
1

Modicon
Modbus Protocol
Reference Guide
PI–MBUS–300 Rev. J

DOK- 3

Modicon
Modbus Protocol
Reference Guide
PI–MBUS–300 Rev. J

June 1996

MODICON, Inc., Industrial Automation Systems
One High Street
North Andover, Massachusetts 01845

PI-MBUS–300 Preface iii

Preface

This guide is written for the person who will use Modicon Modbus protocols and
messages for communication in Modicon programmable controller applications.
It describes how messages are constructed, and how transactions take place
using Modbus protocol.

This guide should be used in conjunction with Modicon user guides for the types
of networks and programmable controllers present in the application. Familiarity
with your network layout, and with your control application, is assumed.

The data and illustrations in this book are not binding. We reserve the right to
modify our products in line with our policy of continuous product improvement.
Information in this document is subject to change without notice and should not
be construed as a commitment by Modicon, Inc., Industrial Automation Systems.

Modicon, Inc. assumes no responsibility for any errors that may appear in this
document. If you have any suggestions for improvements, or have found any
errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means,
electronic or mechanical, without the express written permission of Modicon, Inc.,
Industrial Automation Systems. All rights reserved.

The following are trademarks of Modicon, Inc.:

Modbus 984 P190 SM85
ModConnect BM85 RR85 SQ85
Modcom BP85 SA85

DEC is a registered trademark of Digital Equipment Corporation.
VAX and DECNET are trademarks of Digital Equipment Corporation.

IBM is a registered trademark of International Business Machines Corporation.
IBM AT , IBM XT , Micro Channel , and Personal System/2 are trademarks
of International Business Machines Corporation.

Microsoft and MS–DOS are registered trademarks of Microsoft Corporation.

Western Digital is a registered trademark of Western Digital Corporation.

Ethernet is a trademark of Xerox Corporation.

Copyright  1996, Modicon, Inc.
Printed in U. S. A.

PI-MBUS–300Related Publicationsiv

Related Publications

Refer to the following publication for details about the application of Modicon 984
Programmable Controller systems:

GM–0984–SYS 984 Programmable Controller Systems Manual.
Modicon, Inc.

Refer to the following publications for details about the application and installation
of the Modbus Plus network and related communications devices:

GM–MBPL–001 Modbus Plus Network Planning and Installation Guide.
Modicon, Inc.

GM–BM85–001 Modbus Plus Bridge/Multiplexer User’s Guide.
Modicon, Inc.

Refer to the following publication for details about the Modcom III Communications
Software Library for host computer applications:

GM–MC3A–001 Modcom III Communications Software Library User’s Guide.
Modicon, Inc.

PI–MBUS–300 Contents vii

Contents

Chapter 1 Modbus Protocol 1.

Introducing Modbus Protocol 2.

Transactions on Modbus Networks 4.

Transactions on Other Kinds of Networks 4.

The Query–Response Cycle 5.

The Two Serial Transmission Modes 6.

ASCII Mode 6.

RTU Mode 7.

Modbus Message Framing 8.

ASCII Framing 8.

RTU Framing 9.

How the Address Field is Handled 10.

How the Function Field is Handled 10.

Contents of the Data Field 11.

Contents of the Error Checking Field 12.

How Characters are Transmitted Serially 13.

Error Checking Methods 14.

Parity Checking 14.

LRC Checking 15.

CRC Checking 16.

PI–MBUS–300Contentsviii

Chapter 2 Data and Control Functions 17.

Modbus Function Formats 18.

How Numerical Values are Expressed 18.

Data Addresses in Modbus Messages 18.

Field Contents in Modbus Messages 18.

Field Contents on Modbus Plus 20.

Function Codes Supported by Controllers 22.

01 Read Coil Status 24.

02 Read Input Status 26.

03 Read Holding Registers 28.

04 Read Input Registers 30.

05 Force Single Coil 32.

06 Preset Single Register 34.

07 Read Exception Status 36.

11 (0B Hex) Fetch Comm Event Ctr 38.

12 (0C Hex) Fetch Comm Event Log 40.

15 (0F Hex) Force Multiple Coils 44.

16 (10 Hex) Preset Multiple Regs 46.

17 (11 Hex) Report Slave ID 48.

20 (14Hex) Read General Reference 58.

21 (15Hex) Write General Reference 62.

22 (16Hex) Mask Write 4X Register 66.

23 (17Hex) Read/Write 4X Registers 68.

24 (18Hex) Read FIFO Queue 70.

PI–MBUS–300 Contents ix

Chapter 3 Diagnostic Subfunctions 73.

Function 08 – Diagnostics 74.

Diagnostic Codes Supported by Controllers 76.

Diagnostic Subfunctions 77.

00 Return Query Data 77.

01 Restart Communications Option 77.

02 Return Diagnostic Register 78.

03 Change ASCII Input Delimiter 81.

04 Force Listen Only Mode 81.

10 (0A Hex) Clear Counters and Diagnostic Register 81.

11 (0B Hex) Return Bus Message Count 82.

12 (0C Hex) Return Bus Communication Error Count 82.

13 (0D Hex) Return Bus Exception Error Count 82.

14 (0E Hex) Return Slave Message Count 83.

15 (0F Hex) Return Slave No Response Count 83.

16 (10 Hex) Return Slave NAK Count 83.

17 (11 Hex) Return Slave Busy Count 84.

