Description

0 Emergency System or device is unusable; Hard fault/Total
failure or catastrophic occurrence.

1 Alert Action must be taken immediately
2 Critical Critical condition(s) occurred
3 Error Error condition(s) occurred
4 Warning Significant/abnormal/warning conditions have

occurred
5 Notice Normal but noteworthy conditions occurred
6 Informational Informative messages
7 Debug/Diagnostic System/Device debug messages

Priorities are assigned to each form (i.e. Class/Type) of metadata as default values by the

ordaining standards group, or, in some cases, manufacturer. These default values are to range
from 6 (Informational) – 3 (Error) and are shaded in blue in the above table. Values 2 (Critical)
through 0 (Emergency) are reserved for user/administrator configuration such that only a user
can assign, or promote, a metadata Class and/or Type to one of the highest, actionable levels.
Debug (7) information is assumed not occur in normal operation but only under special
circumstances (e.g. at the direction of tech support, etc.).

The use of priorities enables systems to process, monitor and/or display
metadata/information in chronological, canonical and/or priority level order. This is extremely
important when critical events, such as those related to Fire and Safety, etc., are being conjointly
processed with other information. Priorities are also very important for ensuring that latencies are
removed for important events in latency sensitive environments. Additionally, priorities add
another value type for filtering, forwarding and searching.

7.5 Link IDs

DATA TYPE: UUID/GUID (ISO/IEC 9834-8, ITU X.667 format)

25

Link IDs are UUID/GUID fields supplied for correlating multiple metadata/event

instances that are related. For example, a Video Motion Detection (VMD) application detects
motion that spans multiple frames of data, or a specific timespan. It sends a ‘MotionStart’ event
followed later by a ‘MotionStop’ event. The Link ID field allows the source to correlate the two
events together as being related by issuing a common UUID/GUID value for the related
instances. Additionally, the Link ID enables the ability for users/administrators to retroactively
correlate sets of metadata information together (i.e. marking). Since not all forms of metadata
information require correlation, this field is OPTIONAL. Also, the use of additional Link IDs, or
optional, or domain-specific, fields is allowed in the MetaHeader XSD via the “xs:any…”
extension element. However, inserting additional fields into the required MetaHeader element
should only be done judiciously since most optional information should be present in other
sections of a schema; only information that is common to all forms of metadata, or are directly
related to determining the ‘who’, ‘what’, and ‘when’ aspects of a metadata instance, should be
allowed in the MetaHeader. See Section 8.2. for more guidelines.

8 Formats, Classification and Multi-Object
Metadata/Events

This section of the document deals with the following aspects of metadata and event

information processing:

 Classification: Efficient, high-speed processing of metadata information that scales with
respect to cycles-per-instance (i.e. CPU load per instance). Support for up to 3K instances
per second without requiring high-end processor complexes (i.e. quad-core x86 or Xeon
class CPUs).

 Unification: Uniform processing of all metadata including metadata that includes various
forms of information types, and/or is of a different version or format. In addition to this,
the ability to meet these requirements with a format that is identical for both messaging
and storing metadata information (i.e. no need for transcoding or reformatting).

 Cohesion: The ability to include multiple data objects, of identical or disparate formats,
per instance in a cohesive manner. Basically this amounts to supporting, when needed,
having a base form of metadata (e.g. XML, etc.) and enabling the addition of extra data
objects (e.g. images, text, etc.), as needed. This is important for metadata sources that: A)
are not equipped to convert or transcode their data into the base format, and B) that
include additional information in a format that does not lend itself to conversion into the
base format (e.g. image snippets, log files, text from external serial sources, etc.).

 Automation: Enabling the processing of metadata such that the creation and
implementation of policy engines is greatly simplified for all potential metadata types.

8.1 PSIA Metadata/Event Information Formats

26

Systems and devices in the PSIA protocol framework may select and support Metadata and
Event information that is in one of two possible formats:

 Classification/Encapsulated Format: All sources must support the ability, at the
request of a consumer, to provide their metadata/event information in a format that has a
common, payload agnostic classification header. This header is called the General
Metadata Classification Header (GMCH). Fundamentally, this header is a protocol
independent header that is prefixed to the native metadata/event information issued by a
device. A GMCH is an encapsulating header that is transport agnostic, and provides for
real-time rules/filter processing. This format and its constructs are discussed in a
following section.

 XML Format: For those devices where it is conducive, XML schemas/documents are
encouraged as the format for conveying metadata/event information. Devices and
systems that do not use XML documents for metadata/event information, must support
the GMCH encapsulation method for indicating their payload type and structure.

The following sections cover these areas regarding the format and required content of the
respective formats.

8.2 XML Metadata/Event Structure

Systems and devices in a PSIA protocol framework that support Metadata and Event information
conveyed in XML format must include the ‘MetaHeader” element in each Metadata/Event
occurrence being reported. This was outlined in Section 7.1, with an example, above. The XSD
for the XML ‘type’ that defines the “MetaHeader” is listed below.

Source 8.2.1: MetaHeader XSD (“metaHeader.xsd”)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:psialliance-org"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:psialliance-org" version="1.1">

<xs:include schemaLocation=
"http://www.psialliance.org/schemas/system/1.0/psiaCommonTypes.xsd"/>

<xs:complexType name="metaHeader">
 <xs:sequence>
 <xs:element name="MetaVersion" minOccurs="1" maxOccurs="1"
 type="xs:float">
 <xs:annotation>
 <xs:documentation> The version of the metadata header
 format
 should be "1.0" for the first revision
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="MetaID" minOccurs="1" maxOccurs="1" type="xs:anyURI"/>
 <xs:element name="MetaSourceID" minOccurs="1" maxOccurs="1"
 type="GlobalID"/>
 <xs:element name="MetaSourceLocalID" minOccurs="1" maxOccurs="1"
 type="LocalID">
 <xs:annotation>

27

 <xs:documentation> This field is the
 channel/track/zone/area/ROI/...
 ID, of the source, that corresponds to the
 associated metadata/event information in an
 occurrence; e.g., for
 Video Motion event the channel ID of the video input
 would be reported.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="MetaTime" minOccurs="1" maxOccurs="1"
 type="xs:dateTime"/>
 <xs:element name="MetaPriority" minOccurs="1" maxOccurs="1"
 type="xs:unsignedByte"/>
 <xs:element name="MetaLink" minOccurs="0" maxOccurs="1" type="GlobalID"/>

 <!-- The following allows domain/category extensions ONLY after the std
 header -->
 <xs:element name="MetaHdrExtension" minOccurs="0" maxOccurs="1"
 type="HdrExtension"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="HdrExtension">
 <xs:sequence>
 <xs:annotation>
 <xs:documentation xml:lang="en">
 The following element MUST be a unique string that
 identifies the ordaining body/group that has defined the
 header extension(s) and the format thereof. The ordaining
 body must publish/register its header extensions with the
 PSIA on it public forum, or in its external document forum.
 The format of the string is a URI where the first field
 should identify the group that defines the header
 extension; in many cases this is either a PSIA WG or a
 mfgr. The following example is provided as a
 guideline:"psia.SystemsWG/ExtendedReferenceIDs".
 </xs:documentation>
 </xs:annotation>
 <xs:element name="ExtensionName" minOccurs="1" maxOccurs="1"
 type="xs:anyURI"/>
 <xs:any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>

The above XSD provides the construct for including the named XML type “MetaHeader”, using
the namespace of “urn:psialliance-org”. The “MetaHeader” must be the first element in any
metadata/event schema definition. All other information succeeding this header, in any XML
schema definition, is implementation dependent.
Please note that the definition of the header allows the extension of the information supplied
after the required fields. The “MetaHdrExtension” element allows PSIA Working Groups, and
manufacturers participating in the PSIA CMEM framework, to add any pertinent additional
information to this header. However, it is recommended that the defining groups should NOT
add information to the header unless it is absolutely pertinent; any schema definition including
the “metaHeader” type is assumed to have the residual body information defined in its own XSD.
One item that may be pertinent as a header extension is the inclusion of additional ‘Link IDs’
where an event, or metadata, instance may be related to more than one other metadata/event
occurrence.
Groups defining header extensions are required to provide a unique identifier string
(“ExtensionName”) preceding the subsequent header extension information. This is so that a

28

receiving entity can identify who the defining body, or group, is for the format of the remaining
extension information. No hard requirements are placed on the structure of the “ExtensionName”
field except that it follows a URI structure (i.e. fields are separated via the ‘slash’ (“/”)
character), and the first field contains the string tag that identifies the group that owns, and
publishes, the format of that particular header extension definition. An example
“ExtensionName” would be:

 /psia.SystemsWG/ExtendedLinkIDs

This hypothetical example indicates that the defining group is the PSIA Systems Working Group
(WG). Irrespective of the defining/owing group, the definition of all header extensions MUST be
published to the PSIA so that the information can be made available to all members.

8.3 General Metadata Classification Header (GMCH)

The processing objectives listed in Section 8.1 are based on real-world requirements. In order to
satisfy these requirements, and provide additional capabilities, a general ‘Classification header’
definition is specified below.

Table 8.3.1: GMCH Field Definitions

29

The integer fields (e.g. Uint32, Uint64, Uint16) in the above header are all little-endian fields
(i.e. native x86/ia32/ia64 format). Also the fields are clumped in 8-byte groups so that they are
optimally aligned for 32- and 64-bit environments. The GMCH classification header is required,
but SHOULD be supported by PSIA nodes that are metadata sources such that a consumer
should be able to subscribe to the node’s metadata and select that this header be imposed for all
metadata instances. This header operates as an encapsulation header. I.e. it precedes and
encapsulates one or more metadata objects that comprise a metadata instance. The following
diagram depicts the simple relationship of this header with the potential metadata objects.

8.3.1 GMCH Structure/Type Indicator

Within the GMCH, the “Structure/Type” field indicates how a metadata/event instance, using the
GMCH construct, is formed and how it behaves. The values for the “Structure/Type” field are:

 0 = Simple Binary metadata/event instance

Field Definition

Signature: ASCIIZ[8] Unique signature header (delimiter):’/GMCH\r\n\0’
(allows HTTP/REST, raw TCP + UDP transports) also
acts as a ‘boundary’ for MIME inclusion). Since this
pattern acts as a signature field, and as a MIME
boundary field, the tag must be ended with CR-LF and
a NULL terminator; the pattern in hex is:
 “0x2F 0x47 0x4D 0x43 0x48 0x0D 0x0A 0x00”

Version: Uint16 Version is 0x0100 (1.0) for this definition level

Priority: Uint8 8 priority levels (O is the lowest, 7 the highest =
SysLog).

Structure/Type:Uint8 Simple or Complex structure indicator for instance info:
 (see following section for details)

Size: Uint32 Total size of all Event/Metadata information (inclusive)

Source ID: Uint8[16] 16-byte UUID/GUID of the Source

Link ID: Uint8[16] 16-byte UUID/GUID primary correlator of related
event/metadata information.

Time: Uint64 NTP time of Event/Metadata occurrence

Source Local ID:Uint32 Source’s numeric Channel/track/stream/area/zone ID, if
applicable; if not applicable, it is set to 0xFFFFFFFF

Number Of Objects:
Uint16

Number of objects that comprise this event/metadata
instance

Event URI Length: Uint16 Size of Event’s/Metadata’s URI (see below)

Domain BTag: Uint32 CRC32 of URI’s Domain ID/name (Section 4.3)

Class BTag: Uint32 CRC32 of URI’s Class name (Section 4.3)

Type BTag: Uint32 CRC32 of Event’s Type name (Section 4.3)

Event URI: UTF-8[] Event URI String (padded out to 4 byte multiple)

30

 1 = Simple XML metadata/event instance
 2 = Simple text metadata/event instance
 3 = Complex (one or more objects) metadata/event instance
 All other values are reserved for future use

All of the “Simple…” formats are one contiguous structure with the GMCH directly preceding
the data payload. The “Complex” format indicates that the metadata/event instance has an
“object” succeeding the GMCH. The “ACK” indicates that the metadata/event instance is a
standalone GMCH that contains the MIDS, the MIDS tags, the timestamp, and other GMCH
fields of a prior metadata/event occurrence that is being explicitly acknowledged at the
transaction layer.
 More information on the structure of various GMCH types is detailed in the next section.

8.3.2 GMCH Metadata/Event Structure

Figure 8.3.1: Event Structure (GMCH / MOH Object Relationship)

13 /
GE /

March 31, 2009

Metadata/Event Constructs

General Metadata/Event Header/Core
(Core Structure w/key data)(Core Structure w/key data)

(Optional) Metadata/Event Object(s)…
(XML, JSON, text, images, records/logs, etc..)(XML, JSON, text, images, records/logs, etc..)

(Optional) Metadata/Event Object(s)…
(XML, JSON, text, images, records/logs, etc..)(XML, JSON, text, images, records/logs, etc..)

The General Metadata Classification Header (GMCH) can also double as a small-sized, self-
contained event instance for lower-end embedded applications such as control panels, etc. This
header concept provides the following benefits:

31

 Version Insensitivity: By having common header that utilizes the Domain/Class/Type

concept, any version of any form of information can be commonly processed irrespective
of the format and revision involved. All additional information is basically a ‘payload’
succeeding the header (e.g. the Point-of-Sale text would be the payload).

 Speed and Efficiency: By converting the URI metadata fields, Domain, Class, and Type,
to binary, fixed length tags, extremely efficient filtering, forwarding and searching is
possible within a 3-level hierarchy, if needed. This enables processing thousands of
events per second at fraction of the compute load that free-form, variable length string
processing requires. This lowers cost and latencies.

 Information and Format Flexibility: The use of the GMCH enables any form, or even
multiple forms, of information to be processed within a common framework. Current
definitions in XML format are supported as payloads, or content, with respect to the
GMCH, just like text information from PoS or ATM metadata sources. The support for
legacy, and future, data definitions is inherently present, also. And, multiple formats can
be processed simultaneously in a system employing this header framework allowing
migration and legacy support, where needed.

 Transport Independence: Unlike many current event/metadata schemes, which rely
heavily on HTTP/SOAP or HTTP/REST as the base protocol, this scheme is agnostic to
the transport type, and control protocol, used to transfer metadata/event information. The
use of TCP and UDP, in unicast and multicast modes, is inherently enabled. This is very
useful in low latency, multi-consumer systems that use multicast UDP as a transport.
Additionally, the GMCH allows multiple metadata/event instances to be sent in a single
payload, or as a continuous stream. This is an area where XML documents have some
transport dependencies.

 Wide Applicability: Due to the format and relatively small size of the GMCH, the same
format used to construct a metadata/event message, can be used to store the
metadata/event information without any modifications. It works as a message payload
and as a stored metadata record. Additionally, the GMCH can be used by small
embedded devices and large applications and systems, alike.

Metadata Object Header (MOH)

In addition to the above GMCH structure, each metadata object that accompanies a metadata
instance MUST have the following Metadata Object Header (MOH):

Table 8.3.2: MOH Field Definitions

Field

Definition

Object Size: Uint32 Size of entire object inclusive of MOH header

MIME String Size:Uint16

Size of the following MIME string inclusive of any
padding characters (see below)

32

MIME String Object Identifier:
UTF-8[]

MIME string identifying object payload type. This
includes the “Content Type:” prefix. This MIME
string MUST end with ‘\r\n\0’ (CRLF-NULL; RFC
2045) followed by any padding [NULLs] necessary to
align payload (mainly for image objects) on a 32-bit
boundary. Text/XML payloads, etc., need no
alignment.

The MOH enables the inclusion of any set of relevant objects to be seamlessly included in a
metadata/event instance information base. The following diagrams depict some example
metadata/event references:

Figure 8.3.2: Reference GMCH Metadata Example (Simple Event)

Simple/Basic Metadata Instance:

Signature = “/GMCH “
Version = 0x0100
Priority = 3
Structure = 2 (Simple text)
Size = 192
Source ID = GUID:12a493ceef077b910caf52801198d2e3
Reference ID = GUID:0000000000000000000000000000000
Source Local ID = 122
Time = 0091c32d44012f60
Number of Event Objects = 0
URI Length = 38 bytes
Domain BTag = CRC32(“metadata.psia.org”)
Class BTag = CRC32(“AccessCtl”)
Type BTag = CRC32(“badge.read”)
MetaURI = “/metadata.psia.org/AccessCtl/badge.read/reader-122”
…

<badge text goes here>

76 bytes +

strlen(MetaURI)

Simple Payload

(No MOH)

33

Figure 8.3.4: Reference GMCH Metadata Example (Complex Event)

Complex/Multi-Object Metadata Instance:

8.3.2.1 Use of the General Metadata Classification Header (GMCH)

The use of a common classification header has many advantages. As a PSIA construct it
would be utilized to encapsulate the XML defined metadata issued by the relevant PSIA working
groups. For example, the current event and metadata definitions set forth by the PSIA Analytics
Working Group (AWG) would contain the common Metadata fields in XML as outlined in
Section 3, along with the other currently defined alert/count related XML information. When a
consumer/client application retrieved the description of the “Events” from the Analytics
application, the application would indicate that it can provide the information in raw XML
format, or encapsulated in a GMCH data wrapper. If the consumer selects the GMCH format,
the standard XML definition is transferred to the consumer with a prepended GMCH structure.
All additional and subsequent metadata definitions would be published as their own independent
schemas, as is currently practiced in PSIA, though the sources would offer both an encapsulated
version (i.e. with a GMCH prefix), and a non-encapsulated version.

8.3.2.1.1 GMCH Extensions and Limitations

As noted in prior sections, the GMCH provides 3 primary benefits:

Signature = “/GMCH “
Version = 0x0100
Priority = 6
Structure = 3 (Complex)
Size = 9344
Source ID = GUID:12a493ceef077b910caf52801198d2e3
Correlator ID: = GUID:00000000000000000000000000000000
Source Local ID = 0
Time = 0091c32d44012f60
Number of Event Objects = 2
URI Length = 43 bytes
Domain BTag = CRC32(“metadata.psia.org”)
Class BTag = CRC32(“face.recognition”)
Type BTag = CRC32(“watch.list.match”)
MetaURI =
“/metadata psia org/face recognition/watch list match”
<ObjSize=nnn>
<MIME Def’n size=32
Content Type:application/xml
<Face match and metrics info>

<ObjSize=nnn>
<MIME Def’n size=28>
Content Type::image/jpeg
<Extracted face image in JPEG format>

 GMCH

(Complex Struct)

 Object 1

 (w/MOH)

 Object 2

 (w/MOH)

34

 Enable a fast, efficient processing equivalent encapsulation header of the
MetaHeader; and…

 Provide a common encapsulation header that is payload agnostic and allows multi-
object composition; and…

 Provide a transport and session agnostic header that readily adapts to any necessary
transport method.

Bullet number 1, in the above group, outlines that the GMCH and the MetaHeader XML
definitions are designed to be synonymous. However, unlike the MetaHeader definition (see
Section 8.2), the GMCH structure does not allow extension fields/elements to the general header.
Therefore, entities sanctioning extensions to the MetaHeader definition, such as additional Link
IDs for multi-group correlation, must implement one of the following options:

 Specify and place additional fields in the trailing fields of the MIDS for the
metadata/event categories that have need of additional extension information. Please note
that the MIDS required fields are at the start of the MIDS and additional fields are
allowed after the required fields have been supplied, or ‘null’ slotted.

 Specify and define a GMCH extension Object, using an MOH definition, that would trail,
as an additional metadata instance object, the GMCH.

Either of the above 2 options are acceptable along with a combination of both (if desired).
Basically, the key MetaHeader information must be distilled into the common GMCH
information. Extension information, when needed, must be defined by the designated Working
Group, using one of the 2 above options.

8.3.2.1.2 Use and Conversion of the Metadata Identity String (MIDS)

For systems that need to process standards compliant metadata, and still support other

versions and formats, the GMCH enables all metadata information to uniformly, and cohesively,
coexist in a given system (see Figure 8.3.5 following).

As is evident, the MIDS’ URI construct that identifies metadata and event classes and
types, provides great flexibility in enabling publishers to create cohesive and extensible metadata
definitions. It also eliminates the likelihood of namespace collisions due to the hierarchical
compartmentalization of domains, classes and types. However, string comparisons are roughly
%400+ more inefficient than integer comparisons. As such, the GMCH has 3 fast look-up fields
for the Domain, Class and Type strings in the MIDS. These fields are 32-bit unsigned integers
that contain the CRC32 derived value of each of these Domain, Class and Type string values.
The CRC32 algorithm is bit position sensitive (which means it is case sensitive) thus rendering a
strongly unique derivative value for each of the values in the 3-part tuple made up by
Domain/Class/Type. This enables extremely efficient filtering, classification, and searching
without losing the benefits of the URI nature of the MIDS. Source code is provided in Appendix
A of this document for the CRC32 algorithm.

The Domain field of a MIDS’ URI is the top-level identifier as to the ordaining body
associated with the rest of the metadata information, and, therefore, the format designator. In
other words, whoever creates the metadata/event definitions is directly associated with that
format set. Consider the diagram below.

35

Figure 8.3.5: Domain Relationships

13 /
May 28, 2010

Domain Relationships

Domains = Formats

Metadata/Event Decode

M
etad

ata
psialliance.org Abc.com Legacyformat.com

Class/Type, etc. LocalClass/Type, etc. Local
Processing LayerProcessing Layer

All events starting
“/psialliance.org/ *”

All events starting
“/abc.com/*”

All events starting
“/Legacyformat.com/*”

Utilizing a common header, cohesive multiple Utilizing a common header, cohesive multiple
format processing is easily accomplishedformat processing is easily accomplished

Subscribers Archival

This diagram depicts the ability to have multiple, even dynamically loadable, format

processors in a system utilizing the Domain IDs as the differentiator between the metadata/event
processors. This enables future extensibility while allowing backwards compatibility. This model
lends itself to environments where metadata format processing modules can load, register their
domain tags with the metadata/event front-end decoder and process any metadata/event instances
that match their respective domain types.

9 Metadata/Event Transports

The processing of metadata and events affects the way that these forms of information
should be optimally transferred. Additionally, the size of any given system, the network
topologies involved, and the amount of metadata transferred within a system, plus the potential
requirements for maximum latencies and processing levels, affect the appropriate transport
type(s) for the transfer of metadata/events. The following transport types are outlined below:

36

 Simple Reliable Get Model: Consumer/Subscriber opens a session to Source to
get metadata/event information. Session lasts as long as the Consumer desires to
receive data. Data can happen intermittently or as a stream depending upon the
occurrence rate. One socket per consumer. (TCP-based Pull model)

 Asynchronous Reliable Notification Model: Source is responsible to establish a
session to one, or more, Consumers when an event occurs. One socket per
consumer (TCP-based Push model).

 Stream Model: Consumer desires ‘stream’ of metadata information. The
Consumer requests an RTP stream of metadata information from the Source.
(UDP or TCP-based, requested Push model).

 Group/Mass Notification Model: Source issues metadata real-time on a
multicast address. Multiple Consumers (‘listeners’) subscribe to the multicast
sessions/channels. Low latency, highly scalable model for large systems. (UDP-
based, multicast Push model).

Each of the above transport models fills particular needs within given system frameworks. Each
model is described in more detail in the following sections.

9.1 Metadata Session Parameters and Support

For each of the potential session and transport types that can be employed, a set of
parameters is defined such that the supported session types, transport modes, and formats, can be
published by metadata sources and/or requested by metadata consumers. These parameters are
conveyed and described in 2 XML schemas. These schemas are:

 Session Support Parameters: The ‘/PSIA/Metadata/sessionSupport’ resource object
contains the ‘MetaSessionSupport’ schema instance that devices use to advertise their
supported attributes for communicating the metadata information.

 Session Parameters: When consumers read the session support parameters that a
device, or system, supplies, it uses that information to supply the specific, compatible
session parameters whenever a session is established. The selected session parameters
are passed to the source, from the consumer, in the session parameters schema
instance.

The specifics of the above schema definitions are described in more detail below, and in Section
10.2 where the resource hierarchy and schema definitions are contained.

9.1.1 Metadata Session Parameters

The management of metadata sessions is primarily governed by 2 schemas, as mentioned above.
The ‘metaSessionSupport’ and ‘metaSessionParms’ schemas. The ‘metaSessionSupport’ schema
advertises the session and format parameters supported by a source. Consumers use the
‘metaSessionParms’ schema to request session establishment with the parameters contained
within the accompanying schema instance. These schemas are listed in detail in Section 10.2.2 of
this document. However, the element/parameters used in these schemas are described below.
The ‘Source’ column indicates the requirement level of a field within a ‘metaSessionSupport’

37

schema instance. The ‘Consumer’ column lists the requirement level for an element as a session
setp parameter.

Table 9.1.1: Transport Information Elements

Element Name Source Consumer Description
‘metaFormat’ Required This element defines which formats are

supported for metadata/event transfer. The
2 choices are:
 “xml-psia”: This represents that the

format is the XML/XSD definitions,
with the common meta-header
information, published by the PSIA
working groups.

 “gmch-psia”: This indicates that the
format is the General Metadata
Classification Header (GMCH) format
described herein.

A metadata source MUST advertise which
of the above are available when the
“/Metadata/sessionSupport” resource is
read. ALL metadata/event sources MUST
support GMCH encapsulation; XML
formats are optional since other formats
must be GMCH formatted. Consumers
MUST choose from the options presented
by the source.

38

‘metaSessionType::
metaSessionProtocol’

‘metaSessionType::
metaSessionFlowType’

Required

Optional

 This element, within the
‘metaSessionTypes’ list, describes the
session-level transport modes supported
by a metadata source, and the transport
type requested by a client. Each element
contains two fields. The first,
“metaSessionProtocol”, is required. It
describes the session level protocol to be
used for transporting metadata
information. Consumers may only select
the transport modes supported by a
source. The transport modes are described
in more detail in the following section of
this document.

The ‘metaSessionFlowType’ is an
optional field. Its use is dependent upon
the protocol mode (see above) chosen for
transporting metadata information. If one
of the HTTP/REST based protocols is
chosen, then one of the following 2 flow
modes must be selected:

 “datastream”: Sources MUST
support this mode. This mode is
for 1-way transfer of information,
in a data streaming manner, from
the source to the consumer. I.e.,
one ‘GET” from the consumer will
start a stream of data from the
source as metadata is available.
This is described in more detail
later.

 “transaction”: This optional flow
mode requires the consumer to
issue a ‘GET’ for all data to be
received from a source. I.e., a
‘GET’ is issued for metadata, and
once the source provides that data,
the consumer issues another
‘GET’, that acknowledges the
received data, to receive the next
chunk of metadata information.
This GET/response cycle is
repeated until the session is to be
disconnected. More details are
covered later in this specification.

39

“metaSessionType”::
“metaSessionPersistent”

Dependent/
Optional

N/A This dependent/optional element indicates
whether sources can retain asynchronous
HTTP/REST session parameters across
reboots, or not. The default support level
for basic devices is ‘False’. However,
Proxy devices MUST indicate whether or
not they support persistence, and all
proxy/broker devices SHOULD support
asynch session parameter persistence. See
Sections 9.3, 10.2.2 and 10.2.4. for
details.

‘multicastCapable’ Required N/A Sources MUST indicate if they support
multicast/UDP transmission. This element
is irrelevant as a session parameter.

‘scheduleCapable’ Required/
Dependent

N/A Sources MUST indicate if they support
the scheduling of asynchronous
notification sessions and triggers. CMEM
v1.0 nodes must indicate FALSE since
this feature is reserved for v1.1+. See
Section 10.2.2 for more details.

“netAddress” and
“netcastMode”,

Optional/
Dependent

Optional/
Dependent

These elements are IP (Internet Protocol)
addressing and transmission mode
parameters.
Sources MUST list the IP (net) addresses
of multicast sessions that are active.
Consumers MUST list IP/net addresses
when initiating: A) callback sessions, or
B) multicast sessions.

‘metadataNameList’ Dependent Optional For sources, this element only has validity

40

for listing the types of metadata associated
with multicast, or live input, channels.
For consumers, this optional element
allows a consumer to apply
metadata/event filters to a session such
that the consumer will only receive the
specific types of data it desires.

‘metaChannelList’ N/A Optional Consumers may apply a list of input
channels for which it desires to receive
data from, as part of the session setup
parameters. This field, and the above
field, can be applied as ‘filters’ as session
setup parameters.

9.2 Simple Reliable Get Model (“RESTSyncSessionTargetSend”)

 The Simple Reliable Get Model is a straight-forward method for Consumers to get, or
harvest, metadata from Sources. It uses the REST session, alone, to initiate the metadata
transfers, which makes this method both resource, and firewall, friendly (i.e. if you can get to the
source, you’re done). The basic concepts of the Simple Reliable Get Model are depicted below.

Figure 9.2.1: Simple Reliable Get Overview Diagram

22 /
GE /

April 6, 2009

Metadata Transports:
Simple Reliable Get

Consumer Source

REST SessionREST Session

AA
BB

A: Consumer requests metadata/event info
B: Source sends metadata/event info, as it

happens, on the same REST session in a
‘multipart’ manner.

Consumer controls duration of session

41

More detailed exemplary message flows are described below for the Simple Reliable Get Model.

Figures 9.2.2: Simple Reliable Get (Message Flow Examples)
 The following message flow diagrams cover the 4 format/flow types that are available for
HTTP/REST based session types using the Simple Reliable Get transport mechanisms. The first
two flows covered are stream based (i.e. “metaSessionFlowType”=”datastream”). The following
2 are specific to devices that are transactional (i.e. state based) with respect to metadata/event
information exchanges. Please note the subtle differences in the following protocol related items:

 Differences in the format values (i.e. “metaFormat…”);
 Differences in the HTTP ‘content type’, and other, HTTP header values.

Also note that all of the following diagrams use excerpted fields from the “MetaSessionParms”
schema indicate the parameters associated with the session initiation. This schema is defined
later in Section 10.2.4 of this document.

42

In the above XML example, the data stream is comprised of XML document instances.
Therefore, the content type is “multipart/mixed” with a MIME boundary marker. Please see
RFCs 2616/2387 for more details. The first session is GMCH formatted where each stream
element is self defining and only requires the starting MIME multipart (“multipart/x-gmch-
stream”) transport wrapper with an initial boundary definition. This is because a GMCH stream
is treated as one giant, multi-element document where only the starting boundaries are used for
delimiting each element.

Figures 9.2.3 Simple Reliable Get Examples in Transaction Mode
The next message flow examples cover the transactional (reliable, state oriented) exchange of
metadata information. ALL transactional acknowledgements are done via an HTTP response
message bearing an XML payload that contains an instance of the “MetaTransactionResponse”
schema; this is described in detail in Section 9.4.1. For GMCH formatted information, ALL
transaction acknowledgements are acknowledged using the NTP time (“transactionNTPTime”)
from the GMCH header (‘sprintf(str, “%x”, value)’ equivalent) of the original event. For XML
formatted exchanges, ALL XML metadata instances are acknowledged using the “dateTime” of
the original event data. The following flows cover the basics. However, the details can vary per
scenario, so please review the “MetaTransactionResponse” schema definition in Section 9.4.1
for details.

43

33 /
March 25, 2010

Simple GET Example (REST::XML transaction)

Client/System Event Source

(Client/System disconnects session)

GET /PSIA/Metadata/stream HTTP/1.1 … <metaFormat>xml-psia</metaFormat>…
<metaSessionType>RESTSyncSessionInTargetSend</metaSessionType>

<metaSessionFlowType>transaction</metaSessionFlowType>…

HTTP/1.1 200 OK
Content-type:application/xml
Content-length:701
<Payload=1 XML document>

GET /PSIA/Metadata/stream HTTP/1.1
…<transactionSource>E15768C8-E695-4315-A06E-CF49E1409654</transactionSource>
<transactionTime>2010-04-12T08:31:40.002Z</transactionTime>
<transactionStatus>OK-MORE</transactionStatus>…

HTTP/1.1 200 OK
Content-type:application/xml
Content-length:694
<Payload=1 XML document>

DELETE /PSIA/Metadata/stream HTTP/1.1
…<transactionSource>E15768C8-E695-4315-A06E-CF49E1409654</transactionSource>
<transactionTime>2010-04-21T08:33:01.009Z</transactionTime>
<transactionStatus>OK</transactionStatus>…

HTTP/1.1 200 OK

44

34 /
March 25, 2010

Simple GET Example (REST::XML transaction)
KeepAlive Example

Client/System Event Source

(Cycle repeats until Client/System is done)

GET /PSIA/Metadata/stream HTTP/1.1 … <metaFormat>xml-psia</metaFormat>…
<metaSessionType>RESTSyncSessionInTargetSend</metaSessionType>

<metaSessionFlowType>transaction</metaSessionFlowType>…

HTTP/1.1 200 OK
Content-type:application/xml
Content-length:701
<Payload=1 XML document>

GET /PSIA/Metadata/stream HTTP/1.1
…<transactionSource>E15768C8-E695-4315-A06E-CF49E1409654</transactionSource>
<transactionTime>2010-04-12T08:31:40.002Z</transactionTime>
<transactionStatus>OK-MORE</transactionStatus>…

(60 seconds elapse….)
HTTP/1.1 408 Request Timeout
<no payload>

DELETE /PSIA/Metadata/stream HTTP/1.1
…<transactionSource>E15768C8-E695-4315-A06E-CF49E1409654</transactionSource>
<transactionTime>2010-04-12T08:32:40.100Z</transactionTime>
<transactionStatus>OK-MORE</transactionStatus>…
(Client/System ACKs non-event using current time and continues session with “OK-MORE”;
This is repeated with and without metadata, as needed)

The above message flow example references a scenario where the source does not have
information to provide for a significant duration (in general, > 30 seconds) while a ‘GET’ is still
outstanding from the consumer. In this case the source sends a response without a payload, and
an HTTP status code of “408” indicating it timed-out. This is the equivalent of an application
layer ‘keepalive’ in this session mode. If the consumer desires to continue it issues an
acknowledgement, using its own current time (i.e. not an event related time) with a transaction
status of “OK-MORE” indicating that it wants the source to continue the active session. This
may be repeated as often as is necessary.

9.2.1 HTTP/REST Session Authentication

All HTTP/REST sessions may require session level authentication and/or session level
security. Per the PSIA Service Model specification, Sections 4.3 and 4.4, all PSIA devices must
support both Basic and Digest level authentication for HTTP (RFC 2617). Support for HTTPS,
in its various flavors is optional, but highly recommended for all devices. The session flow
examples above do not show session level authentication in order to save space, and due to the
fact that examples are listed in the PSIA Service Model specification. In all cases for the
examples, session authentication would precede the message exchanges outlined in the flows.

45

9.3 Asynchronous Reliable Notification Model
(“RESTAsyncSessionBackSourceSend”)

The Asynchronous Reliable Notification Model can be an event, time, or reverse
connection driven model. It has 2 basic benefits: A) in event-driven mode, no connections are
established until there is data to be transferred (which aids scalability in large systems), and B) it
allows redirection in that a metadata/event source can be directed to send its metadata/event
information to any ‘listening’ system or device; this works well for environments that have
metadata/event management proxies/brokers for systemic information processing. This model
also obviates the need for setting up long lived connections, or using polled ‘get’ modes. The
negative aspects are that: A) additionl latencies and errors are more likely in establishing
asynchronous sessions at the time of an event, and B) there is some additional complexity in
managing the session parameters for asynchronous connections for the duration of their lifespan.
A simple depiction of this model follows.

Figure 9.3.1: Asynchronous Reliable Push Overview Diagram

24 /
GE /

April 6, 2009

Metadata Transports:
Asynchronous Reliable Push

Source
REST Session REST Session ‘‘AA’’

AA

A: Consumer requests that the Source send it metadata/
event info asynchronously and supplies netAddress.
Then closes the REST session

B: (Later) Source detects an event, raises REST session to
Consumer using supplied netAddress, and ‘POST’s
metadata to Consumer

Source controls duration of session

Consumer

REST Session REST Session ‘‘BB’’

BB

More detailed diagrams of the various message flows follow for the sessions using the following
formats and flow types:

 GMCH and XML formatted information in ‘datastream’ flow mode;
 GMCH and XML formatted information in ‘transaction’ flow mode.

Please note that the setup of an asynchronous HTTP/REST notification session actually creates a
REST resource with a unique ID (see Section 9.3.1 for more details) and requires the use of the
HTTP POST method. This is a key detail evident in the example message flows that follow.

46

Figures 9.3.2: Asynchronous Reliable Push (Stream Flow Examples)

47

Please note that in the two above examples the notification session initiator, which is the
metadata source, is responsible for the session’s initiation, and termination. Additionally, this
model provides the equivalent of a reliable stream model (though at a higher overhead premium).
Also, this model, like the other models following this one, allows the initial REST management
session to continue for management purposes whereas the first model, Simple Reliable Get,
monopolizes the initial REST session, for data transfer, thus requiring an additional REST
session if the Consumer desires to perform any concurrent management operations (i.e.
configuration, status, statistics, etc.).

Figures 9.3.3 Asynchronous Reliable Push Transaction Flows
The next 2 message flow examples cover transaction flow modes.

48

38 /
March 25, 2010

Metadata/Event Transport:
Asynchronous ‘Push’ Message Example (REST::GMCH transaction)

Consumer Source
POST /PSIA/Metadata/stream HTTP/1.1…<netAddress>10.2.5.61:2016</netAddress><metaFormat>

gmch-psia</metaFormat>..<metaSessionType>RESTAsyncSessionOutSourceSend
</metaSessionType><metaSessionFlowType>transaction</metaSessionFlowType>…

DELETE /PSIA/Metadata/stream HTTP/1.1
HTTP/1.1 200 OK

(REST Session is terminated…later, an event occurs)

POST /PSIA/Metadata/stream HTTP/1.1
Content-type: application/metadata-gmch
Content-length: 902
<1 simple GMCH Metadata payload…>

HTTP/1.1 200 OK
…<transactionSource>E15768C8-E695-4315-A06E-CF49E1409654</transactionSource>
<transactionNTPTime>01F9E0427150000</transactionNTPTime><transactionStatus>
OK-MORE</transactionStatus>…

(The above cycle repeats. Session is terminated
by Source when it is considered complete. If the Source
wants to keep the session open, it should use ‘keepalives’
To keep the session active during empty timespans)

HTTP/1.1 200 OK…<ResponseStatus>…<ID>21</ ID>…</ResponseStatus>

These transactional scenarios require the consumer to ‘ACK’ each data chunk before the

source will proceed with new data. The ACKs are always done with an HTTP/REST response
and a payload containing an instance of the “MetaTransactionResponse” schema (see Section
9.4.1).

49

39 /
March 25, 2010

Metadata/Event Transport: Asynchronous ‘Push’ Message
Example (REST::XML transaction) w/KeepAlives

Consumer Source
POST /PSIA/Metadata/stream HTTP/1.1…<netAddress>10.2.5.61:2016</netAddress><metaFormat>

xml-psia</metaFormat>..<metaSessionType>RESTAsyncSessionOutSourceSend
</metaSessionType><metaSessionFlowType>transaction</metaSessionFlowType>…

HTTP/1.1 200 OK…<ResponseStatus>…<ID>9/ ID>…<ResponseStatus>

DELETE /PSIA/Metadata/stream HTTP/1.1 (no ID is used to kill current session)
HTTP/1.1 200 OK

(REST Session is terminated…later, an event occurs)
POST /PSIA/Metadata/stream HTTP/1.1
Content-type: application/xml
Content-length: 1104
<1 XML document in Metadata payload…>

HTTP/1.1 200 OK
…<transactionSource>E15768C8-E695-4315-A06E-CF49E1409654</transactionSource>
<transactionTime>2010-07-30T13:51:02.104Z</transactionTime><transactionStatus>
OK-MORE</transactionStatus>…

(The above cycle repeats. Session is terminated by Source when completed.)

(60 seconds elapses without activity…)
POST /PSIA/Metadata/stream HTTP/1.1 <no payload…>

HTTP/1.1 200 OK
…<transactionSource>E15768C8-E695-4315-A06E-CF49E1409654</transactionSource>
<transactionTime>2010-07-30T13:51:02.390Z</transactionTime><transactionStatus>
OK-MORE</transactionStatus>…

The above example also carries an example of an application layer ‘keepalive’ mechanism. The
source sends data, when it occurs. However, after durations of inactivity, the source sends null
HTTP/REST messages, without payloads, to keep the connection alive, as needed to ensure the
health of the connection and that of the consumer.

9.3.1 Asynchronous HTTP/REST Session Management

Asynchronous HTTP/REST sessions are managed differently than the synchronous
session types. This session management difference is related to the fact that the session
parameters, and the ability to trigger asynchronous connections, persist after the initial session
has set the apprrpriate session parameters. As such, asynchronous sessions are treated as
persistent resources once they have been established. In compliance with the PSIA Service
Model specification v1.0, Sections 4.12 and 10.1.4, all asynchronous sessions are created via
‘POSTs’, and IDs are generated for each session instance by the metadata source. The session
instance IDs are returned to the session initiator in the ‘ResponseStatus’ schema instance that is
part of the HTTP response message stimulated by POST. So, unlike the ‘Simple Get Mode’
which uses GETs to start session activation, POSTs are used to created session instances which
must eventually be deleted. Therefore, a source device MUST assign a device unique ID to each
successfully created asynchronous session instance. This stream ID basically becomes the
‘handle’ for the session’s unique parameter set. Devices must choose whether they support

50

persistent copies of the asynchronous session parameters, or not. The default support level is that
the session parameters are not persistent. Only Proxy nodes should support asynchronous session
parameter persistence. Any device can optionally support the persistence of session parameters
across reboots.
The following message flow example depicts the setup and deletion of an asynchronous
notification session.

In the above example, the session initiator establishes an asynchronous session instance which
the source assigns the ID of ’27.’ This causes one, or more, asynchronous notification session
instances to occur. At some point in time, the session initiator decides to cease receiving
notifications and uses the DELETE, with the originally assigned stream ID (e.g. DELETE
/PSIA/Metadata/stream/27), to permanently delete the session parameters.
 Since asynchronous sessions, once created, ‘exist’ until deletion, which depends on a
device’s support for persistence, a GET can be issued against a respective stream’s ID to
determine the state of that session’s parameter set. All GETs to a ‘stream ID’ (see Section
10.2.4) must respond in the HTTP response message with the ‘MetaSessionParms’ instance
object associated with that session resource, if the session parameters are still intact. This allows
a level of state management for asynchronous session instances/parameters. The following
message flow depicts an example exchange.

51

To summarize, ALL asynchronous HTTP/REST sessions are created via the HTTP POST
method, are given device unique IDs at the time of creation, and are required to be explicity
deleted, via the stream ID, by the session initiator. Proxy devices should maintain asynchronous
session instances/parameters across reboots. Details regarding the parameters, and schema
definitions are described in Section 10.2.

9.3.2 Asynchronous HTTP/REST Authentication

Out of all the session types that may be employed for the transfer of metadata
information, the asynchronous HTTP/REST session types are unique in the fact that they may
require some level of session authentication for the subsequent notification session(s). In all of
the above example session flows, session authentication has been omitted from the examples due
to its complexity (i.e. the amount of space the login information requires for description).
However, if an asynchronous notification session requires authentication, the consumer must
supply the session authentication information as part of the session setup parameters. This is
covered, in detail, in Section 10.2.4. Please note that, in all of the session flow examples, session
authentication would precede, but not alter, the message flows described in them.

52

9.4 HTTP/REST Protocol Flow Design

The above Sections of this document cover the design of HTTP/REST sessions as the
transports for metadata/event information. Since metadata/event information can be offered in
either XML, or General Metadata Classification Header (GMCH), format, the rules for
transporting the data within an HTTP message payload vary based on the format of the
metadata/event payload type. Additionally, some systems, or devices, may require that the
transfer of metadata/event information be performed in a transactional manner based on the
device and system type managing event data. This affects the dynamics and mechanics of
managing the information flows. Especially when HTTP, by nature, is a half-duplex oriented
protocol. The following table outlines some of the key details, and differences, in the
combinations of formats and flow types.

Table 9.4.1 HTTP/REST Formats and Flow Types
Format Flow

Type
Content Type Notes

GMCH datastream “ multipart/x-gmch-stream;
boundary=”/GMCH ” ”

REQUIRED: Source sends data in a
continuous stream. Consumer cannot
‘ack’ the data; it only wants to reliably
receive it. Streams are cancelled via
session disconnection. If a source closes
an HTTP message (i.e. a stream chunk)
the consumer MUST reissue a GET and
the source MUST assume that a new
GET is imminent and NOT lose any data.
No Content-length field is provided and
the ‘/GMCH\r\n\0’ signature, in the
GMCH header acts as the multipart
boundary marker (with the preceding,
required “- -“ double-dash character
markers).

XML datastream “multipart/mixed” OPTIONAL: Same as a GMCH stream
except that:
 HTTP/MIME content type is

different;
 No content length is needed;
 Boundary definitions and scanning

are required, which have increased
overhead.

In this mode XML document instances
are transmitted ‘back-to-back in the
stream, irrespective of time gaps (i.e. the
data stream syntax is the same even if
there is a time gap between events). The
same rules as apply as the GMCH

53

datastream mode regarding stream
management.

GMCH transaction “application/metadata-gmch” OPTIONAL: 1-for-1 transfer/ack of
metadata/event information encapsulated
in GMCH format. All received metadata
instances are acknowledged in HTTP
messages with XML payloads that
contain a “MetaTransactionResponse”
schema instance. The flow and status of
the information exchange are governed
via the “transactionStatus” field in the
response information.

XML transaction “application/xml” OPTIONAL: Same as the above GMCH
transaction information except that the
metadata instance information is in XML
document format.

Application level ‘keepalives’ are performed in both ‘Pull’ and ‘Push’ modes by the
metadata/event source sending HTTP/REST messages without any payloads. Consumers
receiving HTTP/REST messages without payloads on active sessions, MUST respond with
HTTP/REST messages containing a “MetaTransactionResponse” schema instance containing
the source’s UUID/GUID and the current time (not a prior event’s time). Please note that the
RTP-based protocol transports (which follow) do not have the same session and stream
management issues.

9.4.1 “Transaction Response” Schema Definition (XSD;
 “metaTransResponse.xsd”)

The below XML schema definition defines the document used in transaction session flow
types to acknowledge metadata. Some of the fields are optional since they are going to be
application specific, and, as such, be specified by specific Working Groups within PSIA.
However, the only required fields are:

 “transactionSource”: UUID/GUID of the metadata instance’s origin source.
 Either “transactionTime” (XML formats) or “transactionNTPTime” (GMCH

formats): All acknowledgements MUST bear the timestamp of the metadata/event
instance being acknowledged. However, the timestamp format is dependent upon the
metadata format. XML formatted session use “transactionTime” while GMCH based
sessions use “transactionNTPTime”.

 “transactionStatus”: All consumers MUST indicate their session status, with respect
to data flow back to the source.

All other fields are, in general, optional but subject to specific PSIA Working Group
classification. The schema definition below contains additional details on each element.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:psialliance-org"
xmlns:xs="http://www.w3.org/2001/XMLSchema"

54

 xmlns="urn:psialliance-org" version="1.0">

<xs:include schemaLocation="
http://www.psialliance.org/schemas/system/1.0/psiaCommonTypes.xsd"/>

<xs:element name="MetaTransactionResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="transactionSource" minOccurs="1" maxOccurs="1"
 type="GlobalID">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 One of the following time types MUST be provided.
 For GMCH formatted data, the transaction ACK MUST
 pass back the NTP time of the original
 metadata/event instance. For XML
 formatted data, the original 'dateTime' MUST be
 passed back.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="transactionNTPTime" minOccurs="0" maxOccurs="1"
 type="xs:hexBinary"/>
 <xs:element name="transactionTime" minOccurs="0" maxOccurs="1"
 type="xs:dateTime"/>
 <xs:element name="transactionStatus" minOccurs="1" maxOccurs="1"
 type="TransStatus"/>
 <xs:element name="transactionID" minOccurs="0" maxOccurs="1"
 type="xs:string">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 If a transaction ID was in the MIDS of a
 metadata/event
 instance that is being ACK'd, that ID field MUST
 be passed back to the source.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="transactionMIDS" minOccurs="0" maxOccurs="1"
 type="xs:anyURI">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 Returning the original instance's MIDS is desirable,
 but not required by the PSIA. However, certain WGs
 may require it for
 their specific types of transactions.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="transactionDescr" minOccurs="0" maxOccurs="1"
 type="xs:string"/>
 <xs:element name="extTransHeader" minOccurs="0" maxOccurs="1"
 type="TransExtension"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:simpleType name="TransStatus">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 The following generic status strings have the following meanings:
 OK = transaction was received OK and the info was OK
 OK-MORE = The same as above but consumer wants next/more data (i.e.
 continue)
 OK-PAUSE = The same as above but consumer wants next/more data (i.e.
 continue)
 NOK = prior info was received but the contents/value were not OK/rejected
 NOK-MORE = prior data was received, contents/values were not OK, continue
 with more data.
 OK-PAUSE/NOK-PAUSE = The consumer indicates to the source the status of
 the contents/values of the prior received info, and to pause sending data.

55

 Any metadata/event occurrences that occur during a PAUSE are assumed to be
 lost. A pause is in effect until an OK/NOK-MORE is received. If a source
 cannot pause it returns an "HTTP/1.x 406 Not Allowed".
 Please note that the "OK" and "NOK" string values indicate that the
 consumer is not planning on proceeding with the session/datastream unless
 issued with an HTTP "GET" (this equals OK-MORE); However, "OK-MORE" and
 "NOK-MORE" can only
 be issued with "GET"s or HTTP/REST reponses, whereas the OK/NOKs can be
 issued with DELETEs if the consumer is ready to close an active session
 (i.e. signal in advance that the consumer wants the session closed).
 It is required for ALL "NOK..." statuses, that the consumer also add a
 description ("transactionDescr") to provided additional information on the
 particular negative status condition. PSIA WGs MUST document their
 descriptive texts.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="OK"/>
 <xs:enumeration value="OK-MORE"/>
 <xs:enumeration value="OK-PAUSE"/>
 <xs:enumeration value="NOK"/>
 <xs:enumeration value="NOK-MORE"/>
 <xs:enumeration value="NOK-PAUSE"/>
 </xs:restriction>
</xs:simpleType>

<xs:complexType name="TransExtension">
 <xs:sequence>
 <xs:annotation>
 <xs:documentation xml:lang="en">
 The following element MUST be a unique string that
 identifies the ordaining
 body/group that has defined the header extension(s) and the
 format thereof.
 The ordaining body must publish/register its header
 extensions with the PSIA
 on it public forum, or in its external document forum. THe
 format of the
 string is a URI where the first field should identify the
 group that defines
 the header extension; in many cases this is either a PSIA
 WG or a mfgr. The
 following example is provided as a
 guideline:"psia.SystemsWG/ExtraSourceIDs".
 </xs:documentation>
 </xs:annotation>
 <xs:element name="ExtensionName" minOccurs="1" maxOccurs="1"
 type="xs:anyURI"/>
 <xs:any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </xs:sequence>
</xs:complexType>
</xs:schema>

The flow diagrams in Sections 9.2. and 9.3 give examples of the usage of the above schema in
acknowledging transactional metadata. Please reference these diagrams for details.

9.5 REST/RTP Streaming Transport Models
(“RESTRTPStreamSrcOutUDP” and “RESTRTPStreamSrcOutTCP”)

The next, remaining models are related to the ‘Streaming’ of metadata and event
information. In a streaming environment, a REST session is used to setup the transport
parameters, and RTP is utilized to transfer the metadata on a separate connection. The beauty of
an RTP connection is based on the simplicity of its transport mechanics, which are much more

56

adept (i.e. higher efficiency, lower complexity) at moving information than HTTP related
transports. Please note that the Group/Mass Notification model uses streaming in multicast
mode as its metadata transport. Ergo, it is a subset of the overall streaming umbrella.

The basic Streaming model is aimed at systems where consumers desire low latency,

and/or have connections that will have significant metadata traffic on them, and/or need to
continue use of their REST management connection while the metadata is transferred. Also, the
Streaming model requires less compute power than using an HTTP-based transport which makes
it an ideal method for archive servers, etc. The primary drawback is that RTP-based transports, in
general, are not as NAT/Firewall friendly as HTTP connections are. The following diagram
depicts a basic streaming session.

Figure 9.5.1: Unicast Streaming (Overview)

26 /
GE /

April 6, 2009

Metadata Transports:
Stream Delivery (Unicast)

Source
REST Session REST Session ‘‘AA’’

AA

A: Consumer requests that the Source send it metadata/
event info as a data ‘Stream’ and supplies its (listening)
network address and transport type (RTP/UDP).

B: Source creates outbound RTP/UDP channels to
Consumer using supplied netAddressand streams
metadata to Consumer until the Consumer indicates
session termination via the REST session.

Consumer controls the Stream session(s).

Consumer

Stream Stream Channel(sChannel(s))
BB

Basically, in this scenario, a REST session is setup by the Consumer to convey the transport
parameters for the metadata RTP connection(s). The Source uses the network address
information to ‘push’ (i.e. send), via RTP, the metadata/event information to the network address
designated by the Consumer. These streaming sessions are assumed to be somewhat long-lived
in nature, but that is not a requirement. The following two diagrams depict basic Streaming
model sessions over UDP (required) and TCP (optional) using unicast delivery.

57

Figure 9.5.2: Unicast-UDP Streaming (Message Flow Example)

34 /
GE /

October 19, 2009

Metadata/Event Streams:
HTTP/REST Setup RTP/UDP Unicast Example

Consumer Source

GET Metadata/stream HTTP/1.1 …. <metaFormat>gmch-psia</metaFormat>…
<metaSessionType>RESTRTPStreamOutUDP</metaSessionType>…<netAddress>
190.17.64.51:6002 </netAddress>..<netcastMode>unicast</netcastMode>

HTTP/1.1 200 OK

(metadata GMCH messages streamed in RTP/UDP packets; payload ID = 77)

IP UDP RTP

RTP MTU

<raw GMCH metadata structure(s) as
payload data>

58

Figure 9.5.3: Unicast-TCP Streaming (Message Flow Example)

35 /
GE /

October 19, 2009

Metadata/Event Streams:
HTTP/REST Setup RTP/TCP Unicast

Consumer Source
GET Metadata/stream HTTP/1.1 …<metaFormat>gmch-psia</metaFormat>…

<metaSessionType>RESTRTPStreamOutTCP</metaSessionType>…

<netAddress>171.114.39.82:2088</netAddress> <netcastMode>unicast</netcastMode>

HTTP/1.1 200 OK

(event messages in RTP/TCP packets; payload ID = 77)

IP TCP RTPx+4
(size)

RTP MTU

<raw event structure(s) as payload data>

The Streaming models allow nodes to re-use RTP codebases already deployed for the support of
audio/video transfer. And, in scenarios where audio and/or video are being played, with
metadata, it allows a greater level of synchronization for the information streams involved. One
minor technical note: in the Streaming models, including the Group/Mass Notification mode
below, GMCH headers should not be split across MTUs when UDP transports are employed.

9.6 RTSP/RTP Streaming (“RTSPRTPStreamingSrcOut”)

The prior section of this document covered REST-initiated streaming sessions using RTP
as the media transport. This section describes the use of RTSP and SDP protocols as the session
control protocols for RTP-based media streaming sessions. Please note that the transport
characteristics and definitions for RTP/RTCP are the same as the REST/RTP sessions described
above.

The use of RTSP (RFC 2326) and SDP (RFC 4566) as session control mechanisms
enables the implementation of ‘simple’ client logic for consuming metadata/event data streams.
In other words, clients do not need to ‘read’, or access, the other Metadata Service resources via
REST to ‘play’ video and/or audio and/or metadata media streams. However, on exchange for
the simplicity of using one set of protocols for streaming all forms of media, there is a tradeoff in
the amount of control a consumer has regarding the types of information it receives. This is due
to the protocol definitions for SDP, and due to the header and URI definitions, and practices,
associated with RTSP. Given the desire to conform to industry standards, yet support a media

59

data type that is not currently defined for RTSP/SDP, this specification utilizes the standard
definitions currently entailed by RFCs 2326 and 4566 and offers a set of optional, design
compliant extensions that enable consumers to flexibly receive and manage metadata/event data
streams using the RTSP/SDP control protocols.

First, a basic overview of RTSP/SDP is covered to set the background for the following
definitions and descriptions. This overview does not contain certain details since the reader is
directed to the pertinent RFCs to understand the details of each protocol.

RTSP (Real Time Streaming Protocol) is the protocol used as the control session for
managing media streaming sessions. It is comprised of a set of session ‘verbs’ (i.e. methods), and
header definitions, used to manage the state and content of RTP/RTCP streams. RTSP leverages
the protocol work defined in the HTTP RFC 2068. SDP (Session Descriptor Protocol) contains
the definitions for all the session and streaming related attributes. These attributes are advertised
to consumers such that they can manage and consume data via RTSP(control)/RTP (media
streams). So, SDP is the ‘dictionary’ of attributes that define a source’s parameters to a
consumer, and this information is conveyed to consumers via an RTSP session. In short, SDP is
the session parameter dictionary, and RTSP is the communication ‘pipe.’ Via one RTSP/SDP
session, multiple RTP/RTCP connections may be managed.

The basic command flow of an RTSP/SDP session consists of the following RTSP
methods: DESCRIBE, SETUP, PLAY, TEARDOWN, and (sometimes) PAUSE. The order
listed in the prior sentence is the usual order of occurrence, with the lone exception of PAUSE
which may, or may not, be supported by a device. DESCRIBE is used to solicit the SDP
descriptor from a source device using an RTSP URI to identify the context of the DESCRIBE
(i.e. which resource is to be described). In order to maintain consistency, PSIA devices and
systems MUST use the (RTSP-equivalent) PSIA REST resource URI to identify the specific
resource(s) the consumer is asking the source to ‘DESCRIBE.’ For example, the URI
“rtsp://PSIA/Streaming/channels/1” is the RTSP equivalent of the “/PSIA/Streaming/channels/1”
IPMD-defined streaming resource for input channel # 1 (using RTSP notation). The use of the
URI “/PSIA/Streaming/channels” would indicate that the consumer wants to see all of the
streaming ‘channels’ offered by a source, though this may not be desirable for some device
types. The reason for using the specific URI is to qualify the size of the SDP response. This is
not as crucial for IPMD devices since they usually only have one, or two, video/audio channels.
However, RaCM devices may have hundreds of live and archived channels/tracks, so
qualifying/bounding the DESCRIBE request is a recommended practice for consumers. Please
note that for RaCM compliant devices, the URI would start with
“/PSIA/ContentMgmt/tracks…” for recorded content, “/PSIA/ContentMgmt/sources…” for
source related descriptions (live and archived), and “/PSIA/ContentMgmt/channels…” for live
input related descriptions.

Since consumers may ask for session description information in a general or specific
fashion, certain rules apply to the content contained in a given SDP descriptor. Please note that
any CMEM compliant device that supports RTSP/SDP/RTP session types, MUST always
include metadata as a pseudo-‘channel’ in the SDP descriptor information under the following
cases:

 The consumer issues a gratuitous (i.e. general) DESCRIBE where a specific channel
ID is not present (e.g. “rtsp://PSIA/Streaming/channels”). In this case, metadata is
always listed as a media stream in the response SDP since the consumer is wanting to
get the attributes of all available streams.

60

 In cases where a channel ID is provided in a DESCRIBE, and there is metadata
information that is related, or correlated, to that channel, metadata MUST be listed as
an SDP media stream. This is an implicit reference by association. For example,
assume that there is a dual-resolution IP Media device that supports Video Motion
Detection (VMD). This device would have 2 ‘channels’, one for each video
resolution. The video codec stream settings for each resolution would be accessible
via the ‘/PSIA/Streaming/channels’ resource hierarchy. However, since VMD
metadata is related to both channels, any DESCRIBE for channel 1 or 2 would need
to have the metadata stream listed in the SDP response, also. This is due to the fact
that the VMD metadata is related to both channels and is implicitly referenced. Please
note that for RaCM devices, the correlation of metadata to other resources includes
relationships to tracks and sources (i.e. input devices).

The above rules govern when and what metadata SDP information is provided to consumers.

9.6.1 SDP Usage In Metadata

Before going into the example message flow, below, it is significant to cover basic SDP

structure and definitions. SDP defines the attributes related to streaming media sessions, codecs,
and transports. RFC 4566 is the specification for the latest SDP standard. Readers are
encouraged to read this spec to get a more detailed understanding of SDP. As noted above,
consumers/clients issue an RTSP DESCRIBE request to get an SDP descriptor returned to them
that defines the session and media attributes offered by a source. And, as noted above, URIs are
used in RTSP DESCRIBE messages to identify the resources a consumer is interested in
streaming; i.e. the DESCRIBE’s URI sets the resource ‘scope’ for getting session related
attributes.

Given this information, the internals of SDP need to be covered next. In general, a
specific instance of SDP information is called a ‘descriptor.’ A descriptor contains two primary
types of information: A) Session information, and B) Media (i.e. stream related) information.
Session information is global in nature whereas media information pertains to the individual
attributes of particular media streams. Media stream information encompasses both transport
protocol and basic codec properties. The following SDP descriptor is a basic example of
information used by a hypothetical PSIA compliant, VGA resolution IP camera:

v=0
i=RTSP Session description
m=video 5000 RTP/AVP 96
i=H.264 AVC VGA video stream
a=control:rtsp://PSIA/Streaming/channels/1
a=rtpmap:96 H264/90000
a=fmtp:96 packetization-mode=1;profile-level-
id=4D400C;sprop-parameter-sets
=J01ADKkYUI/LgDUGAQa2wrXvfAQ=,KN4JF6A=a=
b=AS:1200
a=framerate:30
a=framesize:96 640-480
m=audio 5002 RTP/AVP 97
i=Audio stream for video
a=sendonly

61

a=control:rtsp://PSIA/Streaming/channels/1/audio
a=rtpmap:97 G726-32/8000
m=metadata 5004 RTP/AVP 98
i=PSIA Metadata Stream using GMCH format
a=control:rtsp//PSIA/Metadata/stream/gmch-psia
a=rtpmap:98 GMCH-PSIA/0
m=metadata 5004 RTP/AVP 99
i=PSIA Metadata Stream using XML format
a=control:rtsp//PSIA/Metadata/stream/xml-psia
a=rtpmap:99 XML-PSIA/0
...

The above SDP descriptor represents the following attributes:
 An H.264 VGA resolution RTP media stream (“m=video …”) on UDP port 5000 with an

RTP payload ID of 96. This is a 30 fps, 1.2Mbps stream with a
SETUP/PLAY/TEARDOWN (S/P/T) URI of “rtsp://PSIA/Streaming/channels/1”
(“a=control:…”).

 A 32Kbps G.726 RTP audio stream on UDP port 5002 with an RTP payload ID of 97.
This is a simplex audio channel from the source (“a=sendonly”). The S/P/T URI for this
media stream is “rtsp://PSIA/Streaming/channels/1/audio”.

 A PSIA metadata stream (“m=metadata 5004 RTP/AVP 98), in GMCH format, on UDP
port 5002 with an RTP payload ID of 98. The media type is “GMCH-PSIA/0” which
indicates that it has no specific bit rate. The S/P/T URI for this media stream is
“rtsp://PSIA/Metadata/stream/gmch-psia”. However, the URI, as with the above URIs,
may be any string that uniquely identifies which stream is being referenced. Basically,
the “control” URI (“a=control:…”) is the ‘handle’ for each stream. The convention
exemplified here is used for consistency and readability. The source could have easily
used “rtsp://PSIA/Metadata/stream/channels/1/gmch-psia” if that format contained more
usable information for the source.

 A PSIA metadata stream (“m=metadata 5004 RTP/AVP 98), in XML format, also on
UDP port 5004 with an RTP payload ID of 99. The media type is XML-PSIA/0” which
indicates that it has no specific bit rate. This metadata stream shares the same UDP port
number since the choice between a GMCH format, or the XML format, is an either/or
choice – not a simultaneous choice. It is also legal to place this media stream on a
different UDP port. The S/P/T URI for this stream is “rtsp://PSIA/Metadata/stream/xml-
psia”.

9.6.1.1 SDP Media Stream Format Rules

The prior SDP descriptor example identifies some of the following rules and guidelines
regarding RTSP-managed RTP metadata streams.

 ALL metadata media streams MUST be identified in the ‘media’ attribute as “metadata”.
E.g., “m=metadata 5001 RTP/AVP 77”.

 ALL metadata media streams MUST be either of the RTP type “GMCH-PSIA/0” or
“XML-PSIA/0” when mapping their type to a dynamic RTP payload ID. E.g.
“a=rtpmap:96 GMCH-PSIA/0”. When no ‘rtpmap’ is provided, the source and consumer
MUST use RTP payload ID 77 as the static payload ID for PSIA metadata/event
streams; however this only works in single format scenarios (i.e. GMCH and XML

62

formatted streams CANNOT share the same payload ID). The use of dynamic RTP
payload IDs is strongly recommended..

 An RTP control attribute URI (“a=control:…”) MUST be provided such that the
consumer and source can uniquely identify which media stream is being identified for
SETUP/ PLAY/TEARDOWN operations. A source SHOULD structure the control URI
with the prefix of “rtsp://PSIA/Metadata/stream...”, for all metadata streams, such that
there is consistency in identifying stream types. E.g.
“rtsp://PSIA/Metadata/stream/channels/4/xml-psia “ is applicable even though there is
no direct correlation to a PSIA resource with that name.

 ALL video/audio streams SHOULD have a control attribute URI that correlates back to
PSIA media source that is originating the data stream. E.g.
“rtsp://PSIA/Streaming/channels/1” correlates to the “/PSIA/Streaming/channels/1”
REST resource.

The above rules and guidelines are provided in order to aid in the consistency of implementation
and thereby increase interoperability.

9.6.2 RTSP Usage for Metadata/Event Streams

The following message flow example depicts a consumer issuing a non-channel specific
DESCRIBE.

52 /
June 4, 2010

Metadata/Event Streams:
RTSP/SDP Setup for RTP/UDP Unicast

Consumer Event Source
DESCRIBE rtsp://PSIA/Streaming/channels CSeq: 1 RTSP/1.0

RTSP/1.0 200 OK Cseq: 1 …<SDP descriptor payload>

SETUP rtsp://PSIA/Streaming/channels/1 RTSP/1.0 CSeq: 2
Transport: RTP/AVP/UDP;unicast; client_port=2156-2157

RTSP/1.0 200 OK Cseq: 2 Session: 23990801 Transport: RTP/AVP/UDP;unicast;
server_port=5000-5001

PLAY rtsp://PSIA/Streaming RTSP/1.0 CSeq: 4 Session: 23990801

(RTP/UDP: video + metadata/events)

SETUP rtsp://PSIA/Metadata/stream/gmch-psia RTSP/1.0 CSeq: 3 Session: 23990801
Transport: RTP/AVP/UDP;unicast; client_port=2158-2159

RTSP/1.0 200 OK Cseq: 3 Session: 2399 Transport: RTP/AVP/UDP;unicast;
server_port=5004-5005

RTSP/1.0 200 OK Cseq: 4 Session: 23990801

63

The above message flow is based on the information revealed in the prior SDP example (see
Section 9.6.1 above). In this example RTSP session the consumer does the following:

 Requests SDP attributes for all the ‘channels’ on the Source by issuing a gratuitous
DESCRIBE for the “rtsp://PSIA/Streaming/channel” resource which bears no channel ID
value.

 The Source responds with the SDP descriptor information outlined in Section 9.6.1.
 After processing the SDP descriptor information, the Consumer issues a SETUP for the

video stream indicating that it will locally use the UDP ports of 2156 and 2157 for the
RTP and RTCP connections. Please note that the Consumer uses the resource URI that
was in the SDP descriptor for the video stream (“rtsp://Streaming/channels/1”).

 The Source acknowledges the SETUP of the video channel by supplying a Session ID
(“23990801”), since the nodes are now engaged in active session setup, and the Source
indicates that its own source UDP port numbers for the RTP and RTCP sockets will be
5000 and 5001, respectively.

 Next, the Consumer issues a SETUP for the metadata/event stream using the control URI
that was listed in the SDP descriptor (“rtsp://PSIA/Metadata/stream/gmch-psia”). The
Consumer further indicates that it is locally creating UDP ports 2158 and 2159 for the
RTP and RTCP connections, respectively.

 The Source then acknowledges the metadata/event stream SETUP and indicates that
itsserver ports will be 5004 and 5005 for its end of the UDP RTP and RTCP connections.

 Next, the Consumer instructs the source to initiate the data streams by issuing a PLAY
command with:

o The original URI used in the DESCRIBE message (which is considered a
‘global’ resource URI), and…

o the Session ID of 2399;
the use of these fields in the PLAY command covers all of the streams that were already
SETUP (video and metadata). See Section 9.6.2.1 below for details on the rules and
guidelines regarding RTSP session management.

The above example, and the explanation, cover all the basic mechanics of managing video/audio
and metadata/event streams. The only variations from the above mechanics occur when a
consumer desires to specify session attributes, related to metadata, that are not currently
described in the RTSP standard. These extensions are described below.

9.6.2.1 RTSP Rules and Extensions

RTSP is a well deployed session management protocol. Additionally, RTSP was designed as an
extensible protocol so that it could be used for various media streaming applications. Its original
design purpose was to address the management of audio/video media streams though provisions
were made for other forms of data. Over the years various conventions have occurred in the use
of RTSP that have stayed within the ‘spirit’ of RFC 2326 while not being explicitly being
defined in the RFC. Since RTSP is very general in its specification, and most of the
implementations used in the various industries have formed their own conventions for
interoperability, PSIA recommends the following rules and guidelines in order to aid
interoperability.

64

 RTSP/SDP Sources/servers MUST support the used of RTSP session IDs (i.e.
“Session:…”) as described in RFC 2326. A new, unique session ID is only assigned
once the first SETUP message is received and is conveyed back to the consumer in a
successful RTSP response to the SETUP message.

 RTSP resource URIs MUST be structured and used in the following manner:
o The RTSP resource URI used on a DESCRIBE is the ‘session global’ URI. In

other words, the DESCRIBE URI spans all of the media stream info, including
the ‘control’ URIs for each potential stream, returned in an SDP descriptor.

o Control URIs, i.e. those specified for each individual media stream within their
respective sections of an SDP descriptor (“a:control:…”), are for use on
managing individual streams; not sessions.

 All Sources MUST support the ability to perform session-level, and stream-level, PLAY
and teardown commands. This operates in the following manner:

o If an RTSP PLAY command’s URI matches the original DESCIBE’s resource
URI, then this is a ‘play all’ command that is formed to play all of the prior setup
streams. This is a session-level play.

o If an RTSP PLAY command contains a resource URI that references a specific
media stream, then the PLAY command is for a particular stream and only they
stream should be activated irrespective of prior SETUP message sequences.

 All PAUSE and TEARDOWN messages follow the above rules applied to PLAY. A
session level resource URI in a PAUSE or TEARDOWN message affect the entire
session (i.e. all active streams). A command with a stream-specific resource URI only
affects the specified media stream.

 All PSIA devices SHOULD support the RTSP PAUSE command. All sources MUST
inspect the resource URIs in PAUSE and PLAY commands to determine which session
or streams are affected per the above rules.

 Session level commands trump stream level commands, with the exception of SETUP.
In other words, if a stream level message has been issued, the a session-level PAUSE,
TEARDOWN, or a post-PAUSE PLAY occurs, the session level command affects all
streams irrespective of prior state. For example, if a consumer PAUSE’d a single stream
in a multi-stream session, and then issued a session-level TEARDOWN, all streams
would be deactivated and the session prepared for termination.

In addition to the above rules, PSIA extends RTSP with a set of RTSP headers that allow a
consumer to qualify the types of metadata/events that it desires to receive in a given RTP-based
metadata/event stream. These new headers are:

o “channels”: This RTSP header extension allows a consumer to designate that it only
wants metadata/event information related to specific set of one, or more, channels. If
more than one channel is specified, the channel IDs are separated by commas (i.e. comma
separated variable (CSV) format). There may be ONLY one ‘channels’ header per
SETUP message.

o “category”: This header field allows consumers to provide MIDS information such that
only metadata/event information specified by the supplied MIDS (‘metaID’) is to be sent.
The format of the MIDS is the same domain/class/type… format specified in Section 7.2
of this document. Please note that MIDS shorthand notation may be used (e.g.
“//VideoMotion” indicates that the consumer wants all Video Motion occurrences

65

irrespective of domain or type contexts). There may be multiple ‘category’ headers per
SETUP message.

o “output”: For those PSIA specifications that provide ‘profile’ levels for specifying the
sets of function that comply with specific levels of their protocol definitions, this header
allows the consumer to specify the profile ID/level that determines output content. For
example, Video Analytics has ‘basic’ and ‘full’ output profiles. A consumer may specify
the level of content output they desire using this extension header. The ‘output’ header
MUST directly succeed the category affected by its presence. There may be multiple
‘output’ headers in a SETUP message but they MUST succeed the category they affect
unless the category is implied by a channel designator, or is the only output offered.

The following RTSP message is provided to aid in understanding the usage of the above headers.
Please note that these headers are germane only to RTSP SETUP messages since they are media
stream type specific.

;;;;
SETUP rtsp://PSIA/Metadata/stream/gmch-psia RTSP/1.0
CSeq:3
Session:499A203BF7
channels:1,2
category://VideoMotion
category://VideoAnalytics/Alert
output:full
…

In the above example, the consumer issues a SETUP command for a metadata/event stream. In
addition to the standard header fields “CSeq” and “Session”, the consumer specifies that it only
wants metadata/event information related to input channels #1 and #2 (“channels:1,2”), and that
it only wants VideoMotion metadata, and VideoAnalytics Alert metadata. Each instance of the
‘category’ header uses shorthand notation for the MIDS; i.e., the domain is not specified which is
the equivalent of a ‘wild card’ (i.e. any, or all). Finally, PSIA’s Video Analytics standard
specifies differing content output levels via the use of ‘profiles’. The “output” header has been
added to the SETUP message to designate the output level of Video Analytics metadata
information it desires to receive. Please note that the above example has multiple extension
headers whereas there usually would not be

9.6.3 RTP Rules and Guidelines

The PSIA supported version of RTP is specified in RFC 3550, and the supported version of
RTCP is described RFC 3551. The encapsulation of PSIA compliant CMEM data streams in
RTP requires some additional definitions just as other audio/video data tyes do (e.g. RFC 3984,
etc.). These additional qualfications are necessary due to the fact that all of the current RFCs
governing the encapsulation and transport of media data are oriented towards rate-based
audio/video data. Obviously, metadata/event streams are not rate-based in the same context as
audio and video are. Additionally, metadata/event event information may be offered in GMCH
encapsulated, or XML, formats. These formats affect certain aspects of RTP operation. The
following RTP related rules and guidelines apply specifically to metadata/event streams.

o All PSIA nodes sending CMEM data in RTP MUST use the RTP ‘Marker’ bit (M-bit;
RFC 3550, Section 5.1) in the following manner:

66

o GMCH formatted payloads: The Marker bit MUST be SET at the start of an
RTP packet where the RTP payload, immediately succeeding the RTP header,
starts with a GMCH encapsulation header. Since GMCH headers are self defining
‘chunk’ headers, a GMCH metadata/event instance may span multiple RTP
packets, or an RTP packet may contain multiple GMCH instances, however, the
only requirement is that GMCH instances that are aligned in an RTP packet are
marked with a SET M-bit so that consumers may know which packets have ther
GMCH information and which are ‘continuation’ packets (i.e. the M-bit is OFF).

o XML formatted payloads: The end/completion of each XML document instance
MUST be marked with the M-bit SET in all RTP headers. If an XML document
instance exceeds the length of an MTU and runs-over into another RTP packet,
the M-bit would be OFF for all RTP packets that do not contain the final bytes of
the respective XML document instance. Since RTP has no other boundary
markers, there may be ONLY one XML document instance in an RTP packet that
has the M-bit SET; i.e. there is no ‘packing’ of XML documents in a single RTP
payload. .

o The RTP header 32-bit timestamp is a misnomer. In actuality this is not a timestamp (as
in NTP or UTC structure), but a ‘clock frequency’ designator that is not coordinated to
date/time or ‘wall clock’ time. Given this, this field is problematic for non-rate adapted
data streams. In order to accommodate some well known implementation practices, PSIA
specifies that this field is a monotonically increasing, unsigned 32-bit, payload instance
counter. I.e the initial GMCH or XML object instance is assigned a random 32-bit
unsigned integer value as the initial instance counter; each subsequent object instance
receives a monotonically increasing number. If a GMCH or XML instance spans more
than one RTP packet, then all of the RTP packets that comprise that object instance
would bear the same counter value (The RTP packet sequence numbers would change,
however).

o All other RFC 3550 rules apply with respect to RTP operation..

9.7 Group/Mass Notification Model (“RESTRTPStreamSrcOutUDP”
with Multicast IP)

The Group/Mass Notification (GMN) Model is derived from the above Streaming
models. The GMN model is based on multicast transport characteristics. This mode is
advantageous for scenarios where there are multiple subscribers/consumers to any given
metadata/event source. Additionally, access to multicast information has low-latency
characteristics that may be necessary to meet latency demands in some system deployments (e.g.
emergency response). The inhibitors for multicast deployment are basically, its inability to cross
most VPN and NAT/Firewall boundaries without administrative intervention. The following
diagram depicts a basic GMN session.

Figure 9.7.1: Multicast Streaming (Message Flow Example)

67

36 /
GE /

October 19, 2009

Metadata/Event Streams:
HTTP/REST Setup RTP/UDP Multicast delivery

Consumer Source
GET Metadata/stream HTTP/1.1 …<metaFormat>gmch-psia</metaFormat>

<metaSessionType>RESTRTPStreamOutUDP</metaSessionType>..<netcastMode>multicast
</netcastMode>

HTTP/1.1 200 OK
Content-type: application/metadata-gmch
Content-length: <xxx>
<XML payload with multicast netAddress(es)>

(Consumer opens ‘listening’ socket for particular multicast connection)

(metadata messages in RTP/UDP packets; payload ID = 77)

IP UDP RTP

RTP MTU

<raw event structure(s) as payload data>

In the GMN scenario, the Source broadcasts metadata on ‘channels’. Each ‘channel’ is a
multicast UDP connection associated with set of metadata/event types. The metadata/event
taxonomy listed in Section 3.1 easily enables these capabilities of associating all, or some classes
metadata information with specific channels/connections. In most cases, a single channel that
carries all metadata/event information is used. Each connection can be setup to be permanent, i.e.
active all the time, or dynamic, i.e. activated by a management request. This transport type is
primarily feasible for server type applications, i.e. archive servers, event management servers,
etc., and enables great scalability with low latencies, in campus environments.

9.8 Session/Transport Model Protocol Summary

 The following table provides a protocol level synopsis of the metadata/event transport
modes.

Table 9.8.1: Metadata Transport Mode Summary

Mode Control Protocol Transport Protocol Notes
Simple Reliable
Get Model

Client REST/HTTP
‘Get’

Server REST/HTTP
response

Simple, firewall
friendly. Can
require long-lived
sessions or polling.

Asynchronous
Notification Model

Client REST/HTTP Client REST/HTTP
‘Push’

Enables greater
scalability with ‘on

68

demand’ connection
usage. More
complex to
implement.

REST/Streaming
(unicast)

Client REST/HTTP RTP/UDP,
RTP/TCP (opt.)

Lightweight
transport for
connections that
will move notable
amounts of
metadata/events.
Uses IETF
standards for data
transport.

Group/Mass
Notification Model
(Streaming
Multicast)

Client REST/HTTP RTP/UDP Multicast Mass scalability and
low latency. Not
VPN/Firewall
friendly.

Please note that other transport models are also feasible, such as RTSP/RTP and AMQP, using
the methods and formats listed in this document. In the following section of this document, the
schemas used to describe and setup the above session types are described in detail.

9.8.1 Session Authentication

As mentioned in prior Sections 9.2.1 and 9.3.1, HTTP sessions must support
authentication as outlined in the PSIA Service Model specification Sections 4.3/4.4, and as
defined by RFC 2617. As required by PSIA, this includes support for Digest based
authentication. This requirement covers all HTTP sessions irrespective of whether they transport
metadata/event information, or just setup the session parameters for other transfer sessions. The
scenarios for the setup of asynchronous HTTP/REST sessions is unique. These sessions may
require login information to be transferred to the source device as part of the session parameters
for the later notification sessions. Any session login information MUST not be transferred as
clear text within a schema instance! If a consumer requires reverse-authentication for
asynchronous notification sessions, it must use an HTTPS session to setup the respective
parameter information. Session level security requirements may very per customer scenario,
however it is highly recommended that devices support both SSLv3 and TLS v1 (RFC 4346) as
the security options for HTTPS sessions.

10 Metadata Resource Hierarchy Details

This section of the document covers the implementation of the Metadata service and its
resource hierarchy. Each resource in this hierarchy is covered by its ‘branch’ in the hierarchy.
Information from the prior sections covering the architecture are referenced.

69

10.1 /PSIA/Metadata

The ‘Metadata’ base service is the ‘root’ for Metadata management and streaming in any

device that originates, or delivers, metadata, events, and/or alarm information. For IP Media,
RaCM, and other PSIA devices, this resource hierarchy is in addition to those required for the
other functionality of the device or system.

10.1.1 /PSIA/Metadata/index

This PSIA mandated resource lists all of the 1st level resources contained by ‘/Metadata’.

Please note that the recursive version, ‘indexr’ is not required. (The ‘capabilities’ resource
description may provide more information.)

URI /PSIA/Metadata/index Type Resource

Requirement
Level

 - All -

Function
PSIA Mandatory REST resource/object that enumerates the 1st level child resources for
‘/Metadata’.

Methods Query String(s) Inbound Data Return Result

GET None None <ResourceList>

PUT N/A N/A <ResponseStatus w/error code>

POST N/A N/A <ResponseStatus w/error code>

DELETE N/A N/A <ResponseStatus w/error code>

Notes The ‘GET’ request issued to retrieve an instance of the ‘ResourceList’ XML schema.
See the Service Model specification, Section 7, 8, 10, for schema details.

Example
<ResourceList version="1.0"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:psialliance-org"
 xsi:schemaLocation="urn:psialliance-org
 http://www.psialliance.org/XMLSchemas/service.xsd">
 <!-- See PSIA Service Model specification, Section 10.1.2 -->
 <Resource xlink:href="/Metadata/index">
 <!-- EXEMPLARY: NOT required in actual response (see PSIA Service Model specification, Section
10.1.2), since index is a required resource within a Service -->
 <name>index</name>
 <type>resource</type>
 </Resource>
 <Resource xlink:href="/Metadata/description">
 <!-- EXEMPLARY: NOT required in actual response (see PSIA Service Model specification, Section
10.1.2), since description is a required resource within a Service -->
 <name>description</name>
 <type>resource</type>
 </Resource>
 <Resource xlink:href="/Metadata/metadataList">
 <name>metadataList</name>
 <type>resource</type>
 </Resource>
 <Resource xlink:href="/Metadata/sessionSupport">
 <!-- PSIA optional resource within a Service -->
 <name>sessionSupport</name>

70

 <type>resource</type>
 </Resource>
 <Resource xlink:href="/Metadata/channels">
 <name>channels</name>
 <type>resource</type>
 <ResourceList>
 <Resource xlink:href="/Metadata/broadcasts">
 <!-- EXEMPLARY: NOT required in actual response (see PSIA Service Model specification, Section
 10.1.2), since index is a required resource within a Service -->
 <name>broadcasts</name>
 <type>resource</type>
 </Resource>
 <Resource xlink:href="/Metadata/stream">
 <name>stream</name>
 <type>resource</type>
 <ResourceList>
 <Resource xlink:href="/Metadata/Events">
 <name>events</name>
 <type>service</type>
 <ResourceList>
 <Resource xlink:href="/Metadata/Events/index">
 <!-- EXEMPLARY: NOT required in actual response (see PSIA Service Model specification, Section
 10.1.2), since index is a required resource within a Service -->
 <name>index</name>
 <type>resource</type>
 </Resource>
 <Resource xlink:href="/Metadata/Events/description">
 <!-- EXEMPLARY: NOT required in actual response (see PSIA Service Model specification, Section
 10.1.2), since description is a required resource within a Service -->
 <name>description</name>
 <type>resource</type>
 </Resource>
 <Resource xlink:href="/Metadata/Events/triggers">
 <!-- EXEMPLARY: NOT required in actual response (see PSIA Service Model specification, Section
 10.1.2), since index is a required resource within a Service -->
 <name>triggers</name>
 <type>resource</type>
 </Resource>
 <Resource xlink:href="/Metadata/Events/schedule">
 <!-- EXEMPLARY: NOT required in actual response (see PSIA Service Model specification, Section
 10.1.2), since description is a required resource within a Service -->
 <name>schedule</name>
 <type>resource</type>
 </Resource>
 <Resource xlink:href="/Metadata/Events/notification">
 <!-- EXEMPLARY: NOT required in actual response (see PSIA Service Model specification, Section
 10.1.2), since description is a required resource within a Service -->
 <name>schedule</name>
 <type>resource</type>
 </Resource>
 </ResourceList>
 </Resource>

</ResourceList>

10.1.2 /PSIA/Metadata/description

This PSIA mandated resource returns a <ResourceDescription> that describes the
functional REST behavior of the Metadata root Service.

URI /PSIA/Metadata/description Type Resource

Requirement
Level

 - All -

71

Function
PSIA REST resource/object that describes the functional behavior of the root Metadata
resource (see PSIA Service Model Sections 7, 8, 10 for more details).

Methods Query String(s) Inbound Data Return Result

GET None None <ResourceDescription>

PUT N/A N/A <ResponseStatus w/error code>

POST N/A N/A <ResponseStatus w/error code>

DELETE N/A N/A <ResponseStatus w/error code>

Notes The ‘GET’ request issued to retrieve an instance of the ‘ResourceDescription’ XML
schema. See the Service Model specification, Section 7, 8, 10, for schema details.

Example
<?xml version="1.0" encoding="UTF-8"?>
<ResourceDescription version="1.0"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:psialliance-org"
 xsi:schemaLocation="urn:psialliance-org
 http://www.psialliance.org/XMLSchemas/service.xsd">
 <name>Metadata</name>
 <type>service</type>
 <get>
 <queryStringParameters>none</queryStringParameters>
 <inboundXML>none</inboundXML>
 <function>Metadata root service</function>
 <returnResult>ResourceDescription</returnResult>
 <notes>none</notes>
 </get>
 <put></put>
 <post></post>
 <delete></delete>

</ResourceDescription>

10.2 /PSIA/Metadata Information Resource Objects

The resource objects in this section of the specification pertain to the objects that define the
categories, protocols and operation of metadata and event information active on a particular
device or system All of this information is based on a publisher-subscriber model where
sources/proxies are publishers and clients/management entities/proxies are all potential
subscribers.

10.2.1 /PSIA/Metadata/metadataList

This required resource is the information repository, in list format, for all of the metadata
types active on a source. This resource provides consumers, and management applications, a list
of all the active metadata types, in ‘domain/class’, and optionally ‘type’, format, along with the
associated priorities. Optionally, for each class of metadata, the associated input channel can be
listed in order to correlate the metadata types with certain inputs. This resource does not allow
the creation of metadata types, but it does enable the ability to configure the priority levels
associated with each metadata type.

72

URI /PSIA/Metadata/metadataList Type Resource

Requirement
Level

 - All -

Function
PSIA REST service that manages the properties/types of supported metadata and
metadata channels (if any).

Methods Query String(s) Inbound Data Return Result

GET None None <MetadataList>

PUT N/A <MetadataUpdate> <ResponseStatus>

POST N/A N/A <ResponseStatus w/error code>

DELETE N/A N/A <ResponseStatus w/error code>

Notes In the following XSD and example descriptions, the reading of the ‘MetadataList’ schema
is done first. This is followed by the ‘MetadataUpdate’ XSD and examples for
performing metadata updates.

‘MetadataList’ XSD (filename=”metadataList.xsd”)

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="urn:psialliance-org" xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="urn:psialliance-org" version="1.0">

<xs:element name="MetadataList">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="numOfEntries" minOccurs="1" maxOccurs="1" type="xs:unsignedInt"/>

 <xs:element name="metadataDescrList" minOccurs="1" maxOccurs="1"
 type="MetadataDescrList"/>

 </xs:sequence>

 <xs:attribute name="version" type="xs:string" use="required" />

 </xs:complexType>

</xs:element>

<xs:complexType name="MetadataDescrList">

 <xs:sequence>

 <xs:element name="metadataDescriptor" minOccurs="1" maxOccurs="unbounded"
 type="MetadataDescriptor"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="MetadataDescriptor">

 <xs:sequence>

 <xs:element name="metaID" minOccurs="1" maxOccurs="1" type="MetadataIDDescr">

 <xs:annotation>

 <xs:documentation>

 This field carries the Domain-Class

 definitions for each Domain-Class available or supported

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="metaTypeList" minOccurs="0" maxOccurs="unbounded"
 type="MetadataTypeList">

73

 <xs:annotation>

 <xs:documentation> This an optional list for describing the 'Types',

 of metadata-events within the above Domain-Class definition.

 It only needs to be provided, if known (i.e. by a source);

 proxies/brokers are not required to advertise types. Please

 note that only the 'Type' string needs to be supplied since

 the 'metaID' field (above) already supplies the Domain/Class.

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="metaChannelList" minOccurs="1" maxOccurs="1" type="MetaChannelList">

 <xs:annotation>

 <xs:documentation>

 The metadata-event information can be correlated, to the input

 channels using this list. The inclusion of this information in

 this schema allows consumers to get all the information needed

 in a single 'grab' for getting metadata via content or channel

 based definitions. Please note that the Metadata Service uses

 the RaCM definition of 'channels' (i.e. they are live inputs

 that a consumer may subscribe to via some specified mechanism).

 For certain metadata categories that are not necessarily 'bound'

 to a specific channel (e.g. '/PSIA/System...'), channel zero

 ('0') is the NULL channel.

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="MetadataTypeList">

 <xs:sequence>

 <xs:element name="metadataType" minOccurs="1" maxOccurs="unbounded"
 type="MetadataTypeDescr"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="MetadataIDDescr">

 <xs:sequence>

 <xs:element name="metdataMIDS" minOccurs="1" maxOccurs="1" type="xs:anyURI"/>

 <xs:element name="metadataPriority" minOccurs="1" maxOccurs="1" type="xs:unsignedByte"/>

 <!-- New for CMEM v1.1 -->

 <xs:element name="metadataItemMode" minOccurs="0" maxOccurs="1" type="ParamModMode"/>

 </xs:sequence>

</xs:complexType>

<!-- New for CMEM v1.1 -->

<xs:complexType name="MetadataTypeDescr">

 <xs:sequence>

 <xs:element name="metdataType" minOccurs="1" maxOccurs="1" type="xs:string"/>

 <!-- The following are optonal for Types they inherit Class attributes -->

 <xs:element name="metadataPriority" minOccurs="0" maxOccurs="1" type="xs:unsignedByte"/>

 <xs:element name="metadataItemMode" minOccurs="0" maxOccurs="1" type="ParamModMode"/>

 </xs:sequence>

74

</xs:complexType>

<xs:complexType name="MetaChannelList">

 <xs:sequence>

 <xs:element name="metaChannel" minOccurs="1" maxOccurs="unbounded" type="xs:unsignedInt"/>

 </xs:sequence>

</xs:complexType>

<!-- New for CMEM v1.1 -->

<xs:simpleType name="ParamModMode">

 <xs:annotation>

 <xs:documentation xml:lang="en">

 The default mode for any metadata item is 'read-write'. Therefore

 the only time this element type is required is when a source

 wants to lock an item as 'read-only' which prevents changing any

 of its characteristics.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:string">

 <xs:enumeration value="read-write"/>

 <xs:enumeration value="read-only"/>

 </xs:restriction>

</xs:simpleType>

</xs:schema>

Examples

<MetadataList version=”1.1”>

 <numOfEntries>3</numOfEntries>

 <metadataDescrList>

 <metadataDescr>

 <metaID>

 <metadataMIDS>/psialliance.org/VideoMotion</metadataMIDS>

 <metaPriority>4</metaPriority>

 </metaID>

 <metadataTypeList>

 <metadataType>

 <metadataMIDS>motionStart</metadataMIDS>

 </metadataType>

 <metadataType>

 <metadataMIDS>motionStop</metadataMIDS>

 </metadataType>

 <metadataType>

 <metadataMIDS>motion</metadataMIDS>

 </metadataType>

 <metadataTypeList>

 <metaChannelList>

 <metaChannel>1</metaChannel>

 </metaChannelList>

 </metadataDescr>

 <metadataDescr>

 <metaID>

75

 <metadataMIDS>/psialliance.org/Config</metadataMIDS>

 <metaPriority>3</metaPriority>

 </metaID>

 <metadataTypeList>

 <metadataType>

 <metadataMIDS>update</metadataMIDS>

 <metaPriority>3</metaPriority>

 </metadataType>

 <metadataTypeList>

 </metadataDescr>

 <metadataDescr>

 <metaID>

 <metadataMIDS>/psialliance.org/System</metadataMIDS>

 <metaPriority>3</metaPriority>

 </metaID>

 <metadataTypeList>

 <metadataType>

 <metadataMIDS>boot</metadataMIDS>

 <metaPriority>4</metaPriority>

 </metadataType>

 <metadataType>

 <metadataMIDS>fault</metadataMIDS>

 <metaPriority>3</metaPriority>

 </metadataType>

 <metadataType>

 <metadataMIDS>tamperAlarm</metadataMIDS>

 <metaPriority>5</metaPriority>

 <metadataItemMode>read-only</metadataItemMode>

 </metadataType>

 <metadataTypeList>

 </metadataDescr>

 </metadataDescrList>

</MetadataList>

In the above example, a simple IP Media device lists that it suppports 3 PSIA-based Classes of metadata:
A) VideoMotion, B) Config, and C) System. The VideoMotion class has 3 ‘types’ of metadata in its class:
A) motionStart, B) motionStop, and C) motion. All of the VideoMotion class metadata currently has a
priority level of 4 since the subordinate ‘types’ inherit the priority of the ‘class’. In addition to the
VideoMotion metadata/events, the device also has configuration (‘Config’) metadata/events with the only
‘type’ being ‘update’ (e.g. ‘/psialliance.org/Config/update’) notifications. In addition to these
metadata types the device also provides notifications for the System metadata/events ‘boot-up’ and
‘error’; in other words the device provides event notification, in metadata format, for system reboots
and critical system-related errors. Please note that the VideoMotion metadata is associated with input
channel #1, whereas configuration and system metadata/events are not tied to a specific channel; they are
device-wide occurrences.

<MetadataList version=”1.0” xmlns=”urn:psialliance-org”>

 <numOfEntries>5</numOfEntries>

 <metadataDescrList>

 <metadataDescr>

 <metaID>

 <metadataMIDS>/psialliance.org/VideoMotion</metadataMIDS>

 <metaPriority>4</metaPriority>

 </metaID>

 <metaChannelList>

 <metaChannel>1</metaChannel>

76

 <metaChannel>2</metaChannel>

 <metaChannel>3</metaChannel>

 <metaChannel>4</metaChannel>

 <metaChannel>5</metaChannel>

 <metaChannel>6</metaChannel>

 <metaChannel>7</metaChannel>

 <metaChannel>8</metaChannel>

 </metaChannelList>

 </metadataDescr>

 <metadataDescr>

 <metaID>

 <metadataMIDS>/psialliance.org/Video</metadataMIDS>

 <metaPriority>3</metaPriority>

 </metaID>

 <metadataTypeList>

 <metadataType>

 <metadataMIDS>signalActive</metadataMIDS>

 </metadataType>

 <metadataType>

 <metadataMIDS>signalInactive</metadataMIDS>

 <metaPriority>4</metaPriority>

 </metadataType>

 <metadataType>

 <metadataMIDS>signalError</metadataMIDS>

 <metaPriority>4</metaPriority>

 </metadataType>

 <metadataTypeList>

 <metaChannelList>

 <metaChannel>1</metaChannel>

 <metaChannel>2</metaChannel>

 <metaChannel>3</metaChannel>

 <metaChannel>4</metaChannel>

 <metaChannel>5</metaChannel>

 <metaChannel>6</metaChannel>

 <metaChannel>7</metaChannel>

 <metaChannel>8</metaChannel>

 </metaChannelList>

 </metadataDescr>

 <metadataDescr>

 <metaID>

 <metadataMIDS>/psialliance.org/Config</metadataMIDS>

 <metaPriority>3</metaPriority>

 </metaID>

 <metadataTypeList>

 <metadataType>

 <metadataMIDS>update</metadataMIDS>

 </metadataType>

 <metadataTypeList>

 </metadataDescr>

 <metadataDescr>

 <metaID>

 <metadataMIDS>/psialliance.org/System</metadataMIDS>

 <metaPriority>3</metaPriority>

77

 </metaID>

 <metadataTypeList>

 <metadataType>

 <metadataMIDS>boot</metadataMIDS>

 </metadataType>

 <metadataType>

 <metadataMIDS>fault</metadataMIDS>

 </metadataType>

 <metadataTypeList>

 </metadataDescr>

 <metadataDescr>

 <metaID>

 <metadataMIDS>/psialliance.org/Storage</metadataMIDS>

 <metaPriority>3</metaPriority>

 </metaID>

 <metadataTypeList>

 <metadataType>

 <metadataMIDS>mediaError</metadataMIDS>

 </metadataType>

 <metadataType>

 <metadataMIDS>mediaFailure</metadataMIDS>

 </metadataType>

 <metadataTypeList>

 </metadataDescr>

 </metadataDescrList>

</MetadataList>

The above example is based on an 8-port RaCM device (a DVR or NVR). A DVR is a metadata source, whereas
an NVR can be both a proxy, for IP camera/encoder inputs, and a source for its own internal
metadata/events. In the above, the 8-port device supports both ‘VideoMotion’ and ‘Video’ metadata/events
on all 8 channels (i.e. channels 1-8). Since it may be a proxy, the device does not list the ‘Types’ that
are active under the ‘VideoMotion’ category. However, it does list the ‘Types’ supported under the
‘Video’ metadata category. The other metadaya classes ‘Config’, ‘System’ and ‘Storage’ are not channel
related; they are internal events. The ‘Storage’ class does not give ‘channels’ since these IDs are not
particularly relevant to storage media. However, if a ‘Storage’ event occurred, the ‘atrribute’ field in
the MIDS should contain a meaningful ID corresponding to the media related to the event.

‘MetadataUpdate’ XSD (metaUpdate.xsd)

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="urn:psialliance-org" xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="urn:psialliance-org" version="1.0">

<xs:include schemaLocation="http://www.psialliance.org/schemas/system/1.0/metadataList.xsd"/>

<xs:element name="MetadataUpdate">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="numOfUpdates" minOccurs="1" maxOccurs="1" type="xs:unsignedInt"/>

 <xs:element name="metadataIDDescr" minOccurs="1" maxOccurs="unbounded"
 type="MetadataIDDescr"/>

 </xs:sequence>

 <xs:attribute name="version" type="xs:string" use="required" />

 </xs:complexType>

</xs:element>

</xs:schema>

78

Example

<MetadataUpdate version=”1.1”>

 <numOfEntries>2</numOfEntries>

 <metaDescr>

 <metaID>

 <metadataMIDS>/metatdata.psia.org/Config/updzte</metadataNIDS>

 <metaPriority>2</metaPriority>

 </metaID>

 </metaDescr>

 <metadataDescr>

 <metaID>

 <metadataMIDS>/psialliance.org/System</metadataMIDS>

 <metaPriority>2</metaPriority>

 </metaID>

 </metadataDescr>

</MetadataUpdate>

The above example is based on the prior example ‘MetadataList’ for a DVR/NVR. The application is
modifying the priority level for two metadta items. This first update item is for Config update events.
The application wants to set the priority level to 2. Please note that the application is using a
shortand notation my supplying a metaID (MIDS) that addresses a specific Class/Type. This can only be
done if the source advertises Types within the metadata classes (see above MatadataList Example #2). The
second item indicates that the application wants to change the priority level of all ‘System’ metadata to
2 (from 3). This update is applied to the entire ‘System’ metadata class unlike the prior item.

The ‘metadataList’ resource is the reporting entity for the classes and types of metadata
supported, or that are active, on a system or device. This resource is very important since
metadata and events are usually consumed based on category, and in some cases, filtered, or
restricted, based on sources (usually imposed on Proxy devices). This resource returns a
‘MetadataList’ document that contains a list of the metadata and event types, by category, in an
XML list format. The document elements are:

Element Name Requirement

Level
Notes/Description

“numOfEntries” Required Identifies the number of list elements that
follow

“metadataDescrList” Required List containing “metadata descriptors” (see
below)

“metadataDescriptor” Required The basic list element, for each metadata
domain/class/type that describes the parameters
associated with each metadata/event category.
The elements in each ‘metadataDescriptor’
follow:…

“metadataDescriptor::
metaID”
(type=”metadataIDDescr”)

Required The domain/class, in the PSIA URI format,
that describes an active metadata category on a
source, or proxy, and the associated priority
level assigned to this metadata/event category.
Please note that the generic type used for this
element does not require the priority level,

79

since it is used in many places. However, each
domain/class (i.e. a ‘category’) MUST have an
overarching priority assigned to it. The use of
priorities for ‘Types’ within categories is
optional.

“metadataDescriptor::
metaTypeList”
(type=”metadataIDDescr”)

Optional This recommended list element describes the
‘types’, within the above ‘domain/class’
metadata category, that are active. Sources
SHOULD list their types. Proxies may not
know the types they are managing per category
and are not required to advertise the active
types.
E.g. a device that advertises a ‘VideoMotion’
category SHOULD also list the types, such as
‘motionStart, ‘motionStop, etc., that it supports
within that metadata/event category.
 Each list element is of the

“metadataIDDescr” type just like the above
“metaID”. However, only the ‘Type’ string
needs to be listed.

 Priorities are optional for specific ‘Types’
within a category since categories are
required to have an assigned priority value.

“metaChannelList” and
“metaChannel”

Required This required element is a list of the channels
(i.e. inputs) that are associated with the ad-
vertised metadata/event categories. Each list
element (“metaChannel”) contains the channel
ID of the source channel associated with that
specific metadata/event category. This
information is provided for scenarios where
consumers desire to subscribe to metadata from
specific sources.

The above fields are all described in detail in the “MetadataList” XML schema descriptor. This
information is retrieved by consumers that perform “GET’s” against the
‘/PSIA/Metadata/metadataList’ resource object. This information advertises the categories of
metadata/event information that are active on a source or proxy device. The list provides
elements that describe the metadata/event category, the priority level for that category, any
‘Types’ that are active within that category, and a list of input channels that are the origins for
that information. Basically, this information is provided such that subscribers can access the
information by:

 Metadata category: Using the supplied list information, a subscriber can ‘GET’
information by specifying the categories advertised by a source or proxy.

 Source: Since the metadata is listed along with its correlated input channels, subscribers
can access the metadata by specifying the desired ‘channels’ (i.e. sources).

80

 Both: Using combinations of the above, a subscriber can shape the content and sources it
desires to gather from a node.

Please note that subscribing to metadata/event information uses the above descriptions but is
performed against “/PSIA/Metadata/stream” resource object which is described later in this
specification.

10.2.1.1 Updating Metadata Information

Management entities (i.e. users/clients with the appropriate permissions) may change the
properties of metadata information, or add input sources to proxies, by performing updates
directly to the “/PSIA/Metadata/metadataList” object using an XML document instance
compliant with the “MetadataUpdate” schema definition (see above). Using this resource object,
and schema definition, users/clients may modify the priority levels associated with specific
metadata/event categories, or even particular domain/class/types should a device list them.

10.2.2 /PSIA/Metadata/sessionSupport

This Metadata resource describes all of the session and format related parameters
supported by a PSIA compliant Metadata device or system.

URI /PSIA/Metadata/sessionSupport Type Resource

Requirement
Level

 - All -

Function .

Methods Query String(s) Inbound Data Return Result

GET None None <MetaSessionSupport>

PUT N/A N/A <ResponseStatus w/error code>

POST N/A N/A <ResponseStatus w/error code>

DELETE N/A N/A <ResponseStatus w/error code>

Notes

Session Support XSD (filename=”metaSessionSupport.xsd”)

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="urn:psialliance-org" xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="urn:psialliance-org" version="1.1">

<xs:element name="MetaSessionSupport">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="metaFormats" minOccurs="1" maxOccurs="1"
 type="MetaFormatList"/>

 <xs:element name="metaSessionTypes" minOccurs="1" maxOccurs="1"
 type="SessionTypeList"/>

 <xs:element name="multicastCapable" minOccurs="1" maxOccurs="1"
 type="xs:boolean"/>

 <!-- For CMEM v1.0 nodes the following MUST be 'False';reserved for v1.1 and

81

 later -->

 <xs:element name="scheduleCapable" minOccurs="1" maxOccurs="1"
 type="xs:boolean"/>

 <!-- CMEM v1.1 field(s) -->

 <xs:element name="queryParmsSupported" minOccurs="0" maxOccurs="1"
 type="xs:boolean"/>

 </xs:sequence>

 <xs:attribute name="version" type="xs:string" use="required" />

 </xs:complexType>

</xs:element>

<xs:complexType name="MetaFormatList">

 <xs:sequence>

 <xs:element name="metaFormat" minOccurs="1" maxOccurs="unbounded" type="MetaFormat"/>

 </xs:sequence>

</xs:complexType>

<xs:simpleType name="MetaFormat">

 <xs:annotation>

 <xs:documentation xml:lang="en">

 The following fields define the accepted PSIA formats

 for PSIA metadata/event information.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:string">

 <xs:enumeration value="gmch-psia"/>

 <xs:enumeration value="xml-psia"/>

 </xs:restriction>

</xs:simpleType>

<xs:complexType name="SessionTypeList">

 <xs:sequence>

 <xs:element name="metaSessionType" minOccurs="1" maxOccurs="unbounded"
 type="SessionType"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="SessionType">

 <xs:sequence>

 <xs:annotation>

 <xs:documentation xml:lang="en">

 Only the first of the following 3 elements is required to be present.

 This is because the default flow type for sessions is 'datastream'. Also,

 only Asynch HTTP/REST sessions need to indicate if session parameters

 persist across reboots, or not.The default is NO.

 </xs:documentation>

 </xs:annotation>

 <xs:element name="metaSessionProtocol" minOccurs="1" maxOccurs="1"
 type="SessionProtocolType"/>

 <xs:element name="metaSessionFlowType" minOccurs="0" maxOccurs="1"
 type="SessionFlowType"/>

 <xs:element name="metaSessionPersistent" minOccurs="0" maxOccurs="1" type="xs:boolean"/>

 </xs:sequence>

</xs:complexType>

82

<xs:simpleType name="SessionFlowType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="datastream"/>

 <xs:enumeration value="transaction"/>

 <xs:enumeration value="streamOrTransaction"/>

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name="SessionProtocolType">

 <xs:annotation>

 <xs:documentation>

 The following transport/session types are arranged with

 'sending' session types first. Followed by 'receiving'

 session types next. Please note that the sending/

 receiving notation is always with respect to the node

 or device itself. Therefore the original session

 initiator must read a node's session types and then

 instruct that node on what type of session will be

 used for either sending or receiving data.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:string">

 <!-- The following are data sending session types -->

 <xs:enumeration value="RESTSyncSessionTargetSend"/>

 <xs:enumeration value="RESTAsyncSessionBackSourceSend"/>

 <xs:enumeration value="RESTRTPStreamSrcOutUDP"/>

 <!-- The following are optional or are reserved for TBD -->

 <xs:enumeration value="RESTRTPStreamSrcOutTCP"/>

 <xs:enumeration value="RTSPRTPStreamSrcOut"/>

 <xs:enumeration value="RTSPRTPStreamSrcOutInterleaved"/>

 <!-- The following are data receiving session types -->

 <xs:enumeration value="RESTAsyncSessionBackForReceive"/>

 <xs:enumeration value="RESTRTPStreamInUDP"/>

 <xs:enumeration value="RESTRTPStreamInTCP"/>

 <!-- The following is for 'event driven transmission only! -->

 <xs:enumeration value="EmailNotification"/>

 </xs:restriction>

</xs:simpleType>

</xs:schema>

Example(s)

<MetaSessionSupport version=”1.1”>

 <metaFormats>

 <metaformat>gmch-psia</metaFormat>

 <metaFormat>xml-psia</metaFormat>

 </metaFormats>

 <metaSessionTypes>

 <metaSessionType>

 <metaSessionProtocol>RESTSyncSessionInTargetSend</metaSessionProtocol>

 <metaSessionFlowType>datastream</metaSessionFlowType>

83

 </metaSessionType>

 <metaSessionType>

 <metaSessionProtocol>RESTAsyncSessionOutSourceSend</metaSessionProtocol>

 <metaSessionFlowType>datastream</metaSessionFlowType>

 </metaSessionType>

 </metaSessionTypes>

</MetaSessionSupport>

The above example is for a PSIA compliant basic device. It offers its metadata in either GMCH
encapsulated format, or as XML documents, in streaming mode. Additionally, the device complies with the
required network session types that it supports.

<MetaSessionSupport version=”1.1”>

 <metaFormats>

 <metaformat>gmch-psia</metaFormat>

 </metaFormats>

 <metaSessionTypes>

 <metaSessionType>

 <metaSessionProtocol>RESTSyncSessionInTargetSend</metaSessionProtocol>

 <metaSessionFlowType>datastream</metaSessionFlowType>

 </metaSessionType>

 <metaSessionType>

 <metaSessionProtocol>RESTAsyncSessionOutSourceSend</metaSessionProtocol>

 <metaSessionFlowType>datastream</metaSessionFlowType>

 </metaSessionType>

 <metaSessionType>

 <metaSessionProtocol>RESTRTPStreamOutUDP</metaSessionProtocol>

 <metaSessionFlowType>datastream</metaSessionFlowType>

 </metaSessionType>

 </metaSessionTypes>

</MetaSessionSupport>

This example is more representative of a proxy/broker type device (maybe a RaCM device). Since it has to
multiplex/aggregrate metadata from several sources, and offers metadata in a streaming manner, it only
offers metadata in GMCH format. The session types it supports are the requires REST-based session
support plus RTP streaming.

This REST resource advertises the session types, and accompanying formats, that a source or
proxy device uses to provide metadata and event information. This is a read-only resource(i.e. on
‘GET’s are supported) and cannot be modified. Via this resource a device or system advertises
the following session and format related properties.

Element Requirement

Level
Notes

“metaFormats”
(and “metaFormatList”::
“metaFormat”)

Required An element comprosed of a list of the formats available
for consumption. The choices are:
 “gmch-psia”: GMCH encapsulation and

description of metadata/event information. This
format is REQUIRED,

 “xml-psia”: XML format for metadata/ event
information as published by a PSIA working group,
or, in some cases, an external organization that

84

complies with the PSIA CMEM standard. This
format is OPTIONAL.

“metaSessionTypes”::
“sessionTypeList”::
“sessionType”::
“metaSessionProtocol”

Required

An element comprised of a list that describes the
session types offered by a device or system for
transferring metadata/event information. Each list
element is comprised of 3 primary components. The
first element, ‘metaSessionProtocol’ is required for
each supported session type. are:
A) the session protocol that is supported, and…
The individual session protocol tags are described in
more detail in this section below. The flow type tags
are described in the following table of this document.
Descriptions of the session types themselves, are
covered in Section 9.

“metaSessionTypes“::
“metaSessionTypeList”::
metaSessionFlowType”

Dependent This dependent/optional element defines the session
‘flow types’ supported by a device, or node. Since the
default support is for ‘datastream’, devices supporting
only this flow type do not need to have this element
present. However, event driven devices, and systems,
may support ‘transaction’ mode. Optionally, devices
may support both (indicated by ‘streamOrTransaction’)
modes. If a device supports more than the default
mode, it MUST supply this element and indicate the
flow types supported.

“metaSessionTypes“::
“metaSessionTypeList”::
“metaSessionPersistent”

Dependent Support for Asynchronous HTTP/REST sessions
requires that the device indicate if it supports
‘persistence’, for asynch session parameters, or not.
Since the default support value is ‘False’, this element
is not required unless a node supports session
parameter persistence across reboots. Please note that
Proxy/broker devices/nodes MUST indicate whether
they support persistence or not. The recommendation
for Proxies is that that SHOULD support persistence.
In either case, Proxies must indicate their support level.

“multicastCapable”

Required/
Dependent

This field is required to be present since it indicates
whether a device supports UDP multicast transmission
of metadata./event information. This form of
transmission is optional for endpoints, and
recommended for event proxies/brokers.

“scheduleCapable” Required/
Dependent

This field is required to be present. It indicates, as a
Boolean, whether, or not, a device supports scheduling
for asynchronous notification methods and triggers.
Async notification methods include those session types
with the tags starting “RESTAsynch…” (see below),
the use of non HTTP/REST asynchronous notification
session types such as Email/SMTP, FTP, etc., and,

85

(optionally) Multicast/UDP sessions. All v1.0 CMEM
nodes MUST indicate FALSE for this field; All
CMEM v1.1, and later nodes, MUST indicate their
level of support for schedules.

“queryParmsSupported” Optional/
Dependent

This element indicates whether, or not, the source
device supports the use query string parameters on
GET requests to the /PSIA/Metadata/stream resource
(see Section 10.2.4 following). The parameters, and
their usage, are described in the ‘stream’ section.

A metadata/event source offers metadata to subscribers via the formats and session types
advertised by the “MetaSessionSupport” schema. A subscriber reads this schema instance to
determine compatibility with the publisher. The supported formats are relatively simple. ALL
nodes are required to offer GMCH encapsulation of their metadata/event information. Plus, if a
device has a metadata format other than simple XML, such as text, binary or mixed-object
formats, it MUST use GMCH encapsulation for transferring this data. If a source utilizes simple
XML as its format, it may offer this format in addition to GMCH tagging.
The PSIA ordained session types for transferring metadata/event information are advertised via
the following string tags. Please note that the construct of each tag is based on the relationship
of the session initiator versus the data sender. The first five session types are about how the
publisher/source can send data to another node. The last 3 session types are for publishers that
advertise that they can receive metadata from another node where the data is ‘pushed’ to them.

String/Tag Value Require-

ment
Level

Notes

“RESTSyncSessionOutTargetSend” Required The session initiator sets-up an outbound
session to the Target node, who is the data
sender. HTTP REST connection.
Synchronous = Session initiator must issue a
GET to the Target to initiate the data stream.
This session type is described in Section 9.2.

“RESTAsyncSessionBackSourceSend” Required Initial session is setup by consumer to target
node. The consumer instructs, via session
parameters, target node to re-establish a
second, subsequent connection back to the
consumer for sending data back to the
consumer. Asynch = the source, once
establishing the callback connection, can
send without requiring a ‘GET’ from the
consumer. This session type is described in
Section 9.3. Please note that the
asynchronous HTTP/REST session types are
the only ones that may require session login
information to be conveyed as part of session
initiation. Please see Section 10.2.4 for

86

details.
“RESTRTPStreamSrcOutUDP” Optional

for Basic
devices;
Required
for Full/
Advanced
devices;

Consumer sets-up a session via an
HTTP/REST connection. The target/source
initiates an outbound stream to the consumer
via an RTP/UDP stream. These streams may
be unicast or multicast based on session
parameters. This session type is described in
Section 9.4. PSIA RaCM devices are
required to support this session type in
unicast mode.

"RESTRTPStreamSrcOutTCP" Optional The same as the above session type except
the target/source node sends the streamed
data in an RTP/TCP reliable connection.
This session type is described in Section 9.4.

“RTSPRTPStreamSrcOut” (new v1.1) Optional This session type is purely RTSP/SDP/
RTP/RTCP based. All of the following RFCs
specify the standards for RTP streaming:
 RFCs 2326/4556: RTSP/SDP control &

description.
 RFCs 3550/3551: RTP/RTCP streaming

transport.
This session type is new, and additional to
the REST/RTP session type. Please note that
this session type covers both UDP and TCP
sessions. The transport choices are
advertised in a source node’s SDP
information. This session protocol is
described in Section 9.6.

"RTSPRTPStreamSrcOutInterleaved" Optional This session type is a pure RTSP/RTP
stream where the RTP data is ‘tunnelled’
back to the session initiator in the RTSP
control session using RFC 2326 compliant
‘interleaving.’ No REST connection is used
to manage the session.

** The next 3 session types are about
data RECEVING connections **

--------- ---

"RESTAsyncSessionBackTargetReceive" Optional REST session initiator desires the target
node to subsequently connect-back to it, via
an HTTP/REST session, such that the
session initiator may send data to the target
node.

"RESTRTPStreamInUDP" Optional Publisher/advertiser accepts inbound REST
managed RTP/UDP sessions for receiving
metadata.

"RESTRTPStreamInTCP" Optional Same as the above session type except the
publisher accepts reliable REST managed

87

RTP/TCP sessions for receiving data.

As noted, for each protocol tag identifier above that represents an HTTP/REST based session
protocol, there is a corresponding “metaSessionFlowType” element that indicates the flow types
supported for each protocol selection. Details regarding the flow modes are described in Section
9.4. Please review this section for details.

10.2.3 /PSIA/Metadata/channels

This resource returns a schema instance that describes the all of the input channels that
are metadata/event sources. The primary function of channel-based descriptions of
metadata/event sources is to allow consumers to differentiate between specific input
channels/devices, when necessary. A secondary benefit is that this resource allow administrators
to determine which ‘channels’ are internal or external, and discover their characteristics.

URI /PSIA/Metadata/channels Type Resource

Requirement
Level

 - All -

Function

Methods Query String(s) Inbound Data Return Result

GET None None <MetaChannels>

PUT N/A N/A <ResponseStatus w/error code>

POST N/A N/A <ResponseStatus w/error code>

DELETE N/A N/A <ResponseStatus w/error code>

Notes The ‘GET’ request is issued to return a ‘MetaChannels’ schema instance that describes
all of the active metadata/event input sources.

Metadata Channels XSD (filename=”metaChannels.xsd”)

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="urn:psialliance-org" xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="urn:psialliance-org" version="1.0">

<xs:include schemaLocation="http://www.psialliance.org/schemas/system/1.0/psiaCommonTypes.xsd"/>

<xs:include schemaLocation="http://www.psialliance.org/schemas/system/1.0/metaSessionSupport.xsd"/>

<xs:element name="MetaChannels">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="numOfChannels" minOccurs="1" maxOccurs="1"
 type="xs:unsignedInt"/>

 <xs:element name="metaChannelList" minOccurs="1" maxOccurs="1"
 type="MetaChannelList"/>

 </xs:sequence>

 <xs:attribute name="version" type="xs:string" use="required" />

 </xs:complexType>

</xs:element>

88

<xs:complexType name="MetaChannelList">

 <xs:sequence>

 <xs:element name="metaChannelParms" minOccurs="1" maxOccurs="unbounded"
 type="metaChannelParms">

 <xs:annotation>

 <xs:documentation>

 The only requirement for a channel list is that the input/inbound
 channels

 MUST precede any output broadcast channels. See below for more

 details on channel attributes.

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="metaChannelParms">

 <xs:sequence>

 <xs:element name="channelID" minOccurs="1" maxOccurs="1" type="LocalID"/>

 <xs:element name="channelType" minOccurs="1" maxOccurs="1" type="channelSrcType"/>

 <xs:element name="metaFormatList" minOccurs="1" maxOccurs="1" type="MetaFormatList"/>

 <!-- Optional information fall below this line -->

 <!-- If the above 'channelType' is 'remoteSource' then one, or both,of the following must
 be provided -->

 <xs:element name="channelSrcGUID" minOccurs="0" maxOccurs="1" type="GlobalID"/>

 <xs:element name="channelSrcINetAddress" minOccurs="0" maxOccurs="1" type="xs:string"/>

 <!-- If the channel type = 'activeBroadcast' then the Multicast IP address MUST be
 provided below -->

 <xs:element name="multicastAddress" minOccurs="0" maxOccurs="1" type="xs:string">

 <xs:annotation>

 <xs:documentation xml:lang="en">

 IPv4 or IPv6 address, either with, or without, a

 'suffixed" port number, of the multicast stream.

 IPv4 Examples are:

 '239.110.1.57', or '239.66.4.31:4402'.

 IPv6 Examples are:

 'ff38:8000:0008:0000:0260:97ff:fe40:efab' or

 'ff37:8000:0017:0001:1040:8038:fa96:660c:5000'.

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="channelDescription" minOccurs="0" maxOccurs="1" type="xs:string"/>

 <!-- The following are Optional! -->

 <xs:element name="transactionAck" minOccurs="0" maxOccurs="1" type="xs:boolean">

 <xs:annotation>

 <xs:documentation>

 Determines if the event source needs explicit

 acknowledgments for each marked transaction.

 The default is 'False' (No).

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

89

</xs:complexType>

<xs:simpleType name="channelSrcType">

 <xs:annotation>

 <xs:documentation>

` The following tag-values have these meanings:

 'internal'= metdata is internally generated by a process or task;

 'local'= data from a (local) port is formatted internally (e.g.

 serial I/O); 'remote'= a remote device or system is the orign

 of the metadata and this data is being proxied by the advertising

 node; 'activeBroadcast' = a currently active outbound multicast

 session that a consumer could 'join'.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:string">

 <xs:enumeration value="internalSource"/>

 <xs:enumeration value="localSource"/>

 <xs:enumeration value="remoteSource"/>

 <!-- Outbound channel type follows -->

 <xs:enumeration value="activeBroadcast"/>

 </xs:restriction>

</xs:simpleType>

</xs:schema>

Examples

<MetaChannels version= »1.1 » >

 <numOfChannels>2</numOfChannels>

 <metaChannelList>

 <metaChannelParms>

 <channelID>1</channelType>

 <channelType>internalSource</channelType>

 <metaFormatList>

 <metaFormat>gmch-psia</metaFormat>

 </metaFormatList>

 <channelDescription>Video Motion Detection</channelDescription>

 </metaChannelParms>

 <metaChannelParms>

 <channelID>2</channelID>

 <channelType>localSource</channelType>

 <metaFormatList>

 <metaFormat>gmch-psia</metaFormat>

 </metaFormatList>

 <channelDescription>IO/Contact port</channelDescription>

 </metaChannelParms>

 </metaChannelList>

</MetaChannels>

In the above example, a simple device indicates it has 2 channels of metadata/event inputs. The first
channel is an internal Video Motion Detection process that generates ‘VideoMotion’ metadata. The second
channel is a local I/O port that drives a contact. These channels can be correlated back to the
‘MetadataList’ supplied by the device.

<MetaChannels version= »1.0 » xmlns= »urn :psialliance.org »>

 <numOfChannels>4</numOfChannels>

90

 <metaChannelList>

 <metaChannelParms>

 <channelID>1</channelType>

 <channelType>internal</channelType>

 <metaFormatList>

 <metaFormat>gmch-psia</metaFormat>

 </metaFormatList>

 <channelDescription>Video Motion Detection</channelDescription>

 </metaChannelParms>

 <metaChannelParms>

 <channelID>2</channelID>

 <channelType>local</channelType>

 <metaFormatList>

 <metaFormat>gmch-psia</metaFormat>

 </metaFormatList>

 <channelDescription>IO/Contact port</channelDescription>

 </metaChannelParms>

 <metaChannelParms>

 <channelID>3</channelID>

 <channelType>local</channelType>

 <metaFormatList>

 <metaFormat>gmch-psia</metaFormat>

 </metaFormatList>

 <channelDescription>Audio events</channelDescription>

 </metaChannelParms>

 <metaChannelParms>

 <channelID>4</channelID>

 <channelType>local</channelType>

 <metaFormatList>

 <metaFormat>gmch-psia</metaFormat>

 </metaFormatList>

 <channelDescription>Video events</channelDescription>

 </metaChannelParms>

 <metaChannelParms>

 <channelID>5</channelID>

 <channelType>local</channelType>

 <metaFormatList>

 <metaFormat>gmch-psia</metaFormat>

 </metaFormatList>

 <channelDescription>System events</channelDescription>

 </metaChannelParms>

 </metaChannelList>

</MetaChannels>

In the above example, a hypotherical encoder device has 5 input ‘channels’ of metadata information. The
first channel (“1”) is the Video Motion Detectin process on the encoder. The second channel (“2”) is an
attached I/O (dry) contact port. The third channel (“3”) is a virtual input channel that addresses audio
signal-related events. The fourth channel (“4”) is another virtual input channel that reports video
signal related events. The final channel (“5”) is the internal system process used to report boot-up
occurrences and internal system errors.

The ‘metaChannels’ resource object reports the specific characteristics, or properties, associated
with each metadata/event source. For endpoints, this information describes either A) the internal
processes that generate metadata, or B) the attached physical ports that receive, and process,

91

forms of metadata. For proxy devices, the “MetaChannels” schema indicates where and what the
metadata/event sources are. This enables improved administration of data networking via
visibility into the who/what/where attributes of sources versus proxies. The “MetaChannels”
schema is a list of the active channels supported by a device or system. The first element in
“MetaChannels” is "numOfChannels" which indicates, in advance, the number channel
descriptor list elements that follow in the schema instance. The next section of the schema
consists of a sequenced list (i.e. “metaChannelList”) of one, or more, channel parameter
descriptors. The elements that comprise each channel parameter descriptor,
“metaChannelParms”, are described in the following table.

Element Name Require-

ment
Level

Notes

“metaChannelParms”::
“channelID”

Required The ASCII unsigned integer that is the ‘handle’ for
the respective channel.

“metaChannelParms”::
“channelType”

Required An enumerated string that identifies the type of
input source that ‘drives’ a channel. Choices are:
 “internalSource”: and internal process

generates the metdata.
 “localSource”: A physical port, of some type,

is the input, thought it may require internal
processing, for the metadata. An example
would be Point-Of-Sale data that is introduced
via device’s serial port.

 “remoteSource”: This channel is a proxy for
some remote source.

 “activeBroadcast”: This channel is an active
multicast/broadcast channel that a consumer
may ‘tune’ into. This tag represents an output
channel unlike the other tags. It is used so that
devices can describe active multicast channels.

“metaChannelParms”::
“metaFormatList”

Required A list of the MIDS/URI categories and priorities
that are related to the associated channel. This is
the same XML ‘type’ that is used in the
“metadataList” schema (Section 10.2.1)

“metaChannelParms”::
“channelSrcGUID”

Dependent If the above ‘channelType’ = “remoteSource” then
the Proxy device MUST list the GUID/UUID of
that remote device.

“metaChannelParms”::
“channelSrcINetAddress”

Dependent If the above ‘channelType’ = “remoteSource” the
Proxy device MUST list the IP network address of
that source device.

“metaChannelParms”::
“multicastAddress”

Dependent If the ‘channelType’ = “activeBroadcast” the
source/proxy MUST list the multicast address, and
port number, that correlate to that broadcast
channel/session.

“metaChannelParms”:: Optional A user-friendly descriptive string that helps

92

“channelDescription” describe the channel further.
“metaChannelParms”::
“transactionAck”

Dependent Nodes that require that metadata/event occurrences
be ACK’d at transaction level, MUST indicate that
requirement in this field.

The metadata/event channel information provided by each publisher is not necessary for basic
information. The ‘metadataList’ and ‘sessionSupport’ resource objects, with their accompanying
schemas, should provide enough information for identifying, accessing, and consuming
metadata/event information. Channel information is primarily useful for 2 cases: A) the ability to
‘filter’ metadata/event information based on a source (i.e. channel) set, and/or B) the
administration and management of inputs.

10.2.4 /PSIA/Metadata/stream

This resource object is the session setup object for the PSIA Metadata resource hierarchy. All
session parameters are ‘setup’ with the Metadata ‘stream’ object for all HTTP/REST managed
sessions. The operation, and interaction, with this resource object is simple: a consumer, after
reading the ‘metadataList’ and ‘sessionSupport’ information (see prior), issues a GET or POST
to the “/PSIA/Metadata/stream’ resource object, with an accompanying “MetaSessionParms”
schema instance, to setup a metadata stream session of some specified flavor that is compliant
with the source node’s “sessionSupport” attributes.

URI /PSIA/Metadata/stream Type Resource

Requirement
Level

 - All -

Function
This resource is the access point on a Metadata source for setting-up Metadata/Event
sessions.

Methods Query String(s) Inbound Data Return Result

GET
Conditional: See
below descriptions
for QSP details.

Without Stream ID:
<MetaSessionParms>

With Stream ID: -None-

<ResponseStatus>
OR

For GETs with Asynch Stream IDs:
<MetaSessionParms>

PUT N/A <TBD> <ResponseStatus w/error code>

POST
Conditional: See

below descriptions
for QSP details.

<MetaSessionParms>

<ResponseStatus>
OR

For GETs with Asynch Stream IDs:
<MetaSessionParms>

93

DELETE None None

Delete is only used in cases:
A) A consumer wants to terminate

the current synchronous session
after setting parameters for non-
synchronous session; or…

B) A consumer wants to delete the
session resource instance for an
asynchronous HTTP/REST
session. In this case, the original
session ID MUST be supplied
as part of the resource URI (e.g.
DELETE /Metadata/stream/9).

 This Metadata resource is mainly the access point for establishing (‘GET’ing) a
Metadata/Event stream.

Session Parameters XSD (filename=”metaSessionParms.xsd”)
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="urn:psialliance-org" xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="urn:psialliance-org" version="1.1">

<xs:include schemaLocation=” http://www.psialliance.org/schemas/system/1.0/psiaCommonTypes.xsd”/>

<xs:include schemaLocation="http://www.psialliance.org/schemas/system/1.0/metaSessionSupport.xsd"/>

<xs:element name="MetaSessionParms" type="MetaSessionParms"/>

<xs:complexType name="MetaSessionParms">

 <xs:sequence>

 <xs:annotation>

 <xs:documentation xml:lang="en">

 There MUST only be ONE instance of the following element

 except for the case where the session initiator is describing

 asynchronous sessions that have 'alternate' or 'concurrent'

 nodes that need to be notified when sessions are initiated by

 the source. Synchronous 'GET' sessions are only allowed to

 have one set of session parameters per request.

 </xs:documentation>

 </xs:annotation>

 <xs:element name="metaXportParms" minOccurs="1" maxOccurs="unbounded"
 type="MetaXportParms"/>

 </xs:sequence>

 <xs:attribute name="version" type="xs:string" use="required" />

</xs:complexType>

<xs:complexType name="MetaXportParms">

 <xs:sequence>

 <!-- Added for CMEM v1.1: embedded session ID; previously it was in ResponseStatus -->

 <xs:element name="metaSessionID" minOccurs="1" maxOccurs="1" type="LocalID"/>

 <xs:element name="metaFormat" minOccurs="1" maxOccurs="1" type="MetaFormat"/>

 <xs:element name="metaSessionType" minOccurs="1" maxOccurs="1"
 type="SessionProtocolType"/>

 <xs:element name="metaSessionFlowType" minOccurs="1" maxOccurs="1"

94

 type="SessionFlowType"/>

 <!-- The following parameter is new for CMEM v1.1 -->

 <xs:element name="metaSessionRole" minOccurs="0" maxOccurs="1" type="SessionTargetRole"/>

 <xs:element name="metaSessionLogin" minOccurs="0" maxOccurs="1" type="SessionLogin"/>

 <!-- Updated/Changed for CMEM v1.1: individual network address fiels for target nodes -->

 <xs:choice>

 <xs:element name="targetHostName" minOccurs="0" maxOccurs="1" type="xs:string"/>

 <xs:element name="targetIPAddress" minOccurs="0" maxOccurs="1" type="xs:string"/>

 <xs:element name="targetIPv6Address" minOccurs="0" maxOccurs="1"
 type="xs:string"/>

 </xs:choice>

 <xs:element name="netcastMode" minOccurs="0" maxOccurs="1" type="NetCastMode"/>

 <xs:element name="transactionAck" minOccurs="0" maxOccurs="1" type="xs:boolean">

 <xs:annotation>

 <xs:documentation>

 Determines if the event source needs explicit

 acknowledgments for each transaction marked with

 an XID field (see CMEM spec).

 The default is 'False' (No).

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="metadataNameList" minOccurs="0" maxOccurs="1" type="MetadataNameList">

 <xs:annotation>

 <xs:documentation> This, and the following element, are only used for

 setting up CMEM sessions. They are not used by sources for

 advertising the session types and formats supported for

 metadata info transfer. These optional elements are used as

 filters for receiving data from a source. A consumer can

 apply metadata MIDS filters and/or chammel (input source)

 filters against a session that it desires to setup.

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="metadataChannelList" minOccurs="0" maxOccurs="1"
 type="MetadataChannelList"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="SessionLogin">

 <xs:sequence>

 <xs:element name="authMode" minOccurs="1" maxOccurs="1" type="AuthenticationMode"/>

 <xs:element name="userLogin" minOccurs="0" maxOccurs="1" type="LoginInfo"/>

 <xs:element name="credentialObject" minOccurs="0" maxOccurs="1" type="LoginCredentials"/>

 </xs:sequence>

</xs:complexType>

<xs:simpleType name="AuthenticationMode">

 <xs:annotation>

 <xs:documentation xml:lang="en">

 The following definitions cover the well-known, recommended

 authentication and security definitions for HTTP sessions.

 </xs:documentation>

95

 </xs:annotation>

 <xs:restriction base="xs:string">

 <xs:enumeration value="none"/>

 <xs:enumeration value="basic"/>

 <xs:enumeration value="digest"/>

 <xs:enumeration value="https-SSLv3"/>

 <xs:enumeration value="https-TLSv1"/>

 <xs:enumeration value="https-TLSv1.1"/>

 <xs:enumeration value="https-TLSv1.2"/>

 <xs:enumeration value="https-TLSv1.x"/>

 <xs:enumeration value="any"/>

 <xs:enumeration value="other"/>

 </xs:restriction>

</xs:simpleType>

<xs:complexType name="LoginInfo">

 <xs:sequence>

 <xs:annotation>

 <xs:documentation xml:lang="en">

 Unused passwords should be listed as NULL XML elements

 </xs:documentation>

 </xs:annotation>

 <xs:element name="userName" minOccurs="1" maxOccurs="1" type="xs:string"/>

 <xs:element name="password" minOccurs="1" maxOccurs="1" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="LoginCredentials">

 <xs:sequence>

 <xs:annotation>

 <xs:documentation xml:lang="en">

 The following 'credentialType' field MUST be present to indicate the

 type/format/content of any provided credential information. Reserved

 strings are: 'SAML' and 'X.509'.

 The 'credentialDefinition' URI is optional, but should be used as a

 reference if a non-standard credential format/type is employed.

 </xs:documentation>

 </xs:annotation>

 <xs:element name="credentialType" minOccurs="1" maxOccurs="1" type="xs:string"/>

 <xs:element name="credentialDefinition" minOccurs="0" maxOccurs="1" type="xs:anyURI"/>

 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

</xs:complexType>

<xs:simpleType name="NetCastMode">

 <xs:annotation>

 <xs:documentation xml:lang="en">

 The following modes pertain to 'streaming'

 transport types. REST/HTTP sessions are

 always unicast. Therefore, it only required

 to specify the netCastMode when setting-up

 metadata/event streams.

 </xs:documentation>

96

 </xs:annotation>

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="unicast"/>

 <xs:enumeration value="multicast"/>

 </xs:restriction>

</xs:simpleType>

<xs:complexType name="MetadataNameList">

 <xs:sequence>

 <xs:annotation>

 <xs:documentation xml:lang="en">

 The PSIA '/domain/class/type' URI notation for the metadata/event

 information to be received.

 </xs:documentation>

 </xs:annotation>

 <xs:element name="metadataIDString" minOccurs="1" maxOccurs="unbounded"
 type="xs:anyURI"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="MetadataChannelList">

 <xs:sequence>

 <xs:element name="metaChannel" minOccurs="1" maxOccurs="unbounded"
 type="LocalID"/>

 </xs:sequence>

</xs:complexType>

<!-- NEW for CMEM v1.1 -->

<xs:simpleType name="SessionTargetRole">

 <xs:annotation>

 <xs:documentation xml:lang="en">

 Asynchronous sessions initiated by the Source can specify

 more than one target receiver. In these cases the session

 setup MUST specify if the nodes are 'primary' (i.e. they are

 all concurrent recipients) OR if the session list is comprised

 of alternates should a connection to a primary target fail. These

 designators are impertinent for all other session types.

 </xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:string">

 <xs:enumeration value="primary"/>

 <xs:enumeration value="alternate"/>

 </xs:restriction>

</xs:simpleType>

</xs:schema>

Example(s)

<MetaSessionParms version=”1.1”>

 <MetaXportParms>

 <metaSessionID>0</metaSessionID>

 <metaFormat>gmch-psia</MetaFormat>

 <metaSessionProtocolType>RESTSyncSessionOutTargetSend</metaSessionProtocolType>

 <metaSessionFlowType>datastream</metaSessionFlowType>

97

 </MetaXportParms>

</MetaSessionParms>

In the above example, a consumer, initiating an HTTP/REST session to a target source desires to utilize
that same session to retrieve a metadata/event stream in GMCH format. If the target/source node accepts
the session parameters, it returns the same schema instance with an updated Session ID, and the consumer
will then start receiving any active metadata/event information from the source.

<MetaSessionParms version=”1.1”>

 <MetaXportParms>

 <metaSessionID>0</metaSessionID>

 <metaFormat>gmch-psia</MetaFormat>

 <metaSessionProtocolType>RESTSyncSessionOutTargetSend</metaSessionProtocolType>

 <metaSessionFlowType>datastream</metaSessionFlowType>

 <metadataNameList>

 <metadataIDString>/psialliance.org/VideoMotion</metadataIDString>

 <metadataIDString>/psialliance.org/System</metadataIDString>

 <metadataIDString>/psialliance.org/Config/update</metadataIDString>

 </metadataNameList>

 </MetaXportParms>

</MetaSessionParms>

The above example is based on the prior example. However, in this case the consumer only wants to see
VideoMotion and System category events, plus specifically wanting notification of configuration updates
that may occur (“/psialliance.org/Config/update”).

<MetaSessionParms version=”1.1”>

 <MetaXportParms>

 <metaSessionID>0</metaSessionID>

 <metaFormat>xml-psia</MetaFormat>

 <metaSessionProtocolType>RESTAyncSessionBackSourceSend</metaSessionProtocolType>

 <metaSessionlogin>

 <authMode>digest</authMode>

 <userLogin>

 <userName>gandalf512</userName>

 <password>wizardsRule</password>

 </userLogin>

 </metaSessionLogin>

 <metaSessionFlowType>datastream</metaSessionFlowType>

 <netAddress>

 <targetIPAddress>206.14.5.70:3016</targetIPAddress>

 </netAddress>

 <metadataChannelList>

 <metaChannel>1</metaChannel>

 <metaChannel>2</metaChannel>

 </metadataChannelist>

 </MetaXportParms>

</MetaSessionParms>

In the above example the consumer wants the target/source to subsequently connect back to it at IP/Port
address 206.14.5.70/3016, with the login user name and password of “gandalf512/wizardsRule”, and send
metadata/event information to it in PSIA XML format for all metadata occurring on/from channels 1 and 2
(no specific metadata categories are provided).

NOTE: User login information (user name/password/credentials), when required, MUST never be passed
across in an un-encrypted session. The only sessions that may require user login information are the
asynchronous HTTP/REST sessions. Login information is invalid for all other session types.

98

<MetaSessionParms version=”1.1”>

 <MetaXportParms>

 <metaSessionID>0</metaSessionID>

 <metaFormat>gmch-psia</MetaFormat>

 <metaSessionProtocolType>RESTRTPStreamSrcOutUDP</metaSessionProtocolType>

 <netAddress>

 <targetIPAddress>239.240.108.32:5004</targetIPAddress>

 </netAddress>

 <netcastMode>multicast</netcastMode>

 <metadataNameList>

 <metadataIDString>/psialliance.org/System</metadataIDString>

 <metadataIDString>/psialliance.org/Config</metadataIDString>

 </metadataNameList>

 <metadataChannelList>

 <metaChannel>1</metaChannel>

 <metaChannel>2</metaChannel>

 </metadataChannelist>

 </MetaXportParms>

</MetaSessionParms>

In the above example the consumer wants the target/source to stream metadata/event information on an
RTP/UDP multicast connection (i.e. IP address 239.240.108.32, port 5004). The information to be streamed
is System and Configuration category metadata from channels 1 and 2 of the source device. Note the
concurrent use of metadata name, and channel, lists to filter information for the respective connection.

The “/PSIA/Metadata/stream’ resource object is the stream ‘access point’ for initiating sessions
for the transfer of metadata/event information in compliance with the attributes advertised by a
source device, or system, via its “/PSIA/Metadata/sessionSupport” object (see Section 10.2.2
above). The ‘stream’ object receives the “MetaSessionParms” schema instance with the session
parameters, validates the parameter values against the device’s capabilities, and, if there is
compatibility, initiating the data transfer. Since there are multiple session types, the initiation of
data transfer is ‘session type’ dependent. The examples listed above outline how the parameters
related to session initiation are used. Fundamentally, a consumer reads a node’s
‘MetaSessionSupport’ definitions (via the “/PSIA/Metadata/sessionSupport’ object), determines
what the session and format capabilities are, and then initiates data transfer by ‘GET’ing a
session from the “/PSIA/Metadata/stream” resource object by also sending the compatible
“MetaSessionParms” values. The elements in the “MetaSessionParms” schema are described in
the table below.

Element Name Require-

ment
Level

Notes

“metaXportParms” Required Root element that contains the session and format
parameters

“metaXportParms”::
“metaSessionID”

Required Requesters always set this ID value to zero (which is
equivalent to NULL). The successful setup of a
session responds with and HTTP “200 OK” and the
same schema instance with a valid (i.e. nonzero)
session ID.

“metaXportParms”:: Required Parameter that indicates the format of the metadata

99

“metaFormat: to be transferred. Choices are:
“gmch-psia”: General Metadata Classification
Header format (Section 8.3). This format is required
to be supported by all nodes. Additionally, this is the
only format that works in non-HTTP/REST (i.e.
RTP) transport types.
“xml-psia”: For those nodes that have XML defined
metadata/event schemas, this is an alternate option
for HTTP/REST transports.

“metaXportParms”::
“metaSessionType:

Required This required parameter specifies the session
protocol/transport type to be initiated for metadata
transfer. These types are discussed in detail in
Section 9 of this document. The tag strings used as
values are listed below (and in the XSD above):
 "RESTSyncSessionTargetSend": Required. See

Section 9.2.
 "RESTAsyncSessionBackSourceSend":

Required. See Section 9.3.
 "RESTRTPStreamSrcOutUDP": Optional except

for RaCM devices where it is Required. See
Section 9.5.

 "RESTRTPStreamSrcOutTCP": Optional. See
Section 9.5

 “RTSPRTPStreamSrcOut”: Optional See
Section 9.5..

 "RTSPRTPStreamSrcOutInterleaved": Optional.
Reserved for future use.

 "RESTAsyncSessionBackForReceive":
Optional. Reserved for future use.

 "RESTRTPStreamInUDP": Optional. Reserved
for future use.

 "RESTRTPStreamInTCP": Optional. Reserved
for future use.

“metaXportParms”::
“metaSessionFlowType”

Dependent For HTTP/REST based session protocols (see
above), the consumer MUST specify the flow type
IF there is more than one mode supported. All
consumers SHOULD provide this parameter for
HTTP/REST connection setup.

“metaXportParms”::
“sessionLogin”

Dependent Only the asynchronous HTTP/REST sessions may
have a need for user login/credential information in
order to setup the asynchronous notification
sessions. When required, user name/password
information MUST only be sent on an HTTPS (i.e.
encrypted) session; never should this information be
sent in clear text!
The fields within this ‘type’ are described next…

100

“metaXportParms”::
“sessionLogin”::
“authMode”

Dependent/
Required
when Login
info is
present

(see above conditions)
When session login information is present, the
session initiator must provided the HTTP
authentication/security mode to be used for
notification session establishment. Choices are:

“none”: no authentication needed.
“basic”: HTTP basic authentication (RFC 2616)
“digest”: HTTP digest based authentication (RFC
 2616).
“https-SSLv3”: HTTPS using SSLv3
“https-TLSv1”: HTTPS using TLS 1.0 (RFC 2246)
“https-TLSv1.1”: HTTPS/TLSv1.1 (RFC 4346)
“https-TLSv1.2”: HTTPS/TLSv1.2 (RFCs
 5246/5746)
“https-TLSv1.x”: HTTPS/TLS v1.x best effort
 compatibility between nodes
“any”: Rely on HTTP challenge/handshake
“other”: Proprietary security model

On the above selections, the session initiator MUST
provide the most detailed information possible. If
the target device cannot support the session
authentication mode, it must fail the session
parameter setup attempt. Otherwise, session
authentication compatibility won’t be known until
the initiation of the first notification session.

“metaXportParms”::
“metaSessionLogin”::
“userLogin”::
(“userName” & “password”)

Dependent/
Optional

The user name and password information is specific
to asynchronous HTTP/REST notification sessions.
If the node receiving the ‘callback’ notification
session requires a login, this information MUST be
provided. Otherwise it is optional. Please note that
sessions that utilize credentials (see following) may,
or may not, need login information.

“metaXportParms”::
“metaSessionLogin”::
“credentialObject”::
(“credentialType”,
“credentialDefinition”,
‘xs:any’)

Optional Asynchronous HTTP/REST notification sessions
may require credentialing logic. Especially for
SSL/TLS sessions. This XML type allows
clients/consumers to pass credential information to
the devices that they expect to initiate ‘callback’
notification sessions.

“metaXportParms”::
“metsSessionRole”

Dependent
(Asynchro-
nous
notification)

(New CMEM v1.1) If a session initiator is setting up
multiple Asynchronous notification sessions, then
the Role of each target recipient, ‘primary’ versus
‘alternate’, MUST be supplied. When a trigger or
metadata event occurs, connections will be
attempted to all ‘primary’ nodes. If a connection to a

101

primary node fails, then connections are attempted
to the specified alternates. If an initator lists only
one Asynchronous notification session, the target
node is assumed to be ‘primary’; it is invalid to have
a single session where a node is ‘alternate’.

“metaXportParms”::
“targetHostName” , or…
“targetIPAddress” , or…
“targetIPv6Address”

Dependent
(Asynchro-
nous
notification)

(Changed for CMEM v1.1) In cases where the
consumer is either A) requesting a ‘callback’
session, or B) a multicast session, this element is
required to define either the host name of the target,
or IPv4 address or the IPv6 address, and potentially,
the port number (multicast) of the connection to be
setup by the source.

“metaXportParms”::
“netcastMode”

Dependent This element denotes the mode of transporting
RTP/UDP data. Since the default is “unicast” mode,
this field only needs to be present to denote
“multicast” sessions. Please see the XSD, and
examples, for more details.

“metaXportParms”::
“transactionAck”

Dependent/
Optional

If a source requires that receivers must acknowledge
(‘ACK’) each metadata/event instance, it MUST
indicate this mode of operation by indicating
‘TRUE’ for this element. The default for all sources
is ‘FALSE’.

“metaXportParms”::
“metadataNameList”

Optional A list of metadata categories that the consumers
desires to receive. Basically, it’s a traffic filter that
can optionally be applied on the data stream. This
list can be used with the following list, also.

“metaXportParms”::
“metadataChannelList”

Optional A list of channels, via channel IDs, that the
consumers desires to receive metadata from.
Basically, this is a traffic filter that can optionally be
applied on the data stream. This list can be used
with the above list, also.

“metaXportParms”::
“multicastCapable:

Required Boolean field that indicates to
consumers/subscribers whether the metadata/event
source supports UDP multicast transports, or not.

“metaXportParms”::
“scheduleCapable”

Reserved Required Boolean field for future use. All Version
1.0/1.1 nodes MUST indicate ‘FALSE’.

“metaXportParms”::
“queryParms”

Optional Boolean field that indicates whether or not the
source node accepts Query String Parameters
(QSPs) as part of the URI of an HTTP/REST
message regarding metadata/event streams, or not.
The default is ‘FALSE’. Only the presence of this
element, with a value of ‘TRUE’, indicates QSPs are
supported.

10.2.4.1 Query String Parameters (new v1.1)

102

CMEM Version 1.1 compliant nodes have the ability to support Query String Parameters (QSPs)
on HTTP/REST ‘GET’ messages sent to a node’s ‘/PSIA/Metadata/stream’ resource. The
primary benefit of this feature is the ability to allow a ‘shortcut’ or shorthand’ option for session
setup where the following conditions are all true:

o A) The source has indicated it supports QSPs in its “MetaSessionSupport” XML
parameters (see the /PSIA/Metadata/sessionSupport resource definition in Section
10.2.2); and…

o B) The consumer is setting up a "RESTSyncSessionTargetSend" (Simple Reliable Get)
metadata/event stream on the same HTTP session; and…

o C) the consumer has no more than 5 of the QSPs listed in the parameter table outlined
below.

 In these cases, the consumer/client is allowed to supply the session parameters via QSPs. All
other session setup instances MUST supply the “MetaSessionParms’ via an accompanying XML
document. The allowable QSPs are listed below.

Table 10.2.4.1 HTTP/REST Stream QSPs
QSP Name Requirement QSP Description
“format” Required This QSP tag is used to identify which metadata format is to be

used for transferring data. The choices are:
o “gmch-psia”, or
o “xml-psia”
See “MetaSessionParms” for details.

“channel” Optional This QSP tag indicates, which channel(s), if any, is/are to be the
source(s). There may be multiple of these QSPs.

“category” Optional This QSP indicates which metadata categories the consumer
desire to receive. The value is in MIDS format (see Section
7.2). E.g. “/psialliance.org/System/boot”. Shorthand notation is
allowed. E.g. “category=//VideoMotion” wild-cards the domain
and states that all VideoMotion occurrences are interesting to
the consymer: There may be multiple of these QSPs (up to the
limit).

“class” Optional This QSP is shorthand notation of the above “category” QSP.
Basically, it omits the domain field while still utilizing the
MIDS format. Some examples:

 “//System”: Indicates the consumer wants all System
metadata/events.

 “//VideoAnalytics/Alerts”: Indicates that the comsumer
wants all VideoAnalytics (Class) Alerts (Type).

 “//Config/update: Indicates that the comsumer wants to
be notified of configuration update events. All
configuration events woule be “//Config”.

The above notation assumes that a source is either a pure PSIA
node, or that other potential domains are either synonomous or
completely different.

“output” Optional For PSIA metadata/event categories where the level of content
sent can be specified by an output ‘profile’ level. This QSP tag

103

designates the appropriate profile level. Values are:
o “basic”
o “full”
PSIA Working Groups specify output profiles/levels, as needed,
in their specs. Currently, the Video Analytics WG, uses this
feature.

The above QSPs are the direct equivalent of the RTSP extension header fields described in
Section 9.6.2.1. Please reference this area of this specification, for any additional details.
An example URI that uses QSPs in a compliant manner follows:

GET /PSIA/Metadata/stream?format=xml-
 psia&category=/psialliance.org/VideoAnalytics/Alert&output=full
 HTTP/1.1

Another version of the above URI, using the shorthand ‘class=’ notation (i.e. the domain is
assumed/’wild-carded’) for the URI is:

POST /PSIA/Metadata/stream?format=xml-
 psia&class=//VideoAnalytics/Alert&output=full HTTP/1.1

10.2.5 /PSIA/Metadata/broadcasts (optional resource)

This resource advertises the presence of any active multicast sessions that a source node may be
broadcasting. Only nodes that have their “multicastCapable” value set to “true” in their
“MetaSessionSupprt” schema instance (“/PSIA/Metadata/sessionSupport”; Section 10.2.2) are
required to have this resource. Any systems/devices that do not advertise the ability to do
multicast metadata streams MUST not have this resource object present. As with many other
resources, this object’s only function is to publish the attributes of active broadcasts that
consumers may desire to connect to. Details are covered below.

URI /PSIA/Metadata/broadcasts Type Resource

Requirement
Level

 Optional. Only devices/system supporting multicast delivery of Metadata/Events must
support this resource.

Function
This resource reports the active broadcast/multicast sessions, along with their session
attributes, emanating from a source.

Methods Query String(s) Inbound Data Return Result

GET None None <MetaBroadcasts>

PUT N/A N/A <ResponseStatus>

POST N/A N/A <ResponseStatus>

DELETE N/A N/A <ResponseStatus w/error code>

Notes

104

Metadata Broadcast Parameters XSD (filename=”metaBroadcasts.xsd”)

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="urn:psialliance-org" xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="urn:psialliance-org" version="1.0">

<xs:include schemaLocation="http://www.psialliance.org/schemas/system/1.0/psiaCommonTypes.xsd"/>

<xs:element name="MetaBroadcasts">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="numOfBroadcasts" minOccurs="1" maxOccurs="1"
 type="xs:unsignedInt"/>

 <xs:element name="broadcastList" minOccurs="1" maxOccurs="1"
 type="broadcastList"/>

 </xs:sequence>

 <xs:attribute name="version" type="xs:string" use="required" />

 </xs:complexType>

</xs:element>

<xs:complexType name="broadcastList">

 <xs:sequence>

 <xs:element name="broadcastSession" minOccurs="1" maxOccurs="unbounded"
type="BroadcastSession"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="BroadcastSession">

 <xs:sequence>

 <xs:element name="streamID" minOccurs="1" maxOccurs="1" type="xs:unsignedInt"/>

 <xs:element name="multicastAddress" minOccurs="1" maxOccurs="1" type="xs:string">

 <xs:annotation>

 <xs:documentation xml:lang="en">

 IPv4 or IPv6 address, either with, or without, a

 'suffixed" port number, of the multicast stream.

 IPv4 Examples are:

 '239.110.1.57', or '239.66.4.31:4402'.

 IPv6 Examples are:

 'ff38:8000:0008:0000:0260:97ff:fe40:efab' or

 'ff37:8000:0017:0001:1040:8038:fa96:660c:5000'.

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="metadataList" minOccurs="1" maxOccurs="1" type="metadataList"/>

 <xs:element name="channelList" minOccurs="0" maxOccurs="1" type="SrcChannelList"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="metadataList">

 <xs:sequence>

 <xs:element name="metaID" minOccurs="1" maxOccurs="unbounded" type="xs:anyURI"/>

 </xs:sequence>

</xs:complexType>

105

<xs:complexType name="SrcChannelList">

 <xs:sequence>

 <xs:element name="channelID" minOccurs="1" maxOccurs="unbounded" type="LocalID"/>

 </xs:sequence>

</xs:complexType>

</xs:schema>

Example(s)

<MetaBroadcasts version=”1.1”>

 <numOfBroadcasts>2</numOfBroadcasts>

 <broadcastList>

 <broadcastSession>

 <streamID>1001</streamID>

 <multicastAddress>239.206.11.30:2112</multicastAddress>

 <metadataNameList>

 <metadataIDString>/PSIA/Config</metadataIDString>

 <metadataIDString>/PSIA/System</metadataIDString>

 /metadataNameList>

 </broadcastSession>

 <broadcastSession>

 <streamID>1002</streamID>

 <multicastAddress>239.206.11.30:2114</multicastAddress>

 <metadataNameList>

 <metadataIDString>/PSIA/VideoMotion</metadataIDSting>

 <metadataIDString>/PSIA/Video</metadataIDSting>

 <metadataIDString>/PSIA/Audio</metadataIDSting>

 /metadataNameList>

 </broadcastSession>

 </broadcastList>

</MetaBroadcasts>

In the above example, a source node is advertising that it has 2 active broadcast, metadata sessions.
The first, has a ‘stream ID’ of “1001” and is broadcasting to IPv4 address “239.206.11.30” and UDP port
number “2112”. This broadcast stream carries Configuration and System related metadata/events so it
carries more ‘administrative’-type event data. The second channel has a ‘stream ID’ of “1002” and is
outputting data in IPv4 address “239.206.11.30” via UDP port number “2114.” This broadcast stream
carries 3 categories of metadata: A) Video Motion events, B) Video signal events, and Audio signal
events.

<MetaBroadcasts version=”1.0” xmlns=”urn:psialliance-org”>

 <numOfBroadcasts>1</numOfBroadcasts>

 <broadcastList>

 <broadcastSession>

 <streamID>75</streamID>

 <multicastAddress>FF38:0:8000:788:0FFFF:7000:4190</multicastAddress>

 </broadcastSession>

 </broadcastList>

</MetaBroadcasts>

In the above example, a source node is advertising that it has a single active broadcast metadata
session. This broadcast stream, has a ‘stream ID’ of “75” and this stream is broadcasting to IPv6
address “FF38:0:8000:788:0FFFF:7000” and UDP port number “4190”. The lack of either a matadata name
list, or channel list, indicates that the source is sending all of its metadata/event information out on
this broadcast stream. Therefore, a consumer would have to read the source’s
“/PSIA/Metadata/metadataList” resource object to know the metadata/event categories that are active for
that source.

106

The “/PSIA/Metadata/broadcasts” resource object is a read-only, optional resource. For source’s
that support multicast transmission capabilities (i.e. ‘multicastCapability = true’ in the
“MetaSessionSupport” schema instance) this resource is required. If a node does not support
multicast transmission of data, then this resource is not required and should be absent from the
node’s resource hierarchy. Basically, the “MetaBroadcasts” schema parameters advertise the
information necessary for consumers to connect to already active multicast sessions carrying
metadata. The use of RTSP as a setup mechanism is not required since this resource carries the
equivalent information of an SDP descriptor instance. The parameters in the “MetaBroadcasts”
schema are described in the following table.

Element Name Require-

ment
Level

Notes

“numOfBroadcasts” Required Parameter indicating the number of active multicast
sessions. It also indicates the number of entries that
following in the schema instance’s broadcast session
descriptor list (see following).

“broadcastList” Required List container for the broadcast session descriptors that
describe the attributes of active multicast sessions.

“broadcastSession” Required For each active multicast metadata session, this descriptor
contains and describes the parameters with a specific
session instance.

“broadcastSession”::
“streamID”

Required A source-unique unsigned integer that is the ‘handle’ for
this session. Currently, this field is a placeholder for future
use when RTSP may be used to setup metadata sessions.

“broadcastSession”::
“multicastAddress”

Required The IPv4 or IPv6 multicast address, and the target UDP
port number, for the active multicast session. This
information is required such that consumers take this info
and ‘join’, then connect to, active multicast metadata
sessions.

“broadcastSession”::
“metadataNameList”

Optional The source MUST advertise the metadata/event categories
of an active multicast session unless it is sending ALL of
its advertised metadata on that broadcast. This optional list
supplies the metadata categories, in URI string format
(MIDS), active on a broadcast stream.

“broadcastSession”::
“channelList”

Optional Sources that allow, or enable, multicasting by (input)
channel selection MUST advertise the channels that are
active on a broadcast session unless ALL of their channel
metadata is being broadcast (i.e. there is not subset being
streamed).

For source’s supporting multicast, there are 2 manners in which multicast sessions can be
initiated: A) via session initiation per the session parameters outlined in the prior 2 sections of
this document, or B) via configuration (i.e. a device is configured to auto-start multicast sessions
as part of its system bring-up process). Either way, the information contained in the

107

“MetaBroadcasts” schema instance is the catalogue of active sessions. Please note that sources
that are multicast capable, but do not have any active broadcast sessions yet, advertise a
“numOfBroadcasts” value of zero (0) until a session is created.

10.3 /PSIA/Metadata/Actions (optional service hierarchy)

This Service describes the ‘actions’ and ‘events’ a device or system offers in conjunction with
metadata processing. The term ‘actions’ addresses the management of metadata and event
processing. Management consists of the scheduling, triggering, and notification methods
associated with ‘events’. This includes signaling to both PSIA and non-PSIA nodes. The term
‘events’ indicates the special processing that may be assigned to specific metadata catgories
when they occur. This ‘special processing’ is usually a form of notification or signaling that is
automatically setup to occur during an event.
As a PSIA compliant Service, the ‘Actions’ resource has the requisite ‘index’ and ‘description’
resources that advertise the attributes of the ‘actions/events’ service. It is important that all
devices and systems that employ this optional ‘Actions’ service hierarchy clearly advertise which
resources they support. Please note that this service/resource hierarchy supercedes, and replaces,
the “/Custom/Event” service/resource hierarchy defined in Section 7.15 of the IPMD v1.1
specification.

10.3.1 /PSIA/Metadata/Actions/index

The PSIA required ‘index’ resource is defined below for the “/PSIA/Metadata/Actions” service.

URI /PSIA/Metadata/Actions/index Type Resource

Requirement
Level

 Dependent; Required if the ‘event’ service is present.

Function
PSIA Mandatory REST resource/object that enumerates the 1st level child resources for
‘/Metadata’.

Methods Query String(s) Inbound Data Return Result

GET None None <ResourceList>

PUT N/A N/A <ResponseStatus w/error code>

POST N/A N/A <ResponseStatus w/error code>

DELETE N/A N/A <ResponseStatus w/error code>

Notes The ‘GET’ request issued to retrieve an instance of the ‘ResourceList’ XML schema.
See the Service Model specification, Section 7, 8, 10, for schema details.

Example
<ResourceList version="1.0"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:psialliance-org"
 xsi:schemaLocation="urn:psialliance-org
 http://www.psialliance.org/schemas/system/1.0/service.xsd">

108

 <!-- See PSIA Service Model specification, Section 10.1.2 -->
 <Resource xlink:href="/Metadata/Actions/index">
 <!-- EXEMPLARY: NOT required in actual response (see PSIA Service Model specification, Section
10.1.2), since index is a required resource within a Service -->
 <name>index</name>
 <type>resource</type>
 </Resource>
 <Resource xlink:href="/Metadata/Actions/description">
 <!-- EXEMPLARY: NOT required in actual response (see PSIA Service Model specification, Section
10.1.2), since description is a required resource within a Service -->
 <name>description</name>
 <type>resource</type>
 </Resource>
 <Resource xlink:href="/Metadata/Actions/triggers">
 <name>Event trigger settings</name>
 <type>resource</type>
 </Resource>
 <Resource xlink:href="/Metadata/Actions/schedule">
 <!-- PSIA optional resource within a Service -->
 <name>Event scheduling settings</name>
 <type>resource</type>
 </Resource>
 <Resource xlink:href="/Metadata/Actions/notification">
 <name>Event notification types and settings</name>
 <type>service</type>
 <!-- indexr would recursively return nested resources -->
 </Resource>

</ResourceList>

10.3.2 /PSIA/Metadata/Actions/description

The ‘description’ resource is as follows. Please note that it gives the base level actions, and
relevant schemas associated with the “/PSIA/Metadata/Actions” service’s first level resources.

URI /PSIA/Metadata/Actions/description Type Resource

Requirement
Level

 Dependent; Required if the ‘event’ Service is present.

Function
PSIA REST resource/object that describes the functional behavior of the
“Metadata/event” service resource (see PSIA Service Model Sections 7, 8, 10 for more
details).

Methods Query String(s) Inbound Data Return Result

GET None None <ResourceDescription>

PUT N/A N/A <ResponseStatus w/error code>

POST N/A N/A <ResponseStatus w/error code>

DELETE N/A N/A <ResponseStatus w/error code>

Notes The ‘GET’ request issued to retrieve an instance of the ‘ResourceDescription’ XML
schema. See the Service Model specification, Section 7, 8, 10, for schema details.

Example
<?xml version="1.0" encoding="UTF-8"?>
<ResourceDescription version="1.0"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:psialliance-org"

109

 xsi:schemaLocation="urn:psialliance-org
 http://www.psialliance.org/schemas/system/1.0/service.xsd">
 <name>/PSIA/Metadata/Actions</name>
 <type>service</type>
 <get>
 <queryStringParameters>none</queryStringParameters>
 <inboundXML>none</inboundXML>
 <function>Metadata Action(s) service</function>
 <returnResult>ResourceDescription</returnResult>
 <notes>none</notes>
 </get>
 <put></put>
 <post></post>
 <delete></delete>
 <name>/PSIA/Metadata/Actions/triggers</name>
 <type>resource</type>
 <get>
 <queryStringParameters>none</queryStringParameters>
 <inboundXML>none</inboundXML>
 <function>Metadata Action(s) trigger settings</function>
 <returnResult>EventTriggerList</returnResult>
 <notes>none</notes>
 </get>
 <put>EventTriggerList</put>
 <post></post>
 <delete></delete>
 <name>/PSIA/Metadata/Actions/schedule</name>
 <type>resource</type>
 <get>
 <queryStringParameters>none</queryStringParameters>
 <inboundXML>none</inboundXML>
 <function>Metadata Action(s) schedule settings</function>
 <returnResult>EventSchedule</returnResult>
 <notes>none</notes>
 </get>
 <put>EventSchedule</put>
 <post></post>
 <delete></delete>
 <name>Metadata/Actions/notification</name>
 <type>resource</type>
 <get>
 <queryStringParameters>none</queryStringParameters>
 <inboundXML>none</inboundXML>
 <function>Metadata event notification methods/settings</function>
 <returnResult>EventNotificationMethods</returnResult>
 <notes>none</notes>
 </get>
 <put>EventNotificationMethods</put>
 <post></post>
 <delete></delete>

</ResourceDescription>

10.3.3 /PSIA/Metadata/Actions/attributes

Each devce or system supporting the Metadata ‘Actions’ service MUST also support an
‘attributes’ resource. The function of this resource is to advertise to prospective consumers what
level of functional support is present on any given metadata/event source. The information below
describes the operational behavior of the “/PSIA/Metadata/Actions/attributes” resource.

110

URI /PSIA/Metadata/Actions/attributes Type Resource
Requirement

Level
Required

Function Metadata/Event ‘Actions’ service’s functional attributes.
Methods Query

String(s)
Inbound Data Return Result

GET None None <ActionsAttributes>
PUT N/A N/A <ResponseStatus w/error code>

POST N/A N/A <ResponseStatus w/error code>
DELETE N/A N/A <ResponseStatus w/error code>

Notes This resource defines the /PSIA/Metadata/Actions functional support provided
by a source. Consumers interrogate this resource to determine what function is
provided for event management and notification.

Actions’ Service Attributes XSD (filename=”actionsAttributes.xsd”)
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:psialliance-org" xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:psialliance-org" version="1.0">

<xs:element name="ActionsAttributes">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="maxTriggers" minOccurs="1" maxOccurs="1"
 type="xs:unsignedInt"/>
 <xs:element name="maxSchedules" minOccurs="1" maxOccurs="1"
 type="xs:unsignedInt"/>
 <xs:element name="maxNotifications" minOccurs="1" maxOccurs="1"
 type="xs:unsignedInt"/>
 <xs:element name="notificationTypeList" minOccurs="1" maxOccurs="1"
 type="NotificationTypeList"/>
 <xs:element name="snapshotSupport" minOccurs="1" maxOccurs="1"
 type="xs:boolean"/>
 <xs:element name="videoClipSupport" minOccurs="1" maxOccurs="1"
 type="xs:boolean"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:complexType name="NotificationTypeList">
 <xs:sequence>
 <xs:element name="notificationType" minOccurs="1" maxOccurs="unbounded"
 type="NotificationMethod"/>
 </xs:sequence>
</xs:complexType>

<xs:simpleType name="NotificationMethod">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Email"/>
 <xs:enumeration value="IO"/>
 <xs:enumeration value="RESTAsyncSessionBackSrcSend"/>
 <!-- The following are IPMD legacy/deprecated transports -->
 <xs:enumeration value="HTTP"/>
 <xs:enumeration value="FTP"/>
 <!-- The following are known transports with config'n outside the scope of PSIA
 CMEM -->
 <xs:enumeration value="IM"/>
 <xs:enumeration value="Syslog"/>
 </xs:restriction>
</xs:simpleType>
</xs:schema>

111

As noted by the above information, the ‘attributes’ is a read-only resource. Sources indicate the
functional level of support they offer for event notification. Also indicated are the functional
limits, or capacity, of some of the information used for event notification. The parameters of this
resource’s schema are described individually, below.

Element Name Required/

Optional/
Conditional

Description

“ActionsAttributes::
maxTriggers”

Required This element indicates the mazimum number of
triggers allowed by a source. All sources MUST
support a minimum of 4 (four) triggers; 8 triggers,
or greater, is recommended.

“ActionsAttributes::
maxSchedules”

Required This element indicates the maximum number of
schedules allowed by a source. All sources MUST
support at least 1 (one) schedule. Two schedules, or
more, are highly recommended.

“ActionsAttributes::
maxNotifications”

Required This element indicates the maximum number of
notification method instances allowed by a source.
All sources MUST support a minimum of 6 (six)
notification method instances. More items may need
to be supported based on the notification method
types that a source can activate (see next).

“ActionsAttributes::
notificationTypeList”

Required This element is a list of the notification method
types supported by a source. All source MUST
support at least 1 (one) asynchronous session
notification method. The notification method types
are:
 “RESTAsyncSessionBackSrcSend”: PSIA

CMEM REST/HTTP sessions to remote notes.
Sources MUST support this notification
method.

 “Email”: Email sessions to remote nodes.
 “IO”: Generation of local I/O output signaling.
 “HTTP”: Raw HTTP sessions to remote nodes.
 “FTP”: FTP sessions to remote nodes.
 “IM”: Instant Messaging (reserved for future

use)
 “Syslog”: System logging, via a Syslog session,

of events (reserved for future use).
“ActionsAttributes::
snapshotSupport”

Required This element indicates whether, or not, a Source has
the ability to provide video ‘snapshots’ with an event
notification. For those that are capable, JPEG must
be supported, minimally. Optionally, an I-frame
from the codec type advertised in
“/PSIA/Streaming/channels/<id>” may be used.
Snapshots are used by the PSIA-REST, Email,

112

HTTP and FTP notification method types (see later).
Incorporation of snapshots into the GMCH
framework for REST Asynch sessions is also an
option. MIME types, or file extensions (FTP),
indicate the format of supplied snapshot video
content.

“ActionsAttributes::
videoClipSupport”

Required This element indicates if a Source has the ability to
provide video clips with an event notification. For
Sources that provide video clips, the ‘MP4’ format
(ISO/IEC 14496-14) MUST must be supported
(minimally); this format includes objects such as
attachment or files. As with snapshots, MIME types,
or file extensions (FTP), indicate the format of video
clip contents. Please note that MP4 files/objects
contain internal headers and parameters that identify
codec types, profiles and other properties.

CMEM compliant sources, that support the ‘Actions’ service, MUST meet the above
requirements. Recommendations should be adhered to unless significant resource contraints
prevent implementation.

10.3.4 /PSIA/Metadata/Actions/schedules

The ‘schedules’ resource allows event consumers to set particular time spans for when a device
should perform asynchronous notifications (i.e. PSIA sessions, Email, raw HTTP or FTP
sessions, I/O signaling, etc…) for specific categories of metadata/event occurrences. The
“/PSIA/Metadata/Actions/schedules” resource is actually a list ‘container’ that holds all of the
currently configured ‘schedules’ setup on a particular device. The operational characteristics of
the resource are described below.

URI /PSIA/Metadata/Actions/schedules Type Resource
Requirement

Level
Optional

Function Event schedules.
Methods Query

String(s)
Inbound Data Return Result

GET None None <MetaEventScheduleList>
PUT None <MetaEventScheduleList> <ResponseStatus>

POST N/A <MetaEventSchedule
w/zero ID>

<ResponseStatus w/new ID>

DELETE N/A N/A <ResponseStatus w/error code>
Notes Defines the schedule. The schedule is defined as a date-time range and a set of

time blocks that define when the events are active.

If <ScheduleTimeRange> is not present, the schedule is always valid.

113

Event Schedule List XSD (filename=”eventScheduleList.xsd”)
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:psialliance-org" xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:psialliance-org" version="1.0">

<xs:include schemaLocation="eventSchedule.xsd"/>

<xs:element name="MetaEventScheduleList">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="eventSchedule" minOccurs="0" maxOccurs="unbounded"
 type="MetaEventSchedule"/>
 </xs:sequence>
 <xs:attribute name="version" type="xs:string" use="required" />
 </xs:complexType>
</xs:element>
</xs:schema>

The above schema defines a list for all of the configured event schedules setup on a device or
system. Please note that the “/PSIA/Metadata/Actions/attributes” resource advertises the
maximum number of configured event schedules a particular device or system allows. The
detailed definition of each event schedule element is described in the next section.

10.3.5 /PSIA/Metadata/Actions/schedules/<ID>

Each schedule is comprised of 2 major sections. The first, which is optional, is the
“ScheduleTimeRange” which indicates in which date/time span the schedule is considered valid.
Please note that when a “ScheduleTimeRange” is specified, that schedule is considered ‘inactive’
outside (i.e. prior and after) the designated date/time range. If a “ScheduleTimeRange” is not
supplied, a schedule is considered valid from the moment it is created into perpetuity.
The next ‘required’ section in a schedule, is the actual day-of-week calendar data that determines
when a source is supposed to trigger event notifications. For each day of the week, an entity may
supply a simple timespan in XML time format, or a ‘time map’. A ‘time map’ is a 24-character
string where each hour of the day is indicated as being ‘active’ via a ‘1’, or inactive via a ‘0’.
Operational details are listed below.

URI /PSIA/Metadata/Actions/schedules/<ID> Type Resource
Requirement

Level
Optional/Conditional

Function Event schedules.
Methods Query String(s) Inbound Data Return Result

GET None None <MetaEventSchedule>
PUT None <MetaEventSchedule

w/ID>
<ResponseStatus>

POST N/A <MetaEventSchedule
w/zero ID>

<ResponseStatus w/new ID>

DELETE N/A <MetaEventSchedule> <ResponseStatus>
Notes Defines the schedule. The schedule is defined as a date-time range and a set of

time blocks that define when the events are active.

If <ScheduleTimeRange> is not present, the schedule is always valid.

114

Event Schedule Item XSD (filename=”eventSchedule.xsd”)
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:psialliance-org" xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:psialliance-org" version="1.0">

<xs:element name="MetaEventSchedule" type="MetaEventSchedule"/>

<xs:complexType name="MetaEventSchedule">
 <xs:sequence>
 <xs:element name="scheduleID" minOccurs="1" maxOccurs="1" type="xs:unsignedInt"/>
 <xs:element name="scheduleTimeRange" minOccurs="0" maxOccurs="1"
 type="ScheduleTimeRange">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 This optional field sets the Date/Time range of the
 following
 schedule time blocks. If this element is not present, it
 means
 that the subsequent schedule information is always active.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="timeBlockList" minOccurs="1" maxOccurs="1"
 type="TimeBlockList"/>
 </xs:sequence>
 <xs:attribute name="version" type="xs:string" use="required" />
</xs:complexType>

<xs:complexType name="ScheduleTimeRange">
 <xs:sequence>
 <xs:element name="beginDateTime" minOccurs="1" maxOccurs="1" type="xs:dateTime"/>
 <xs:element name="endDateTime" minOccurs="1" maxOccurs="1" type="xs:dateTime"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="TimeBlockList">
 <xs:sequence>
 <xs:element name="timeBlock" minOccurs="1" maxOccurs="7" type="TimeBlock"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="TimeBlock">
 <xs:sequence>
 <xs:element name="dayOfWeek" minOccurs="1" maxOccurs="1" type="DayOfWeek"/>
 <!-- One of the 2 following time methods MUST be used per TimeBlock!! -->
 <xs:choice>
 <xs:element name="timeSpanList" minOccurs="0" maxOccurs="1"
 type="TimeSpanList"/>
 <xs:element name="timeMapString" minOccurs="0" maxOccurs="1"
 type="TimeMapString">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 This is a 24 character field of boolean values (0 = false,
 1 = true) that denotes each hour of the day and indicates
 whether the event schedule is active for the corresponding
 hour in that day. The first character is 12:00AM. For
 example
 if someone wanted the schedule to be active from 7PM until
 5AM the pattern would be:"1111110000000000000111111".
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:choice>
 </xs:sequence>
</xs:complexType>

<xs:simpleType name="DayOfWeek">
 <xs:restriction base="xs:string">
 <xs:annotation>
 <xs:documentation xml:lang="en">

115

 Sunday = 1, Monday=2, Tuesday=3, etc...
 </xs:documentation>
 </xs:annotation>
 <xs:enumeration value="1"/>
 <xs:enumeration value="2"/>
 <xs:enumeration value="3"/>
 <xs:enumeration value="4"/>
 <xs:enumeration value="5"/>
 <xs:enumeration value="6"/>
 <xs:enumeration value="7"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="TimeMapString">
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-1]{24}"/>
 </xs:restriction>
</xs:simpleType>

<xs:complexType name="TimeSpanList">
 <xs:sequence>
 <xs:element name="timeSpan" minOccurs="1" maxOccurs="unbounded" type="TimeSpan"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="TimeSpan">
 <xs:sequence>
 <xs:element name="beginTime" minOccurs="1" maxOccurs="1" type="xs:time"/>
 <xs:element name="endTime" minOccurs="1" maxOccurs="1" type="xs:time"/>
 </xs:sequence>
</xs:complexType>

</xs:schema>

A schedule entails all of the time span information that is to be employed for governing triggers.
Schedules do not reference triggers; triggers reference schedules (see next section). Therefore,
consumers setup schedules, then configure/create event triggers that reference the corresponding
schedule instance (via an ‘ID’). Each schedule is comprised of the following parameters.

Element Name Required/

Optional/
Conditional
/Choice

Description

“MetaEventSchedule::
scheduleID”

Required Source assigned, unique ID for each schedule
instance.

“MetaEventSchedule::
scheduleTimeRange”
..
“MetaEventSchedule::
scheduleTimeRange::
beginDateTime/endDateTim
e

Optional Optional time range/limit that will govern the
active lifespan of a schedule. If this element is not
present, the subsequent schedule parameters are
infinite; i.e. constantly recurring without a
date/time limit. If this element is present, the
“beginDateTime” and “endDateTime” parameters
specify when a particular schedule instance is
‘active’. After the “endDateTime” the schedule
instance remains, but it has no effect.

“MetaEventSchedule::
timeBlockList”

Required List of all of the ‘active’ periods comprising a
schedule. An ‘active’ period specifies when
triggers are ‘active’ for generating notification.

116

“MetaEventSchedule::
timeBlockList::
timeBlock::
dayOfWeek”

Required Indicator for which day of the week the
corresponding time information applies to. Days
are listed via number where 1=Sunday,
2=Monday, 3=Tuesday,…,7=Saturday.

“MetaEventSchedule::
timeBlockList::
timeBlock::
timeSpanList::
timeSpan”

Required/
Choice

Each designated day must be scheduled either via
A) time spans, or B) via a time map (see
following). A time span uses XML time notation
to give the begin/end times for each active period
of a day (see above) in hours/minutes/seconds.
One, or more time spans, comprise a time span list.

“MetaEventSchedule::
timeBlockList::
timeBlock::
timeMapString”

Required/
Choice

A consumer can optionally use a ‘time map’ to
specify the active periods within a given day of the
week. A time map is a 24 character string where
each hour of the day is represented by a one (‘1’)
or a zero (‘0’). A one indicates an ‘active’ hour in
the day, whereas a zero indicates an inactive hour
in the day.

10.3.5.1 XML Example: Schedule event detection and triggering
The command below, recurringly schedules event detection and triggering from 8:00 AM to 6:00
PM and 10:00 PM to 11:00 PM every Sunday, Tuesday, and Thursday. On Monday and
Wednesday, event detection and triggering is scheduled from 7:00 AM to 5:00 PM.

POST /PSIA/Metadata/Actions/schedules HTTP/1.1

Content-Type: application/xml; charset=“UTF-8”

Content-Length: xxx

<?xml version=“1.0” encoding=“UTF-8”?>

<MetaEventSchedule version=“1.1”>

 <scheduleID>0</dcheduleID>

 <timeBlockList>

 <timeBlock>

 <dayOfWeek>1</dayOfWeek>

 <timeMapString>000000001111111111000010</timeMapString>

 </timeBlock>

 <timeBlock>

 <dayOfWeek>2</dayOfWeek>

 <timeSpanList>

 <timeSpan>

 <beginTime>07:00:00</beginTime>

 <endTime>17:00:00</endTime>

 </timeSpan>

 </timeSpanList>

 </timeBlock>

 <timeBlock>

 <dayOfWeek>3</dayOfWeek>

 <timeMapString>000000001111111111000010</timeMapString>

117

 </timeBlock>

 <timeBlock>

 <dayOfWeek>4</dayOfWeek>

 <timeSpanList>

 <timeSpam>

 <beginTime>07:00:00</beginTime>

 <endTime>17:00:00</endTime>

 </timeSpan>

 </timeSpanList>

 </timeBlock>

 <timeBlock>

 <dayOfWeek>5</dayOfWeek>

 <timeSpanList>

 <timeSpan>

 <beginTime>08:00:00</beginTime>

 <endTime>18:00:00</endTime>

 </timeSpan>

 </timeSpanList>

 </timeBlock>

 <timeBlock>

 <dayOfWeek>6</dayOfWeek>

 <timeSpanList>

 <timeSpan>

 <beginTime>22:00:00</beginTime>

 <endTime>23:00:00</endTime>

 </timeSpan>

 </timeSpanList>

 </timeBlock>

 </timeBlockList>

</MetaEventSchedule>

10.3.6 /PSIA/Metadata/Actions/triggers

The /PSIA/Metadata/Actions/triggers resource enables the ability to manage the conditions that
drive actions (i.e. ‘triggers’). These parameter sets identify the conditions, and the specified
behavior, that occur when the specified conditions are met. Please note that the ‘triggers’
resource reports the list of all the active triggers when read (i.e. ‘GET’). A client has the ability
to create an event trigger item via ‘POST’ to the resource with an ‘EventTrigger’ document.
Updating one, or more, Event Triggers is accomplaihed via a PUT of an “EventTriggerList”
object. The allowable operations, and the XSD for the event trigger list, are described below.

URI /PSIA/Metadata/Actions/triggers Type Resource
Requirement

Level
Conditionally Required when the ‘Actions’ Service is present.

Function Access the list of event triggers.
Methods Query

String(s)
Inbound Data Return Result

GET None None <EventTriggerList>
PUT None <EventTriggerList> <ResponseStatus>

118

POST None <EventTrigger w/zero ID> <ResponseStatus w/new
ID>

DELETE None None <ResponseStatus>
Notes Event triggering defines how the device reacts to particular metadata/event

occurrences, such as video loss or motion detection or I/O port state changes,
etc. See the schema definition in Section 10.3.5 for details of each trigger
condition.

 Event Trigger List XSD (filename=”eventTriggerList.xsd”)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:psialliance-org"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:psialliance-org" version="1.0">

<xs:include
schemaLocation="http://www.psialliance.org/schemas/system/1.0/eventTrigger.xsd"/>

<xs:element name="MetaEventTriggerList">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="eventTrigger" minOccurs="1" maxOccurs="unbounded"
 type="EventTrigger" />
 </xs:sequence>
 <xs:attribute name="version" type="xs:string" use="required" />
 </xs:complexType>
</xs:element>
</xs:schema>

The above schema definition is basically a list of the configured event ‘triggers’ maintained by a
device’s Metadata/Actions service. Each trigger has its own set of parameters governing the
conditons that comprise an ‘event’ and the set of ‘notifications’ that are to be engaged once a
trigger occurs. The definition of an event trigger follows in the subsequent section of this
document.

10.3.7 /PSIA/Metadata/Actions/triggers/<ID>

All created event triggers are ‘contained’ in the /PSIA/Metadata/Actions/triggers’ resource as
elements of a trigger list. Individual ‘trigger’ instances are directly manageable via their
respective IDs. Each ‘trigger’ is a set of parameters identifying the event triggering conditions
and the (potential) actions that may be ascribed to those triggering conditions. Only GET, PUT
and DELETE operations are allowed in specific trigger instances. The methods and definitions
associated with event triggers are listed below.

URI /PSIA/Metadata/Actions/triggers/<ID> Type Resource
Function Access a particular event trigger.
Methods Query String(s) Inbound Data Return Result

GET None None <EventTrigger>
PUT None <EventTrigger w/ID> <ResponseStatus>

POST N/A <EventTrigger w/zero ID> <Response Status w/new ID>
DELETE None <EventTrigger w/ID> <ResponseStatus>

Notes An event trigger determines how the device reacts when a particular event is
detected.

119

<inputIOPortID> is only required if <eventType> is of the category
“/psialliance.org/IO…”.

 Event Trigger XSD (filename=”eventTrigger.xsd”)
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:psialliance-org" xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:psialliance-org" version="1.0">

<xs:include schemaLocation="http://www.psialliance.org/schemas/system/1.0/psiaCommonTypes.xsd"/>

<xs:element name="EventTrigger" type="EventTrigger"/>

<xs:complexType name="EventTrigger">
 <xs:sequence>
 <xs:element name="triggerID" minOccurs="1" maxOccurs="1" type="LocalID" />
 <xs:choice>
 <xs:element name="eventCategories" minOccurs="0" maxOccurs="1"
 type="EventCategoryList">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 The (optional, if pertinent) Metadata/event categories that
 are
 supposed to 'trigger' the event processing
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="inputIOPortID" minOccurs="0" maxOccurs="1"
 type="xs:string">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 The (optional, if pertinent) port ID of the I/O port
 driving
 this source/trigger, if one exists.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:choice>
 <xs:element name="eventTriggerNotificationList" minOccurs="1" maxOccurs="1"
 type="EventTriggerNotificationList"/>
 <!-- Optional,qualifying items below -->
 <xs:element name="eventScheduleID" minOccurs="0" maxOccurs="1" type="LocalID" />
 <xs:element name="intervalBetweenEvents" minOccurs="1" maxOccurs="1"
 type="xs:unsignedInt">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 Minimum interval, in seconds, between triggering events
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="version" type="xs:string" use="required" />
</xs:complexType>

<xs:complexType name="EventCategoryList">
 <xs:sequence>
 <xs:element name="eventCategory" minOccurs="1" maxOccurs="unbounded"
 type="EventCategorySpec" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="EventCategorySpec">
 <xs:sequence>
 <xs:element name="eventMetaID" minOccurs="1" maxOccurs="1" type="xs:anyURI"/>
 <xs:element name="srcChannelID" minOccurs="0" maxOccurs="unbounded"
 type="LocalID">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 If the device/system has metadata input channels,that are not part
 of
 a particular category (i.e. VideoMotion), then this is a potential

120

 'filter' list for defining which channels are to be active input
 for
 the above category. The lack of a channel ID implies all channels
 are
 active.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="EventTriggerNotificationList">
 <xs:sequence>
 <xs:element name="eventTriggerNotificationMethod" minOccurs="1" maxOccurs="1"
 type="LocalID" />
 </xs:sequence>
</xs:complexType>

</xs:schema>

The above schema definition contains the all of the parameters associated with the conditions
qualifying an ‘event’ and the selectable actions that may be assigned to an occurrence. The
elements in this schema are described, in more detail, below.

Name
Required/
Optional/
Conditional

Description

“EventTrigger” Required Multi-parameter element that defines the conditions
that constitute an event, and a set of potential
actions to take when a trigger occurs.

“EventTrigger:id” Required Source assigned unique ID for the respective event
trigger item.

Choice:
“EventTrigger::
eventCategories”
Or…
“EventTrigger”::
inputIOPortId”

Required/
Choice

All event triggers MUST have either:
 A metadata/event category list, in MIDS format

(see type description below), that constitute the
metadata ‘event’ occurrences that cause a
‘trigger’ (with or without channel IDs for each
category); or…

 In I/O input port that will drive the event trigger.
Users must select one of the above stimuli.

“EventTrigger::
eventNotificationList”

Required All event triggers MUST drive some form of
notification. This element comprises a list of one, or
more, notification methods, referenced by the ID(s)
of the notification method(s), that are to be
activated when the above event condition occurs.
Event notifications are covered in Sections 10.3.8
and 10.3.9.

“EventTrigger::
eventScheduleID”

Optional If an event trigger is to be governed via a ‘schedule’
the ID of that schedule must be entered to correlate
the ‘active’ time spans of that schedule to the
trigger event. Please note that ‘scheduled’ triggers
only occur during ‘active’ time periods of a
schedule. See Section 10.3.5 for more information
on Schedules.

121

“EventTrigger::
intervalBetweenEvents”

Optional This parameters specifies the minimum interval
between event triggers. If one, ore more events,
succeed an event before the minimum interval has
expired, they are ignored.

 Common Types
“EventTrigger::
“EventCategoryList::
EventCategorySpec::
eventMetaID”

and, optionally…

“EventTrigger::
“EventCategoryList::
EventCategorySpec::
srcChannelID”

Conditional
(based on
Choice)

eventMetaID: The domain/class/type/SrcID/…
of the metadata/event occurrence that is to drive a
trigger. Please note that most categories include a
channel, track, region, zone, or other ID in the
“SrcID” slot. For those CMEM categories that do
NOT include channel/track/region/zone IDs, and,
the consumer wants to restrict which port/channel
events are active from, the following optional
parameter may be used.

srcChannelID: If a consumer/client needs to
restrict, or qualify, what source is to be the supplier
of the above metadata./event category data, then
this field may be supplied.

Basically, each trigger item is comprised of a stimulus, the responses, and the qualifiers. A
stimulus is comprised of either: A) one or more metadata/event categories, or B) an I/O port that
may go active. When a stimulus occurs, the ‘notification list’ refers to the IDs of the respective
notification mechanisms to be generated upon the activation of a trigger. The qualfiers are:

 Schedules: Any event trigger may optionally be governed by a schedule. Schedules are
setup via the “/PSIA/Metadata/Actions/schedules” resource. Once a schedule has been
setup, an event trigger can reference that schedule instance, via its ID, such that the
schedule will govern when a trigger is considered ‘active’ (i.e. will generate
notifications).

 Interval Time: The interval time determines the minimum time duration that must elapse
between an event and another occurrence, of the same type, before any trigger is
activated. If 2 events occur in less time than specified by the interval time, the second
event is ignored.

The information contained in each trigger item comprises all of the conditions and notification
mechanisms that affect the operation of event triggers. The only other item that may affect the
operation of an event trigger is the “/PSIA/Metadata/Actions/schedule” resource. Please
reference Section 10.3.5 for more details on the scheduling of event trigger/notification
operations.

122

10.3.8 /PSIA/Metadata/Actions/notifications

The purpose of creating event triggers is to generate ‘notifications’. The
“/PSIA/Metadata/Actions/notifications” resource is the list container for all the notification
mechanisms (known as ‘methods’) created on a device or system. The list is comprised of
“EventNotificationMethods” that provide the detailed parameters for each form of notification
employed. The specifics of the individual notification methods is covered in more detail in the
next section. The operational details of the “/PSIA/Metadata/Actions/notifications” resource are
described below.

URI /PSIA/Metadata/Actions/notifications Type Resource

Requirement
Level

Conditionally Required. Must be implemented if the ‘Actions’ Service is
present.

Function Configure notifications.

Methods
Query

String(s)
Inbound Data Return Result

GET None None <EventNotificationList>

PUT None <EventNotificationList> <ResponseStatus>

POST N/A
<EventNotificationMethod

w/zero ID>
<ResponseStatus w/new ID>

DELETE N/A N/A
<ResponseStatus w/error

code>

Notes
The following notification types are supported:

 Event Notification List XSD (filename=”eventNotificationList.xsd”)
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:psialliance-org"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:psialliance-org" version="1.0">

<xs:include
schemaLocation="http://www.psialliance.org/schemas/system/1.0/eventNotificationMethod.xsd
"/>

<xs:element name="EventNotificationList">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="eventNotification" minOccurs="1"
 maxOccurs="unbounded" type="EventNotificationMethod"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

10.3.9 /PSIA/Metadata/Actions/notifications/<ID>

123

The “/PSIA/Actions/Metadata/Actions/notifications/<ID>” resources each described a single
method of activating a notification mechanism. Currently, the notification types that may be
selected are comprised of 4 network session types, and I/O output signaling. Each notification
method describes one, and only one, notification mechanism. The event triggers (see Sections
10.3.6/7) ‘point’ to the specific notification methods by referencing the ID value(s) of the
particular notification method(s) they want activated when that trigger condition occurs.
Operational details are described below.

URI /PSIA/Metadata/Actions/notifications/<ID> Type Resource

Requirement
Level

Conditionally Required. Must be implemented if the ‘Actions’ Service is present.

Function Configure specific notification methods.

Methods Query String(s) Inbound Data Return Result

GET None None <EventNotificationMethod>

PUT None <EventNotificationMethod> <ResponseStatus>

POST N/A
<EventNotificationMethod

w/zero ID>
<ResponseStatus w/new ID>

DELETE N/A <EventNotificationMethod> <ResponseStatus>

Notes
The following notification types are supported:

 Event Notification XSD (filename=”eventNotificationMethod.xsd”)
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:psialliance-org" xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:psialliance-org" version="1.0">

<xs:include schemaLocation="http://www.psialliance.org/schemas/system/1.0/psiaCommonTypes.xsd"/>
<xs:include schemaLocation="http://www.psialliance.org/schemas/system/1.0/metaSessionParms.xsd"/>

<xs:element name="EventNotificationMethod" type="EventNotificationMethod"/>

<xs:complexType name="EventNotificationMethod">
 <xs:sequence>
 <xs:element name="notificationMethodID" minOccurs="1" maxOccurs="1"
 type="LocalID"/>
 <xs:choice>
 <xs:annotation>
 <xs:documentation xml:lang="en">
 One, and only one, of the following Notification types MUST be
 selected
 per notification method instance.
 </xs:documentation>
 </xs:annotation>
 <xs:element name="PSIASessionNotification" minOccurs="0" maxOccurs="1"
 type="PSIANotificationParms"/>
 <xs:element name="EmailNotification" minOccurs="0" maxOccurs="1"
 type="EMailNotification"/>
 <xs:element name="HTTPNotification" minOccurs="0" maxOccurs="1"
 type="HttpNotification"/>
 <xs:element name="FTPNotification" minOccurs="0" maxOccurs="1"
 type="FtpNotification"/>
 <xs:element name="IOSignaling" minOccurs="0" maxOccurs="1"
 type="IOSignal"/>
 </xs:choice>
 <!-- The following qualify the above, but are mainly applicable to Email, HTTP,
 FTP and I/O -->
 <xs:element name="notificationRecurrence" minOccurs="1" maxOccurs="1"
 type="NotificationRecur" />

124

 <xs:element name="notificationInterval" minOccurs="0" maxOccurs="1"
 type="xs:unsignedInt">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 Minimum signal interval, in seconds, between event occurrence
 notification.
 This is ONLY needed when 'recur' is chosen as the notification
 recurrence.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 <xs:attribute name=”version” type=”xs:string” use=”required”/>
</xs:complexType>

<!-- === -->
<!-- Common types -->
<!-- === -->

<xs:simpleType name="NotificationTypeName">
 <xs:restriction base="xs:string">
 <xs:enumeration value="PSIA"/>
 <xs:enumeration value="HTTP"/>
 <xs:enumeration value="Email"/>
 <xs:enumeration value="FTP"/>
 </xs:restriction>
</xs:simpleType>

<xs:complexType name="NetAddressType">
 <xs:sequence>
 <xs:annotation>
 <xs:documentation xml:lang="en">
 All sessions must choose if the target address for the
 notification session is based on a host name (DNS),
 an IPv4 address, or an IPv6 address.
 </xs:documentation>
 </xs:annotation>
 <xs:choice>
 <xs:element name="hostname" minOccurs="0" maxOccurs="1" type="xs:string"/>
 <xs:element name="ipAddress" minOccurs="0" maxOccurs="1"
 type="xs:string"/>
 <xs:element name="ipv6Address" minOccurs="0" maxOccurs="1"
 type="xs:string"/>
 </xs:choice>
 <!-- The following is optional for the IP address choices -->
 <xs:element name="portNumber" minOccurs="0" maxOccurs="1" type="xs:unsignedInt"/>
 </xs:sequence>
</xs:complexType>

<xs:simpleType name="NotificationRecur">
 <xs:restriction base="xs:string">
 <xs:enumeration value="beginning"/>
 <xs:enumeration value="end"/>
 <xs:enumeration value="recur"/>
 </xs:restriction>
</xs:simpleType>

<!-- The following are all related to Event Object Parameters -->

<xs:simpleType name="SnapshotFormatType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="JPEG"/>
 <xs:enumeration value="GIF"/>
 <xs:enumeration value="BMP"/>
 <xs:enumeration value="PNG"/>
 <xs:enumeration value="TIFF"/>
 <xs:enumeration value="Private"/>
 </xs:restriction>
</xs:simpleType>

125

<xs:simpleType name="VideoClipFormatType">
 <xs:restriction base="xs:string">
 <!-- The following is ISO/IEC 14496-14 -->
 <xs:enumeration value="MP4"/>
 <xs:enumeration value="AVI"/>
 <xs:enumeration value="ASF"/>
 <xs:enumeration value="WMV"/>
 <xs:enumeration value="MOV"/>
 <xs:enumeration value="M4V"/>
 <xs:enumeration value="Other"/>
 </xs:restriction>
</xs:simpleType>

<xs:complexType name="EventObjectParms">
 <xs:sequence>
 <xs:annotation>
 <xs:documentation xml:lang="en">
 An 'event object' can be an attachment, body, or file depending
 upon the notification type involved. Email needs body and/or
 attachment definition, where applied. Raw/plain HTTP needs body
 settings. FTP needs the content of its file pushes defined.
 This type identifies parameters that sources need to advertise
 to consumers based on their capabililties.
 </xs:documentation>
 </xs:annotation>
 <xs:element name="metadataURIembedded" minOccurs="0" maxOccurs="1"
 type="xs:boolean"/>
 <xs:element name="metadataXMLembedded" minOccurs="0" maxOccurs="1"
 type="xs:boolean"/>
 <xs:element name="videoURIenabled" minOccurs="0" maxOccurs="1" type="xs:boolean"/>
 <xs:element name="videoSnapshotEnabled" minOccurs="0" maxOccurs="1"
 type="xs:boolean"/>
 <xs:element name="videoClipEnabled" minOccurs="0" maxOccurs="1" type="xs:boolean">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 If one of the above video options is chosen (snapshot or clip),
 then
 the corresponding choices MUST be selected by the user.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="snapshotFormat" minOccurs="0" maxOccurs="1"
 type="SnapshotFormatType"/>
 <xs:element name="videoClipFormat" minOccurs="0" maxOccurs="1"
 type="VideoClipFormatType">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 If 'video clips' are enabled, the following parameters need to be
 set if offered by the source. They are tenths of second units.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="preCaptureDuration" minOccurs="0" maxOccurs="1"
 type="xs:unsignedInt"/>
 <xs:element name="postCaptureDuration" minOccurs="0" maxOccurs="1"
 type="xs:unsignedInt"/>
 </xs:sequence>
</xs:complexType>

<!-- == -->
<!-- PSIA Session notification parameters -->
<!-- == -->

<xs:complexType name="PSIANotificationParms">
 <xs:sequence>
 <xs:element name="PSIASessionParms" minOccurs="0" maxOccurs="1"
 type="MetaSessionParms"/>
 <xs:element name="PSIASessionVideoSettings" minOccurs="0" maxOccurs="1"
 type="EventObjectParms"/>
 </xs:sequence>
</xs:complexType>

126

<!-- == -->
<!-- The EMail notification parameter section -->
<!-- == -->

<xs:complexType name="EMailNotification">
 <xs:sequence>
 <xs:element name="receiverEmailAddress" minOccurs="1" maxOccurs="1"
 type="xs:string"/>
 <xs:element name="senderEmailAddress" minOccurs="1" maxOccurs="1"
 type="xs:string"/>
 <xs:element name="subjectLine" minOccurs="1" maxOccurs="1" type="xs:string"/>
 <xs:element name="bodySetting" minOccurs="0" maxOccurs="1"
 type="EventObjectParms"/>
 <xs:element name="mailAuthenticationMode" minOccurs="1" maxOccurs="1"
 type="MailAuthenticationMode"/>
 <!-- The following are dependent for Email accounts! -->
 <xs:element name="emailAccountName" minOccurs="0" maxOccurs="1" type="xs:string"/>
 <xs:element name="emailPassword" minOccurs="0" maxOccurs="1" type="xs:string"/>
 <xs:element name="networkAddress" minOccurs="0" maxOccurs="1"
 type="NetAddressType"/>
 <!-- All of the following elements are related to the POP EMail protocol or
 account -->
 <xs:choice>
 <xs:element name="popServerHostName" minOccurs="0" maxOccurs="1"
 type="xs:string"/>
 <xs:element name="popServerIPAddress" minOccurs="0" maxOccurs="1"
 type="xs:string"/>
 <xs:element name="popServerIPv6Address" minOccurs="0" maxOccurs="1"
 type="xs:string"/>
 </xs:choice>
 </xs:sequence>
</xs:complexType>

<xs:simpleType name="MailAuthenticationMode">
 <xs:restriction base="xs:string">
 <xs:enumeration value="none"/>
 <xs:enumeration value="SMTP"/>
 <xs:enumeration value="POP/SMTP"/>
 </xs:restriction>
</xs:simpleType>

<!-- === -->
<!-- The raw (non-PSIA) HTTP parameter section -->
<!-- === -->

<xs:complexType name="HttpNotification">
 <xs:sequence>
 <xs:element name="sessionType" minOccurs="1" maxOccurs="1"
 type="HttpSessionType"/>
 <xs:element name="networkAddress" minOccurs="1" maxOccurs="1"
 type="NetAddressType"/>
 <xs:element name="httpContents" minOccurs="1" maxOccurs="1"
 type="EventObjectParms"/>
 <!-- The following are optional for HTTP logins/accounts! -->
 <xs:element name="httpUserName" minOccurs="0" maxOccurs="1" type="xs:string"/>
 <xs:element name="httpPassword" minOccurs="0" maxOccurs="1" type="xs:string"/>
 <xs:element name="httpAuthenticationMethod" minOccurs="1" maxOccurs="1"
 type="HttpAuthMethods"/>
 </xs:sequence>
</xs:complexType>

<xs:simpleType name="HttpSessionType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="http"/>
 <xs:enumeration value="https"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="HttpAuthMethods">
 <xs:restriction base="xs:string">

127

 <xs:enumeration value="basic"/>
 <xs:enumeration value="MD5digest"/>
 <xs:enumeration value="none"/>
 </xs:restriction>
</xs:simpleType>

<!-- ====================================== -->
<!-- The FTP notification parameter section -->
<!-- ====================================== -->

<xs:complexType name="FtpNotification">
 <xs:sequence>
 <xs:element name="networkAddress" minOccurs="1" maxOccurs="1"
 type="NetAddressType"/>
 <!-- The follwing are required for all FTP logins/accounts! -->
 <xs:element name="ftpUserName" minOccurs="1" maxOccurs="1" type="xs:string"/>
 <xs:element name="ftpPassword" minOccurs="1" maxOccurs="1" type="xs:string"/>
 <xs:element name="passiveModeEnabled" minOccurs="1" maxOccurs="1"
 type="xs:boolean"/>
 <xs:element name="ftpUploadPath" minOccurs="1" maxOccurs="1" type="xs:string"/>
 <xs:element name="ftpBaseFileName" minOccurs="1" maxOccurs="1" type="xs:string"/>
 <xs:element name="ftpFileContents" minOccurs="1" maxOccurs="1"
 type="EventObjectParms"/>
 </xs:sequence>
</xs:complexType>

<!-- ====================================== -->
<!-- The I/O Signaling parameters come next -->
<!-- ====================================== -->

<xs:complexType name="IOSignal">
 <xs:sequence>
 <xs:element name="outputIOPortID" minOccurs="1" maxOccurs="1" type="LocalID">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 The port ID of the I/O port to be activated
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>
</xs:schema>

The above schema definition contains all of the parameters associated with the asynchronous
session types, and I/O signaling methods, that may be employed for event notification. Each
event notification method may only define one notification method. Therefore, for each ID value,
there is a one-to-one correlation between that ID and a specific notification method. As
mentioned before, event triggers bind themselves to one, or more, notification methods by
referencing the notification methods’ ID values. The parameters associated with the notification
method XSD are described below.

Element Name Required/

Optional/
Conditional
/Choice

Description

“EventNotificationMethod::
notificationMethodID”

Required Source assigned, unique ID for each notification
method instance.

 Users MUST Select 1 of the following 5 Options
“EventNotificationMethod:: Choice This selection activates the use of a PSIA

128

”PSIASessionNotification” (Required) Asynchronous Notification Session to other nodes
as the method of notification. These session types
are described in Sections 9.3, 10.2.2, and 10.2.4 of
this document. The selector MUST provide the
session parameters outlined in the
“MetaSessionParms” schema described in Section
10.2.4. Support for this notification method is
required.

“EventNotificationMethod::
”EmailNotification”

Choice
(Optional)

This selection activates the use of a basic Email
session, initiated by the source, to notify other
nodes of event activities. The Email session
parameters are discussed in more detail later in this
section.

“EventNotificationMethod::
”IOSignaling”

Choice
(Optional)

For those devices equipped with 5V I/O, this
selection activates the use of direct I/O output as a
signaling method when event activities occur. To
offer this capability, sources have to support the
/PSIA/System/IO…’ resources described in the IP
Media Device spec v1.1, Section 7.5.

“EventNotificationMethod::
”HTTPNotification”

Choice
(Optional)

This selection activates the use of a simple, raw
HTTP session, initiated by the source, to notify
other nodes of event activities. The HTTP session
parameters are discussed in more detail later in this
section. This method is considered a legacy
method and is provided for backwards
compatibility.

“EventNotificationMethod::
”FTPNotification”

Choice
(Optional)

This selection enables the use of an FTP session to
perform notification to other nodes of event
activities. This method is considered a legacy
method and is provided for backwards
compatibility.

“EventNotificationMethod::
”notificationRecurrence”

Required For the above methods, a user may be offered the
ability to determine when, and how often,
notification, or signaling, may occur. The choices
are:
 “beginning”: Notification/signaling occurs at

the start of an event. This is the default.
 “end”: Notification/signaling occurs at the end

of an event.
 “recur”: Notification/signling is to occur in a

recurring manner (see following) whenever a
session error is encountered (for session
notifications) or as normal behavior for
signaling notifications.

“EventNotificationMethod::
”notificationInterval”

Conditional If a consumer selects “recur” (see above), then the
intervening time interval between recurrences. The

129

units are in seconds.
 Common Types
“NetAddressType::
hostname …(or)
ipAddress …(or)
ipv6Address”

“NetAddressType::
portNumber”

Required/
Choice

Optional

All session types that require contacting remote
nodes (Email, HTTP, FTP), need to have the
remote node’s network address specified in one of
the following formats:
 “hostname”: a DNS name.
 “ipAddress”: IPv4 address.
 “ipv6Address”: IPv6 address.
In some cases, a user may need to specify a
particular port number for a session.

“EventObjectParms::
metadataURIembedded”

“EventObjectParms::
metadataXMLembedded”

“EventObjectParms::
videoURIenabled”

“EventObjecyParms::
videoSnapshotEnabled”

“EventObjectParms::
videoClipEnabled”

“EventObjectParms::
snapshotFormat”

Optional/
Dependent

Optional/
Dependent

Optional/
Dependent

Optional/
Dependent

Optional/
Dependent

Dependent

‘metadataURIembedded: For Email, raw HTTP or
FTP this parameter indicates that the email body or
HTTP payload or FTP file contents should consist
of the MIDS of the metadata/event occurrence. For
Email or HTTP the MIME is ‘text/plain’

‘metadataXMLembedded’: Indicates for Email,
HTTP and FTP that the body, payload or file
should contain the metadata/event information in
XML document format. This choice prevents the
use of the embedded MIDS (see above).

‘videoURIenabled’: Indicates that the body,
payload or file should contain a URI referencing a
video clip or snapshot. This only works with the
MIDS choice, not with other selections.

‘videoSnapshotEnabled’: Indicates that an Email
attachment, HTTP payload, or FTP file should
contain a video snapshot in one of the designated
formats (see XSD for details).

‘videoClipEnabled’: Instead of a snapshot, a
source may offer a pre/post video clip attached to
Email, in an HTTP payload, or as an FTP file. The
supported types are defined in the XSD.

‘snapshotFormat’: If snapshots are supported, the
source must supply them in a known format. JPEG
is the preferred format (see XSD).

130

“EventObjectParms::
videoClipFormat”

“EventObjectParms::
preCaptureDuration/
postCaptureDuration”

Dependent

Optional/
Dependent

‘videoClipFormat’: If video clips are supported
they must conform to one of the known formats
(see XSD). ISO 14496-14 (MP4) is the preferred
format.

For sources that support video clips for event
information, they may also provide the ability to
configure the pre/post event capture duration. This
is in tenths of seconds units (i.e. ‘.1’ second).

10.3.9.1 REST Aysnchronous Session Parameters

When ‘PSIASessionNotification’ is the selected notification method, then a
“RESTAsyncSessionBackSourceSend” session is the session/transport type to be employed for
notification. The parameters associated with this session type are described in Sections 10.2.2
(advertised session parameters) and 10.2.4 (setting of the session parameters; this is used in
the Event Notification Method schema used to define the notification session parameters) .

In addition to the PSIA CMEM session parameters identified above, devices and systems that
indicate they have the capability (see Section 10.3.3) to supply video snapshots, or video clips,
with event information, should provide the ability for users to select the attachment of video
objects (snapshots or clips) to the metadata/event information conveyed in a PSIA session. The
only valid “EventObjectParms” (see Common Types above) for PSIA notification sessions are:

Video Option Selection Description
‘videoSnapshotEnabled’ Indicates that the consunmer wants snapshots to accompany

GMCH or XML event information. GMCH events will send
video snapshots as additional objects with MOH headers. XML
events will use a content type of “multipart/mixed”.

‘videoSnapshotFormat’ If video snapshot attributes are enabled, the format of the video
content should be specified (unless the device/system only
supplies one format).

‘videoClipEnabled’ Indicates that the consunmer wants video clips to accompany
GMCH or XML event information. GMCH events will send
video clips as additional objects with MOH headers. XML
events will use a content type of “multipart/mixed”.

‘videoClipFormat’ If video clip attributes are enabled, the format of the video
content should be specified (unless the device/system only
supplies the default format of MP4).

‘pre/postCaptureDuration’ Optional support to configure duration (pre/post) of attached
video clips.

131

Please note that the choices of video snapshot versus video clips are mutually exclusive for
devices and systems that offer both options.

10.3.9.2 Email Notification Method Parameters

When Email is the selected notification method (“EmailNotification”), the parameters below
define the session and content attributes for Email notification.

Element Name Required/

Optional/
Conditional
/Choice

Description

“EmailNotification::
receiverEmailAddress”

Required Email name/account of the target recipient.

“EmailNotification::
senderEmailAddress”

Required Email name/account to be used by the sender for
this notification instance.

“EmailNotification::
subjectLine”

Required Subject line content to be listed for each Email
notification.

“EmailNotification::
bodySetting”

Optional Sources may offer the following settings for an
Email body and/or attachment:
Body Settings --
 metadataURIembedded: Email body

consists of the MIDS of the event. May be
used with video URI also (see below).

 metadataXMLembedded: Email body
consists of an XML document containing the
event information. If this option is chosen, no
other body settings may be selected.

 videoURIenabled: Source provides event
video via a URI reference in the Email body.
The format must be selected using the
snapshot or video clip format options.

Attachment settings --
 videoSnapshotEnabled: Source provides a

video snapshot as an attachment to the Email.
Format MUST be one of the supported
definitions (JPEG is preferred). Or,….

 videoClipEnabled: Source provides a video
clip as an attachment to the Email. Video clip
MUST be one of the supported formats.
Sources may also provide pre/post capture
duration parameters (see EventObjectParms
in prior table).

“EmailNotification::
mailAuthenticationMode”

Required Consumer must select one of the following
options:
 “none”: No authentication is to be performed

132

for the Email session.
 “SMTP”: SMTP authenication is to be used

for the session.
 “POP/SMTP”: POP/SMTP authentication is

to be used for the Email session.
“EmailNotification::
emailAccountName”

Optional/
Dependent

If the remote, target account requires a login,
then the account/user name needs to be provided.

“EmailNotification::
emailPassword”

Optional/
Dependent

If the remote, target account requires a login,
then the password needs to be provided if one is
required..

“EmailNotification::
networkAddress”

Optional If required the network address (IP address or
host name) of the target Email recipient.

“EmailNotification::
popServerHostName /
popServerIPAddress /
popServerIPv6Address”

Optional/
Dependent
(choice)

If POP/SMTP is the chosen Email transport/
authentication mode (see above), then the
address, via IP address or name, of the POP
server needs to be provided.

10.3.9.3 HTTP Notification Method Parameters

When a raw/simple HTTP session is selected as the notification method (“HTTPNotification”)
for event occurrences, the following parameters govern the session mechanics.

Element Name Required/

Optional/
Conditional
/Choice

Description

“HttpNotification::
sessionType”

Required User MUST select either “http” or “https” as
the session type.

“HttpNotification::
networkAddress”

Required
(choice)

User MUST provide either the IPv4/IPv6
address, or host name, of the target HTTP
recipient.

“HttpNotification::
bodySetting”

Required User MUST select from a choice of paramters
that determine the structure of the HTTP POST
signal. Options are:
Body Settings --
 metadataURIembedded: HTTP

body/payload consists of the MIDS of the
event. May be used with video URI also (see
below).

 metadataXMLembedded: HTTP body/
payload consists of an XML document
containing the event information. If this
option is chosen, no other body settings may
be selected.

133

 videoURIenabled: Source provides event
video via a URI reference in the HTTP
body/payload. If chosen, the format must be
selected using the snapshot or video clip
format options below.

Video settings --
 videoSnapshotEnabled: Source provides a

video snapshot as the body of an HTTP
message using the appropriate MIME type
(e.g. ‘image/jpeg’). Format MUST be one of
the supported definitions (JPEG is preferred).
Or,….

 videoClipEnabled: Source provides a video
clip as the body of an HTTP message using
the appropriate MIME type. Video clip
MUST be one of the supported formats.
Sources may also provided pre/post capture
duration paramters (see EventObjectParms in
preceding table).

“HttpNotification::
httpUserName / (and)
httpPassword”

Optional Sources are required to offer support for HTTP
login accounts as an option. If the target HTTP
recipient requires a login, the user MUST enter
the name/password information.

“HttpNotification::
httpAuthenticationMethod”

Required Users MUST indicate if an HTTP notification
sessions employs HTTP authentication. Choices
are:
‘none’: No HTTP authentication is needed.
‘basic’: RFC 2616 Basic authentication is
employed for the HTTP notification session.
‘MD5digest’: RFC 2616 Digest-based
authentication is employed for the HTTP
notification session.

10.3.9.4 FTP Notification Method Parameters

The use of FTP sessions to provide Event notification are defined by the parameters listed below.

Element Name Required/

Optional/
Conditional
/Choice

Description

“FtpNotification::
networkAddress”

Required
(choice)

User MUST provide either the IPv4/IPv6
address, or host name, of the target FTP server.

“FtpNotification:: Required User name of the FTP login required at the FTP

134

ftpUserName” server.
“FtpNotification::
ftpPassword”

Required Password of the FTP login required at the FTP
server (may be empty; i.e. “”).

“FtpNotification::
passiveModeEnabled

Required User MUST indicate if PASSIVE (true) or
ACTIVE (false) FTP session mode is to be
employed.

“FtpNotification::
ftpUploadPath”

Required Path of where the Source is to deposit the event
information.

“ftpNotification::
ftpBaseFileName”

Required File name base to use when depositing event
information. The data/time is appended to the
end of this name to guarantee uniqueness. E.g. a
base file name of “my-event-info” would render
the following for event information occurring on
June 21st, 2010 at 10:31:26.44 AM: “my-event-
infoJune-21-2010-10.31.26.44.txt”. Please note
that the file extension will depend upon the file
contents selected to be used (see next).

“ftpNotification::
ftpFileContents”

Required User MUST select from a choice of parameters
that determine the contents of the FTP file sent.
Options are:
Body Settings --
 metadataURIembedded: FTP file consists

of the MIDS of the event. May be used with
video URI also (see below).

 metadataXMLembedded: FTP file consists
of an XML document containing the event
information. If this option is chosen, no other
body settings may be selected.

 videoURIenabled: Source provides event
video via a URI reference in the FTP file
contents. If chosen, the format must be
selected using the snapshot or video clip
format options below.

Video settings --
 videoSnapshotEnabled: Source provides a

video snapshot as the contents of an FTP file
using the appropriate file extension type (e.g.
‘*.jpg’). Format MUST be one of the
supported definitions (JPEG is preferred).
Or,….

 videoClipEnabled: Source provides a video
clip as the contentsbody of an FTP file using
the appropriate file extension type (i.e.
‘*.mp4’ or ‘*.avi’, etc.). Video clip MUST
be one of the supported formats. Sources
may also provided pre/post capture duration

135

paramters (see EventObjectParms in
preceding table).

Unlike HTTP, FTP may offer both text/XML
files AND video content at the same time. For
Sources that offer this level of function, 2 files
would be deposited per event occurrence. The
file extensions would differentiate the contents
whereas the file names would be the same (e.g.
“myEvent-June-21-2010-10.31.26.44.xml” and
“myEvent-June-21-2010-10.31.26.44.mp4”
would indicate that an event deposited an XML
event record and an MP4 formatted video clip).

10.3.9.5 I/O Signaling Notification Method Paramters
I/O Signaling is a unique form of notification. For this mode of notification to be supported,
Sources must support the PSIA “/System/IO/outputs” resource structures listed in the IP Media
Device Specification v1.1 in Sections 7.5.5 – 7.5.9. For automated signaling, based on events,
the following parameters define this form of notification.

Element Name Required/

Optional/
Dependent

Description

“IOsignal::
outputIOPortID”

Required The ID of the output I/O channel (“/PSIA/
System/IO/<id>) to be activated when an event
occurs.

10.3.10 How Does This Trigger/Schedule/Notify Stuff Work?

The above subsections of Section 10.3 prescribe the data defintions, and basic mechanics, of how
CMEM compliant metadata/event Sources provide varied asynchronous notification services.
However, due to the overall size, and related complexity, it is usually difficult to understand
without an overview of the basics. This section provides a high-level overview to cover the basic
setup and correlation between the trigger, schedule and notification resources.
 The diagram below provides a basic, reference example of some configured resources in
the ‘Metadata/Actions’ service. The diagram also depicts to correlation and linkages between
specific resource instances.

136

10.3.10.1 Metadata/Actions Resource Relationship Diagram

52 /
July 8, 2010

Metadata/Actions Trigger, Schedule, and
Notification Relationships

triggers schedules notifications

trigger(1):
VideoMotion

trigger(2):
I/O[1]

schedule(1) Method(1):
RESTAsynch

Method(2):
Email

Method(3):
I/O[2]

Actions

In the above example, 2 event triggers, 1 schedule, and 3 notification methods have been
configured on a Source. The parenthesis in each resource block indicates the ‘ID’ of that
respective resource. Each of the triggers is described below:

 “/PSIA/Metadata/Actions/triggers/1”: This trigger (‘trigger(1)’) is setup to be active
when “/psialliance.org/VideoMotion” events occur. Since no channel is specified in the
MIDS (e.g. “/psialliance.org/VideoMotion//1”), all video motion detection occurrences
wil generate event triggers. ‘Trigger(1)’ references ‘schedule(1)’ as being the governing
schedule for determining when ‘trigger(1)’ is active. When ‘schedule(1)’ indicates that
‘trigger(1)’ is active, and a video motion event occurs, ‘trigger(1) is configured to
generate a notification method. In this case, ‘notification(1)’ is the referenced notification
method which is setup to generate a PSIA REST Asynchronous notification session (see
Sections 9.3 and 10.2.2). This is the only notification mechanism linked to ‘trigger(1)’.

 “/PSIA/Metadata/Actions/triggers/2”: This trigger (‘trigger(2)’) is setup as an I/O event
trigger. It refences I/O channel #1 (“/PSIA/System/IO/inputs/1”) as the event stimulus.
This trigger is also governed by the ‘schedule(1)’ resource for determining when it is
considered active. (Please note that many triggers can share any of the schedule and
notification resources; there are no restrictions to the linkages between triggers and
schedule/notification resources) When I/O input channel #1 goes active, and the schedule
indicates that ‘trigger(2)’ is active, then 2 notification methods are employed: A)
Notification method #2 (“/PSIA/Metadata/Actions/notifications/2”) is setup as an Email

137

notification; and B) notification method #3 (“/PSIA/Metadata/Actions/notifications/3”)
is setup as output I/O trigger for I/O output port #2 (“/PSIA/System/IO/outputs/2”).

10.3.10.2 Example Setup of Triggers, Scheduling and Notifications

Using the reference example listed in the prior section (see above), a multi-step example is
provided for reference. In this step-by-step example, 1 schedule, 2 event triggers, and 3
notification methods are configured confirming to the diagram in Section 10.3.10.1, above. Each
phase is individually described in the subsections below. Please note that the examples provided
are references, and though they employee many options, may additional combinatorics are
possible.

Step 1: Schedule Setup

Since ‘triggers’ reference both schedules (when employed), and notification methods, these
items must be setup prior to configuring an event trigger. This scenario uses a single schedule to
govern the active time spans for when event triggers are to occur. Step 1 consists of the creation
of a schedule. The operation is as follows:

POST /PSIA/Metadata/Actions/schedules HTTP/1.1
Content-Type: application/xml; charset="UTF-8"
Content-Length: xxx

<?xml version="1.0" encoding="UTF-8"?>
<MetaEventSchedule version="1.0" xmlns="urn:psialliance-org">
 <scheduleID>0</dcheduleID>
 <timeBlockList>
 <timeBlock>
 <dayOfWeek>1</dayOfWeek>
` <timeMapString>111111111111111111111111</timeMapString>`
 </timeBlock>
 <timeBlock>
 <dayOfWeek>2</dayOfWeek>
 <timeSpanList>
 <timeSpan>
 <beginTime>18:00:00</beginTime>
 <endTime>07:00:00</endTime>
 </timeSpan>
 </timeSpanList>
 </timeBlock>
 <timeBlock>
 <dayOfWeek>3</dayOfWeek>
 <timeSpanList>
 <timeSpan>
 <beginTime>18:00:00</beginTime>
 <endTime>07:00:00</endTime>
 </timeSpan>
 </timeSpanList>
 </timeBlock>
 <timeBlock>
 <dayOfWeek>4</dayOfWeek>
 <timeSpanList>
 <timeSpam>
 <beginTime>18:00:00</beginTime>
 <endTime>07:00:00</endTime>
 </timeSpan>
 </timeSpanList>
 </timeBlock>
 <timeBlock>

138

 <dayOfWeek>5</dayOfWeek>
 <timeSpanList>
 <timeSpan>
 <beginTime>18:00:00</beginTime>
 <endTime>07:00:00</endTime>
 </timeSpan>
 </timeSpanList>
 </timeBlock>
 <timeBlock>
 <dayOfWeek>6</dayOfWeek>
 <timeSpanList>
 <timeSpan>
 <beginTime>18:00:00</beginTime>
 <endTime>07:00:00</endTime>
 </timeSpan>
 </timeSpanList>
 </timeBlock>
 <timeBlock>
 <dayOfWeek>7</dayOfWeek>
` <timeMapString>111111111111111111111111</timeMapString>`
 </timeBlock>
 </timeBlockList>
</MetaEventSchedule>

The above schedule is unbounded. Once created, it never expires unless it is explicitly deleted.
The schedule itself has active time spans from 6 PM until 7 AM for weekdays, and is active 24
hours a day on Saturdays and Sundays. When POST’ed, this schedule has no ID number, as
referenced above. Once created, the source assigns this schedule instance an ID of ‘1’
(“/PSIA/Metadata/Actions/schedules/1”).

Step 2: Event Notification Method #1 Creation

The next step consists of the creation of a notification method to be employed by an event
trigger. The operation is as follows:

POST /PSIA/Metadata/Actions/notifications HTTP/1.1
Content-type: application/xml; charset="UTF-8"
Content-Length: xxx

<?xml version="1.0" encoding="UTF-8"?>
<EventNotificationMethod version=”1.1”">
 <notificationMethodID>0</notificationMethodID>
 <PSIASessionNotification>
 <PSIANotificationParms>
 <MetaSessionParms>
 <MetaXportParms>
 <metaSessionID>0</metaSessionID>
 <metaFormat>gmch-psia</MetaFormat>
 <metaSessionProtocolType>RESTAyncSessionBackSourceSend
 </metaSessionProtocolType>
 <metaSessionlogin>
 <authMode>digest</authMode>
 <userLogin>
 <userName>gandalf512</userName>
 <password>wizardsRule</password>
 </userLogin>
 </metaSessionLogin>
 <metaSessionFlowType>datastream</metaSessionFlowType>
 <netAddress>
 <targetIPAddress>206.14.5.70:3016</targetIPAddress>
 </netAddress>
 </MetaXportParms>
 </MetaSessionParms>
 <PSIASessionVideoSettings>

139

 <videoSnapshotEnabled>true</videoSnapshotEnabled>
 <videoSnapshotFormat>JPEG</videoSnapshotFormat>
 </PSIASessionVideoSettings>
 </PSIANotificationParms>
 </PSIASessionNotification>
 <notificationRecurrence>end</notificationRecurrence>
</EventNotificationMethod>

In the above step, a notification method is created for using a PSIA REST-based asynchronous
session to IP address/port number “206.14.5.70:3016”. The session format uses GMCH
encapsulation and the configuration has setup JPEG snapshots to accompany the event
information. Each session requires HTTP digest-based authentication along with a login (see
above). Please note that once this notification method is created it will have an ID of ‘1’
(“/PSIA/Metadata/Actions/notifications/1”).

Step 3: Event Trigger Creation

In this step, an event trigger is created to define the conditions that will drive notification. The
operation is listed below:

POST /PSIA/Metadata/Actions/triggers HTTP/1.1
Content-type: application/xml; charset="UTF-8"
Content-Length: xxx

<?xml version="1.0" encoding="UTF-8"?>
<EventTrigger version="1.1" xmlns="urn:psialliance-org">
 <triggerID>0</triggerID>
 <eventCategories>
 <eventCategory>
 <eventMetaID>/psialliance.org/VideoMotion</eventMetaID>
 </eventCategory>
 <eventCategories>
 <eventNotificationList>
 <eventTriggerNotificationMethod>1</eventNotificationMethod>
 </eventNotificationList>
 <eventScheduleID>1</eventScheduleID>
 <intervalBetweenEvents>1</intervalBetweenEvents>
</EventTrigger>

The above event trigger parameters create a Video Motion trigger with a minimum trigger
interval, between events, of 1 second. This event trigger instance is governed by ‘schedule[1]’
(“/PSIA/Metadata/Actions/schedule/1”) and stimulate event notification method #1
(“/PSIA/Metadata/Actions/notifications/1”) when the schedule is in an ‘active’ phase.

Step 4: New Notification Method #2

As part of the creation of a new event trigger, the user creates a new notification method using
the following operation.

POST /PSIA/Metadata/Actions/notifications HTTP/1.1
Content-type: application/xml; charset="UTF-8"
Content-Length: xxx

<?xml version="1.0" encoding="UTF-8"?>
<EventNotificationMethod version="1.0" xmlns="urn:psialliance-org">
 <notificationMethodID>0</notificationMethodID>
 <EmailNotification>
 <receiverEmailAddress>alert@flimflam.com</receiverEmailAddress>

140

 <senderEmailAddress>cameraAtBackDoor@flimflam.com</receiverEmailAddress>
 <subjectLine>After hours I/O Alert!</subjectLine>
 <bodySetting>
 <metadataXMLembedded>true</metadataXMLembedded>
 <videoSnapshotEnabled>true</videoSnapshotEnabled>
 <videoSnapshotFormat>JPEG</videoSnapshotFormat>
 </bodySetting>
 <mailAuthenticationMode>SMTP</mailAuthenticationMode>
 <emailAccountName>alertlogin</emailAccountName>
 <emailPassword>2soon2tell</emailPassword>
 <networkAddress>
 <ipAddress>147.206.19.5</ipAddress>
 ,/networkAddress>
 </EmailNotification>
 <notificationRecurrence>beginning</notificationRecurrence>
</EventNotificationMethod>

In the above notification parameters, an Email session is defined. The target Email address is
alert@flimflam.com. The sender’s Email pseudonym is cameraAtBackDoor@flimflam.com.
Each Email will have a subject line of “After hours I/O Alert!”. The user has set the Email body
to be XML event information. Additionally, JPEG snapshot attachments have been setup. SMTP
protocol and login information has been provided for accessing the Email target at IP address
“147.206.19.5”. Each Email notification is to occur at the beginning of an event. Once created,
this notification instance has an ID of ‘2’ (“/PSIA/Metadata/Actions/notifications/2”).

Step 5: Another Notification Method, #3, is Created

Another notification method is created as part of configuration. The operation is listed below.

OST /PSIA/Metadata/Actions/notifications HTTP/1.1
Content-type: application/xml; charset="UTF-8"
Content-Length: xxx

<?xml version="1.0" encoding="UTF-8"?>
<EventNotificationMethod version="1.1">
 <notificationMethodID>0</notificationMethodID>
 <IOSignaling>
 <outputIOPortID>2</outputIOPortID>
 </IOSignaling>
 <notificationRecurrence>recur</notificationRecurrence>
 <notificationInterval>1</notificationInterval>
</EventNotificationMethod>

The above notification method is simple. I/O output port #2, is driven active in recurring 1
second intervals. Please note that the device or system has to support a
“/PSIA/System/IO/outputs/2” resource (see IPMD v1.1. Section 7.5) for a notification method to
‘drive’ it. Once created, this notification method is assigned an ID of ‘3’ (“/PSIA/Metadata/
Actions/notifications/3”). In this reference scenario, I/O output #2 is attached to an alarm.

Step 6: Event Trigger #2 is Created

As the last step, a new event trigger is created that utilizes both notification methods #2 and #3.

POST /PSIA/Metadata/Actions/triggers HTTP/1.1
Content-type: application/xml; charset="UTF-8"
Content-Length: xxx

<?xml version="1.0" encoding="UTF-8"?>

141

<EventTrigger version="1.1">
 <triggerID>0</triggerID>
 <inputIOPortID>1</inputIOPortID>
 <eventNotificationList>
 <eventTriggerNotificationMethod>2</eventNotificationMethod>
 <eventTriggerNotificationMethod>3</eventNotificationMethod>
 </eventNotificationList>
 <eventScheduleID>1</eventScheduleID>
 <intervalBetweenEvents>1</intervalBetweenEvents>
</EventTrigger>

This event trigger has I/O port #1 specified as its stimulus. This trigger is also governed by
“/PSIA/Metadata/Actions/schedule/1” (just like the first event trigger). When an I/O event occurs
on input port #1, in and ‘active’ time span, the trigger will cause an Email to be sent with a JPEG
snapshot, and I/O output port # 2 will be driven to cause an alarm.

11 How to Use CMEM (Metadata Services)

The ‘Metadata’ resources listed herein comprise the functional areas for accessing, apprising,
and configuring metadata and event information. The overarching term for these capabilities and
protocos is termed ‘CMEM’ which is the acronym for the ‘Common Metadata/Event Model.’
Since all PSIA sources are to use CMEM for the management of metadata and event
information, it is important to ensure that an overall understanding of how it is intended to work
is not lost in the data and protocol details. Below, a brief overview is provided regarding the
basic steps and mechanisms for detecting and using CMEM functionality.

11.1 Detecting Metadata Services/Resources

All CMEM sources, like every other PSIA device, or source, MUST advertise themselves via
mDNS/DNS-SD. Once a node is discovered, a consumer, or management entity (hereafter
referred to as a ‘client’), needs to interrogate the service and resource structure on a node. This is
done via the use of the ‘index’ resource(s). All CMEM compliant nodes have the
“/PSIA/Metadata/…” service, and subordinate resources, present which indicate that the node
supports CMEM functionality.

11.2 Detecting Metadata Functional Support

Once the “/PSIA/Metadata” service has been detected, clients must read the ‘description’,
‘metadataList’, ‘sessionSupport’, and (optionally) the ‘channels’ resources to determine the basic
functional capabilities supported by a CMEM node. Optionally, a node may also have the
‘broadcasts’ resource that indicates the active multicast sessions that are available for reception.
Additionally, nodes are strongly encouraged to support the “/PSIA/Metadata/Actions” service. If
the ‘Actions’ service is present, it will show up under the ‘index’ resource of the ‘Metadata’
service. ‘Actions’ is interrogated similarly to the ‘Metadata’ service. Its ‘index’ resource
(“/PSIA/Metadata/Actions/index”) indicates which resources are present.

142

11.3 Detecting CMEM v1.1 versus v1.0 Functionality

The easiest, quickest manner for detecting CMEM v1.1 functionality versus CMEM v1.0, is to
read the “/PSIA/Metadata/sessionSupport” resource and interrogate the schema version. All
CMEM v1.1. compliant nodes MUST have a “version=1.1” level in their ‘MetaSessionSupport’
document instance. Please note that this does not obviate the need to interrogate the other
resources listed in the above sections.

11.4 CMEM v1.1 Implementation Requirements

The PSIA Common Metadata and Event Model (CMEM) v1.1 specification obsoletes, and
deprecates, the prior CMEM v1.0 specification. ALL PSIA implementers should implement, or
migrate to, CMEM v1.1 instead of version 1.0. This requirement is due to the following factors:

 The CMEM v1.1 specification has quickly followed the CMEM v1.0 spec.
 CMEM v1.1 has greater functionality and is aligned with the PSIA Video Analytics v1.0

specification.
 Migration to the latest standard aids interoperability.
 The functional delta between CMEM v1.1 and v1.0 is not large. In fact, the ‘required’

functional levels are almost identical.
 CMEM v1.1 has improved session management capabilities.

 In addition to the above, the largest addition to CMEM v1.0, that is in CMEM v1.1, is the
‘Actions’ service and its resources. The goal of this addition was to standardize, and replace, the
“/PSIA/Custom/Events” resources listed in the IPMD v1.0/v1.1 specifications such that all nodes
could have common interfaces for scheduling and asynchronous notifications. CMEM v1.0
nodes would not have these capabilities.

143

External Document References

[RFC 1305] “Internet Time Synchronization: the Network Time Protocol”, D. L. Mills,

March 1992
URL:http://www.ietf.org/rfc/rfc1305

[RFC 1945] “Hypertext Transfer Protocol -- HTTP/1.0”, T. Berners-Lee et al, May 1996
URL:http://www.ietf.org/rfc/rfc1945.txt

[RFC 2326] “Real Time Streaming Protocol (RTSP)”, H. Schulzrinne et al, April 1998
URL:http://www.ietf.org/rfc/rfc2326

[RFC 2616] “Hypertext Transfer Protocol -- HTTP/1.1”, R. Fielding et al, June 1999
URL:http://www.ietf.org/rfc/rfc2616.txt

[RFC 2617] “HTTP Authentication: Basic and Digest Authentication”, J. Franks, et al, June 1999
URL:http://www.ietf.org/rfc/rfc2617.txt

[RFC 3339] “Date and Time on the Internet: Timestamps”, G. Klyne, et al, July 2002
URL:http://www.ietf.org/rfc/rfc3339.txt

[RFC 3550] “RTP: A Transport Protocol for Real-Time Applications”, H. Schulzrinne et
al., July 2003
URL:http://www.ietf.org/rfc/rfc3550.txt

[RFC 4566] “SDP: Session Descripton Protocol”, M. Handley, et al, July 2006
URL:www.ietf.org/rfc/rfc4566.txt

[RFC 4571] “Framing Real-time Transport Protocol (RTP) and RTP Control Protocol (RTCP)
Packets over Connection-Oriented Transport”, J. Lazzaro,
July 2006
URL:http://www.ietf.org/rfc/rfc4571.txt

[RFC 5285] “A General Mechanism for RTP Header Extensions”, D. Singer et al, July
2008
URL:http://www.ietf.org/rfc/rfc5285.txt

PSIA Service Model
specification

www.psialliance.org/documents/PSIA-Service-Model_version_1_0.pdf,
March 17, 2009

PSIA IP Media Device
specification

www.psialliance.org/documents/PSIA-IPMD-v1r7.pdf, March 17, 2009

144

Appendix A : PSIA Common Types XSD
 (psiaCommonTypes.xsd)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:psialliance-org" elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="urn:psialliance-org"
version="0.1">

<xs:simpleType name="GlobalID">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 The representation of a GUID, generally the system(ic) id of an element.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:pattern
 value="\{[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-
fA-F0-9]{12}\}"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="LocalID">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 The representation of a 'Local ID' is based on an unsigned
 integer which represents, basically, the index in a resource
 list for a particular item or object. The Local ID is to be used for
 channels, tracks, zones, areas, regions, hardware I/O ports,
 etc. Please note that 'zero' (0) is the NULL ID which indicates
 that a new element/resource needs to be allocated.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:unsignedInt"/>
</xs:simpleType>

<xs:complexType name="TimeSpan">
 <xs:sequence>
 <xs:element name="startTime" minOccurs="1" maxOccurs="1"
 type="xs:dateTime"/>
 <xs:element name="endTime" minOccurs="1" maxOccurs="1"
 type="xs:dateTime"/>
 </xs:sequence>
</xs:complexType>

<xs:simpleType name="ContentType">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 Types of content that can be searched or retrieved
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:enumeration value="video"/>
 <xs:enumeration value="audio"/>
 <xs:enumeration value="metadata"/>
 <xs:enumeration value="text"/>
 <xs:enumeration value="mixed"/>
 <xs:enumeration value="other"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="BaseSizeUnit">
 <xs:restriction base="xs:string">
 <xs:annotation>
 <xs:documentation> The following tags cover storage units
 in megabytes (MBs), gigabytes (GBs), terabytes (TBs),
 petabytes (PBs), exabytes (XBs), mebibytes (MiBs),
 and Gibibytes (GiBs).

145

 </xs:documentation>
 </xs:annotation>
 <xs:enumeration value="MBs"/>
 <xs:enumeration value="GBs"/>
 <xs:enumeration value="TBs"/>
 <xs:enumeration value="PBs"/>
 <xs:enumeration value="XBs"/>
 <xs:enumeration value="MiBs"/>
 <xs:enumeration value="GiBs"/>
 </xs:restriction>
</xs:simpleType>
</xs:schema>

146

Appendix B: CRC32 Source Code

C Source file :

/*--*
 Copyright 2008, 2009
 Roger Richter

 This CRC32 source code is provided AS-IS with no expressed
 or implied warranties, guarantees, protections whatsoever. It
 solely provided as reference code, which may be used by 3rd
 parties at their own risk. Users of this code (i.e. those
 who compile and build executables with this code included
 irrespective of the form used) are granted a non-exclusive
 nontransferable worldwide distribution license in binary form
 as linked into an executable module whether that is a library,
 executable file, or other form of machine executable code.

 NOTES:
 - Code assumes a 32-bit lil-endian machine type!

 --/

#include <crc32fw.h>

static const UINT32 crc32Table[] =
{

0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535,
0x9e6495a3,
0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
0x90bf1d91,
0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551,
0x83d385c7,
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63,
0x8d080df5,
0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd,
0xa50ab56b,
0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf,
0xabd13d59,
0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
0xb8bda50f,
0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab,
0xb6662d3d,
0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5,
0xe8b8d433,
0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97,
0xe6635c01,
0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1,
0xf50fc457,
0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
0xfbd44c65,
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d,
0xd3d6f4fb,
0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f,
0xdd0d7cc9,
0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409,
0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b,
0xc0ba6cad,
0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
0x73dc1683,
0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27,
0x7d079eb1,
0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671,
0x6e6b06e7,

147

0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43,
0x60b08ed5,
0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd,
0x48b2364b,
0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
0x4669be79,
0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9,
0x5505262f,
0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b,
0x5bdeae1d,
0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785,
0x05005713,
0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7,
0x0bdbdf21,
0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
0x18b74777,
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3,
0x166ccf45,
0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d,
0x3e6e77db,
0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f,
0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729,
0x23d967bf,
0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
0x2d02ef8d

};

/*--*
 * UINT32 crc32(crcParm, bufferPtr, bufLen);
 *
 * This function generates a CRC32 result for the buffer passed into
 * this routine. It can be used in chain mode by successively calling
 * it. Therefore, it assumes the CRC value passed into it has already
 * been setup/initialized (0xffffffff) by the caller prior to invocation.
 --/

UINT32 crc32(UINT32 crcParm, UINT8 *pBuffer, UINT32 bufLen)
{
 while (bufLen--)
 crcParm = (crcParm >> 8) ^ crc32Table[((crcParm ^ *pBuffer++) & 0x000000ff)];
#if (__LIL_ENDIAN__)
 UNENDIAN(crcParm);
#endif
 return((crcParm ^ CRC32MASKVAL));
}

H file source (for the above):

/*--*
 * Copyright 2008, 2009
 * Roger Richter

 This CRC32 source code is provided AS-IS with no expressed
 or implied warranties, guarantees, protections whatsoever. It
 solely provided as reference code, which may be used by 3rd
 parties at their own risk. Users of this code (i.e. those
 who compile and build executables with this code included
 irrespective of the form used) are granted a non-exclusive
 nontransferable worldwide distribution license in binary form
 as linked into an executable module whether that is a library,
 executable file, or other form of machine executable code.
 *
 * CRC32.H: Primary include file for CRC32.C source code
 *
 --/

#if !defined(__CRC32FW__)

148

#define __CRC32FW__ 1

#if defined(__cplusplus)
 extern "C" {
#endif

#if defined(_MSC_VER)

 #define __LIL_ENDIAN__ 1
 #define __X86__ 1
 #define __ASM86__ 1
#elif
 /* In the non-MS Visual C/Studio case, you have to set the following
 * manually or insert your own compiler level detection.
 * BTE: I make a default assumption of little-endian x86 environment.
 */
 #define __LIL_ENDIAN__ 1
 #define __X86__ 1
 #define __ASM86__ 0

#endif

#define __REVENDIAN__ 0

/* If we're in a MS VC/x86 environment, use the special instructions, if reversing endian-ness is
needed */
#if (__REVENDIAN__)

#if (__ASM86__)
 #define UNENDIAN(val32) __asm mov eax, val32 __asm bswap eax __asm mov val32, eax
#else
 #define UNENDIAN(val32) \
 val32 = (((val32 >> 24) & 0x000000ff) | ((val32 >> 8) & 0x0000ff00) | \
 ((val32 << 8) & 0x00ff0000) | ((val32 << 24) & 0xff000000))
#endif

#else

#define UNENDIAN(val32)

#endif

#if !defined(UIN64)
 #define UINT64 unsigned long long
#endif
#if !defined(UINT32)
 #define UINT32 unsigned int
#endif
#if !defined(UINT8)
 #define UINT8 unsigned char
#endif

#define CRC32POLYNOMIAL 0xedb88320
#define CRC32MASKVAL 0xffffffff
#define INITCRC(crc) crc = CRC32MASKVAL

/* Prototypes ---------------------------------*/

UINT32 crc32(UINT32 crc, UINT8 *pBuf, UINT32 bufLen);

#if defined(__cplusplus)
}
#endif

#endif

149

Appendix C: GMCH H/Include File

/*--
 *
 * PSIA General Metadata Classification Header (GMCH) include file
 *
 * Copyright 2009, 2010 Physical Security Interoperability Alliance (PSIA)
 *
 * This source code is distributed as reference code for all PSIA members.
 * It is made availabe AS-IS with no expressed or implied warranties. This
 * file may not be distributed except internal to those companies that
 * are PSIA members and only for development purposes. This code is for
 * reference purposes only.
 *
 ---/

/* Protect against multi-inclusion ===*/

#if !defined(__GMCH__)

#define __GMCH__ 1

/* Add support for C++ inclusion ====*/

#if defined(__cplusplus)
 extern "C" {
#endif

/* Types, etc. ---*/

#if !defined(_BASETSD_H_) /* Don't redefine MSVC types */

#if !defined(BYTE)
 #define BYTE unsigned char
#endif
#if !defined(UINT16)
 #define UINT16 unsigned short int
#endif
#if !defined(UINT32)
 #define UINT32 unsigned int
#endif
#if !defined(UINT64)
 #define UINT64 unsigned long long
#endif

#endif

/* Constants, etc. ---*/

#define GMCH_SIGNATURE '/GMCH\r\n\0'
#define GMCH_SIGNATURE_LEN 8
#define GMCH_MIME_TYPE “application/metadata-gmch”
#define GMCH_STREAM_MIME_TYPE “multipart/x-gmch-stream”
#define GMCH_VERSION1 0x0100

#define __GUID_LEN__ 16
#define U32GUIDLEN (__GUID_LEN__/sizeof(UINT32))
#define U64GUIDLEN (__GUID_LEN__/sizeof(UINT64))

/* Values for the GMCH type field ========*/

enum GMCH_TYPE{ GMCH_TYPE_SIMPLE_BIN=0, GMCH_TYPE_SIMPLE_XML,
 GMCH_TYPE_SIMPLE_TEXT, GMCH_TYPE_COMPLEX };

/* Structures, unions, etc. ---*/

150

/* UUID/GUID overlay for various access methods ===*/

typedef union
{
 BYTE guidStrg[__GUID_LEN__];
 UINT32 guidU32[U32GUIDLEN];
 UINT64 guidU64[U64GUIDLEN];
} _GUID_;

/* GMCH structure definition ============*/

typedef struct GMCH
{
 BYTE gmchSignature[GMCH_SIGNATURE_LEN];
 UINT16 gmchVersion;
 BYTE gmchPriority;
 BYTE gmchType;
 UINT32 gmchSize;
 GUID gmchSrcID;
 GUID gmchLinkID;
 UINT64 gmchTime;
 UINT32 gmchSrcLocalID;
 UINT16 gmchNumOfObjects;
 UINT16 gmchMIDSLen;
 UINT32 gmchDomainBTag;
 UINT32 gmchClassBTag;
 UINT32 gmchTypeBTag;
 /* Metadata/Event MIDS (URI) goes here!) */
} GMCH;

 /* This is the same as the above, it
 just includes the MIDS str field */
typedef struct _GMCH
{
 BYTE gmchSignature[GMCH_SIGNATURE_LEN];
 UINT16 gmchVersion;
 BYTE gmchPriority;
 BYTE gmchType;
 UINT32 gmchSize;
 BYTE gmchSrcID[__GUID_LEN__];
 BYTE gmchLinkID[__GUID_LEN__];
 UINT64 gmchTime;
 UINT32 gmchSrcLocalID;
 UINT16 gmchNumOfObjects;
 UINT16 gmchMIDSLen;
 UINT32 gmchDomainBTag;
 UINT32 gmchClassBTag;
 UINT32 gmchTypeBTag;
 BYTE midStr[];
} _GMCH;

/* Multi-Object Header struct def'n =====*/

typedef struct MOH
{
 UINT32 objectSize;
 UINT16 mimeStrLen;
 /* MIME def'n string goes here! */
} MOH;

 /* this is the same as the above, it
 just includes the MIME str field */
typedef struct _MOH
{
 UINT32 objectSize;
 UINT16 mimeStrLen;
 BYTE mimeTyprStr[];
} _MOH;

151

/* Assorted macros, etc. --*/

 /* The following macro maps to the std 'strcmp' return values */
#define CMPGUIDSTR(pGuid1, pGuid2) \
 strncmp((char *)pGuid1, (char *)pGuid2, __GUID_LEN__)

 /* The following macro maps to the std boolean true/false comparison logic */
#define CMPGUID(pGuid1, pGuid2) \
 ((((_GUID_ *pGuid1)->guidU64[0]) == ((_GUID_ *pGuid2)->guidU64[0])) && \
 (((_GUID_ *pGuid1)->guidU64[1]) == ((_GUID_ *pGuid)2->guidU64[1])))

#if defined(__cplusplus)
}
#endif

#endif /* EndIF of multi-inclusion protection */

152

Appendix 1: “VideoMotion” Metadata Class Dictionary

Binary Tag (CRC32) = 0x7194CE37

The following ‘Type’ fields/tags have been reserved within the ‘VideoMotion’ PSIA Metadata
Class. Not all devices that support VideoMotion metadata/events have to support all of the Types
below. These tags are reserved as currently known event definitions. The PSIA IP Media Device
Working Group is the responsible party for publishing the required support.

 “motionStart” : Motion has started in an active ROI.
 “motionStop”: Motion has ceased in an active ROI.
 “motion” : Motion has occurred in an active ROI.
 “motionROIActive”: A ROI has become active.
 “motionROIInactive”: A ROI has gone inactive (for schedule based scenarios).
 “motionUp”: Upwards motion has been detected in a scene in an active ROI.
 “motionDown”: Downwards motion has been detected in an ROI.
 “motion:Left”: Left-wards motion has been detected in an ROI.
 “motionRight”: Right-wards motion has been detected in an ROI.
 “continuousMotion”: Run-on/continuous motion has been detected in an ROI.

An example of one of the above is:
“/psialliance.org/VideoMotion/motionStart”.

153

Appendix 2: “Video” Metadata Class Dictionary

Binary Tag (CRC32) = 0xBD06F528

The following ‘Type’ fields/tags have been reserved within the ‘Video’ PSIA Metadata Class.
Not all devices that support ‘Video’ metadata/events have to support all of the Types below.
These tags are reserved as currently known event definitions. The PSIA IP Media Device Group
is the responsible party for publishing the required support.

 “signalActive” : A video signal on an input channel (hardware port; ‘DVR’ related) has
gone active..

 “signalInactive”: A video signal on an input channel (hardware; ‘DVR’ related) has gone
inactive (no signal).

 “streamInactive”: An input IP-based video stream has gone inactive (i.e. is ‘lost’; NVR
related).

 “streamActive”: An input IP-based video stream has become active (NVR related).
 “signalError”: A video signal error, usually transient, has occurred on an input channel.
 “allDark” : An active scene has gone all dark (usually a normal light level to all dark)..
 “allBright”: An active scene has gone completely bright (usually from an overall

dark/dim level).

An example of one of the above is: “/psialliance.org/Video/signalError”.

154

Appendix 3: “Config” Metadata Class Dictionary

Binary Tag (CRC32) = 0xD3262A4A

The following ‘type; fieds/tags have been reserved within the ‘Config’ PSIA Metadata Class.
This category of metadata indicates changes in the state of the configuration of a device or
system.

 “update” : A configuration update/edit has occurred. The event should contain, at the end
of the MIDS (past the Transaction ID field), the name of the schema updated if only one
was modified.

 “unauthorizedUpdate”: A rejected, unauthorized configuration attempt occurred.

An example of one of the above is:
“/psialliance.org/Config/update/2//StreamingChannel”.

155

Appendix 4: “IO” Metadata Class Dictionary

Binary Tag (CRC32) = 0x8601BAB2

The following ‘type; fields/tags have been reserved within the ‘IO’ PSIA Metadata Class. This
category of metadata indicates changes in the state of the configuration of a device or system.
The owning PSIA working group for this metadata class is the IP Media Device group.

 “active” : An I/O port has gone active, from an inactive state.
 “inactive”:: an I/O port is in an inactive state; usually as a transition from an active state..
 “IOError”: An I/O error has occurred in the operation of the device/port.

An example of one of the above is: “/psialliance.org/IO/active”.

156

Appendix 5: “Audio” Metadata Class Dictionary

Binary Tag (CRC32) = 0xD9BC1991

The following ‘type; fields/tags have been reserved within the ‘Audio’ PSIA Metadata Class.
This category of metadata indicates changes in the state of the audio signal on a particular
channel, or port. The owning PSIA working group for this metadata class is the IP Media Device
group.

 “signalActive” : The audio signal for a specific channel/port has gone active from an
inactive state..

 “signalInactive”: The audio signal has gone inactive from an active state for a particular
channel/port.

 “signalError”: An audio signal error has occurred.
 “levelHigh”: The audio signal has gone from a quiet/low level to a high noise/sound level

(usually set via a configurable threshold).
 “levelLow”: The audio signal has gone from a high or media noise level to a quiet or

silent level (the level is usuall set via a configurable threshold).

An example of one of the above is: “/psialliance.org/Audio/levelHigh”.

157

Appendix 6: “PointOfSale” Metadata Class Dictionary

Binary Tag (CRC32) = 0x9212C808

The following ‘type; fieds/tags have been reserved within the ‘PointOfSale’ PSIA Metadata
Class. This category of metadata indicates that a Retail-related Point-of-Sale transaction has
occurred, of some form. Please note that not all ‘types’ are required to be supported. Devices
should report the transactions they support with as much detail as possible. The owning PSIA
working group for this metadata class is the Recording and Content Management (RaCM) group.

 “sale” : A normal/general transaction has occurred.
 “void”: A ‘void’ transaction has occurred.
 “saleCash”: A cash-based sale transaction has occurred.
 “saleCredit”: A credit-based sale transaction has occurred.
 “saleCheck”: A check-based sale transaction has occurred.
 “saleDebit”: A debit-card sale transaction has occurred.
 “saleAmountTrigger”: A sale that has exceeded a preset amount threshold has occurred.
 “refund”: A refund transaction has occurred.

An example of one of the above is: “/psialliance.org/PointOfSale/void”.

158

Appendix 7: “System” Metadata Class Dictionary

Binary Tag (CRC32) = 0xCEE114BD

The following ‘type; fieds/tags have been reserved within the ‘System’ PSIA Metadata Class.
This category of metadata indicates changes in the state of a device, or system, and any
hardware or base system changes that may occur. The owning PSIA working group for this
metadata class is the System group.

 “boot” : A device or system has booted-up (whether expected or not).
 “fault”: An unrecoverable system error has occurred.
 “shutdown”: A device or system is in the process of shutting-down (i.e. a graceful

reboot). This occurrence should also convey whether the occurrence was based on
external, or internal, stimulus.

 “versionUpdate”: A device or system has completed a successful version update. This
message should be issued prior to ‘shutdown’ to let other nodes know that the update is
about to commence. Therefore this event indicates the successful transfer and validation
of version update binaries, not the actual post-update reboot.

 “offline”: The device/node has been directed, either manually or programmatically, to
go ‘off-line’; i.e. the unit is active but the primary application is inactive. The ‘system’
management interface to the unit is active throughout this period.

 “online”: The device/node, and its primary application, is active. This event usually
occurs after the “offline’ state (see above).

Environmental related items are below:
 “tempTrigger”: A device or system has exceeded an internal temperature threshold.
 “tamperAlarm”: An incident has occurred which has triggered a tamper alert/alarm.
 “voltageError”: The device/node has encountered a voltage level error. For more detail,

one of the following voltage definitions should be used.
 “voltageLow”: A voltage underrun (“brown power”) has occurred.
 “voltageHigh”: A voltage overload has occurred.
 “fanFailure”: A system/device/chassis fan has failed.
 “fanSpeedError”: A system/device/chassis fan is not maintaining adequate air flow.
 “batteryLow”: The system/device’s battery is encountering a low power threshold.
 “batteryFailed”: The system/device’s batter has failed and needs to be replaced.
 “shockAlarm”: A system/device has encountered a shock (i.e. g-force; accelerometer)

threshold.
 “powerSupplyFailed”: An internal power supply has failed. The unit is still operating

(dual power supplies, etc.).
 “upsActive”: A system/device is operating on UPS power (general power has failed).
 “upsFailure”: A UPS power backup failure has occurred.
 “powerNormal”: Normal power has been recovered.

An example of one of the above is: “/psialliance.org/System/shutdown”.

159

160

Appendix 8: “Storage” Metadata Class Dictionary

Binary Tag (CRC32) = 0x9BC722A8

The following ‘type; fieds/tags have been reserved within the ‘Storage’ PSIA Metadata Class.
This category of metadata indicates changes in the state or operation of storage media. The
owning PSIA working group for this metadata class is the RaCM group.

 “mediaFailure” : An unrecoverable storage media error has occurred; usually a disk
failure .

 “readError”: This tag specifically identifies a storage media read error. Usually this
indicates a recoverable or intermittent type error. Otherwise, “mediaFailure” should be
indicated.

 “writeError”: This tag specifically identifies a storage media write error. Usually this
indicates a recoverable or intermittent type error. Otherwise, “mediaFailure” should be
indicated.

 “newMedia”: This tag indicates that a new storage media device, of some sort, has
appeared on a device or system. This type is mostly oriented for the notification of the
attachment of dynamic media types such as USB drives, CD-ROMs, DVDs, and external
storage.

 “mediaGone”: This tag indicates a prior instance of storage media has been detached.
This is useful in cases where a device or system knows storage media hardware is being
removed (i.e. USB, CD/DVD, etc.).

 “capacityThreshold”: The storage has met, and probably exceeded, a set storage
capacity threshold.

 “mediaFull”: The storage media (disk, volume, CD/DVD, etc.) is full. No more capacity
is available.

 “mediaUnformatted”: The storage media (disk, volume, CD/DVD, etc.) is not formatted
and unable to be written to.

 “tempAlarm”: Storage media has encountered a dangerous/damaging temperature
threshold.

An example of one of the above is:
“/psialliance.org/Storage/mediaFailure/2”.

161

Appendix 9: “Metadata” Metadata Class Dictionary

Binary Tag (CRC32) = 0xB6625642

The following ‘type; fieds/tags have been reserved within the ‘Metadata’ PSIA Metadata Class.
This category of metadata indicates changes in the state of the metadata categories and/or source
channels that are supported by a device or system. These dynamic changes are most likely to
occur on Metadata/Event Proxies. The owning PSIA working group for this metadata class is the
System group.

 “update” : A metadata/event update has occurred regarding metadata categories, and/or
input channels, supported by a device.

 “updatedCategories”: This tag specifically identifies that the types of metadata
categories offered by a device/system has changed.

 “updatedChannels”: This tag indicates that the input channel characteristics have
changed. This usually occurs with the addition/activation or deletion/deactivation of input
sources.

An example of one of the above is:
“/psialliance.org/Metadata/updatedCategories”.

162

Appendix 10: “Network” Class Dictionary

Binary Tag (CRC32) = 0x

The following ‘type; fieds/tags have been reserved within the ‘Metadata’ PSIA Metadata Class.
This category of metadata indicates changes in the state of the metadata categories and/or source
channels that are supported by a device or system. These dynamic changes are most likely to
occur on Metadata/Event Proxies. The owning PSIA working group for this metadata class is the
System group.

 “nodeUnreachable” : A node (device, system, etc.) on a network is not ‘reachable’ (i.e.
cannot be contacted or connected to). This error may be caused by an errant IP address,
domain/host name, a blocked network path (i.e. Firewall boundary), or a network outage.

 “connectionLost”: An established network connection (i.e. socket) was disconnected
unexpectedly.

 “connectionRecovered”: A prior, disconnected network connection (i.e. socket) has been
re-established (see “connectionLost”).

 “connectionActive”: A network connection (i.e. socket) has been established.
 “networkInactive”: The physical network connection (MAC or PHY layer) is inactive.
 “networkActive”: The physical network connection (MAC or PHY layer) is active (see

above).
 “networkError”: The network has encountered an error. This usually pertains to the

MAC layer operations of a network.
 “ipNetError” An IP (DLC-layer) network error has occurred.
 “networkStats”: MAC layer statistics are being provided (e.g. RFC 2665).
 “ipNetStats”: IP network layer statistics are being provided (e.g. RFC 4293).
 “networkOverrun”: The MAC layer network interface has encountered traffic overrun.

Network packets/frames have been lost.
 “mtusLost”: Connection/session layer loss of data (i.e. MTUs) has occurred.
 “sessionActive”: Event used as a session level keepalive for HTTP metadata streaming

sessions that have time gaps without information. This type does not have a payload; just
the metaID and time.

An examples of some of the above is:
“/psialliance.org/Network/nodeUnreachable/1/10.5.13.204”,
“/psialliance.org/Network/connectionLost//216.74.33.9”,
“/psialliance.org/Network/networkOverrun/1”