18 (12 Hex) Return Bus Character Overrun Count 84.

19 (13 Hex) Return IOP Overrun Count (884) 84.

20 (14 Hex) Clear Overrun Counter and Flag (884) 85.

21 (15 Hex) Get/Clear Modbus Plus Statistics 86.

Modbus Plus Network Statistics 87.

Appendix A Exception Responses 93.

Exception Responses 94.

Exception Codes 96.

Appendix B Application Notes 99.

Maximum Query/Response Parameters 100.

Estimating Serial Transaction Timing 106.

Notes for the 584 and 984A/B/X 108.

Appendix C LRC/CRC Generation 109.

LRC Generation 110.

CRC Generation 112.

PI–MBUS–300Contentsx

Figures

Figure 1 Overview of Modbus Protocol Application 3.
Figure 2 Master–Slave Query–Response Cycle 5.
Figure 3 ASCII Message Frame 8.
Figure 4 RTU Message Frame 9.
Figure 5 Bit Order (ASCII) 13.
Figure 6 Bit Order (RTU) 13.
Figure 7 Master Query with ASCII/RTU Framing 19.
Figure 8 Slave Response with ASCII/RTU Framing 19.
Figure 9 Field Contents on Modbus Plus 21.

Figure 10 Read Coil Status – Query 24.
Figure 11 Read Coil Status – Response 25.

Figure 12 Read Input Status – Query 26.
Figure 13 Read Input Status – Response 27.

Figure 14 Read Holding Registers – Query 28.
Figure 15 Read Holding Registers – Response 29.

Figure 16 Read Input Registers – Query 30.
Figure 17 Read Input Registers – Response 31.

Figure 18 Force Single Coil – Query 32.
Figure 19 Force Single Coil – Response 33.

Figure 20 Preset Single Register – Query 34.
Figure 21 Preset Single Register – Response 35.

Figure 22 Read Exception Status – Query 36.
Figure 23 Read Exception Status – Response 37.

Figure 24 Fetch Communications Event Counter – Query 38.
Figure 25 Fetch Communications Event Counter – Response 39.

Figure 26 Fetch Communications Event Log – Query 40.
Figure 27 Fetch Communications Event Log – Response 41.

PI–MBUS–300 Contents xi

Figure 28 Force Multiple Coils – Query 45.
Figure 29 Force Multiple Coils – Response 45.

Figure 30 Preset Multiple Registers – Query 46.
Figure 31 Preset Multiple Registers – Response 47.

Figure 32 Report Slave ID – Query 48.
Figure 33 Report Slave ID – Response 49.

Figure 34 Read General Reference – Query 60.
Figure 35 Read General Reference – Response 61.

Figure 36 Write General Reference – Query 64.
Figure 37 Write General Reference – Response 65.

Figure 38 Mask Write 4X Register – Query 67.
Figure 39 Mask Write 4X Register – Response 67.

Figure 40 Read/Write 4X Registers – Query 68.
Figure 41 Read/Write 4X Registers – Response 69.

Figure 42 Read FIFO Queue – Query 70.
Figure 43 Read FIFO Queue – Response 71.

Figure 44 Diagnostics – Query 75.
Figure 45 Diagnostics – Response 75.

Figure 46 Master Query and Slave Exception Response 95.

Figure 47 LRC Character Sequence 110.
Figure 48 CRC Byte Sequence 113.

PI–MBUS–300 Modbus Protocol 1

Chapter 1
Modbus Protocol

Introducing Modbus Protocol

The Two Serial Transmission Modes

Modbus Message Framing

Error Checking Methods

PI–MBUS–300Modbus Protocol2

Introducing Modbus Protocol

Modicon programmable controllers can communicate with each other and with
other devices over a variety of networks. Supported networks include the Modicon
Modbus and Modbus Plus industrial networks, and standard networks such as
MAP and Ethernet. Networks are accessed by built–in ports in the controllers or
by network adapters, option modules, and gateways that are available from
Modicon. For original equipment manufacturers, Modicon ModConnect ‘partner’
programs are available for closely integrating networks like Modbus Plus into
proprietary product designs.

The common language used by all Modicon controllers is the Modbus protocol.
This protocol defines a message structure that controllers will recognize and use,
regardless of the type of networks over which they communicate. It describes the
process a controller uses to request access to another device, how it will respond
to requests from the other devices, and how errors will be detected and reported.
It establishes a common format for the layout and contents of message fields.

The Modbus protocol provides the internal standard that the Modicon controllers
use for parsing messages. During communications on a Modbus network, the
protocol determines how each controller will know its device address, recognize a
message addressed to it, determine the kind of action to be taken, and extract any
data or other information contained in the message. If a reply is required, the
controller will construct the reply message and send it using Modbus protocol.

On other networks, messages containing Modbus protocol are imbedded into the
frame or packet structure that is used on the network. For example, Modicon
network controllers for Modbus Plus or MAP, with associated application software
libraries and drivers, provide conversion between the imbedded Modbus message
protocol and the specific framing protocols those networks use to communicate
between their node devices.

This conversion also extends to resolving node addresses, routing paths, and
error–checking methods specific to each kind of network. For example, Modbus
device addresses contained in the Modbus protocol will be converted into node
addresses prior to transmission of the messages. Error–checking fields will also
be applied to message packets, consistent with each network’s protocol. At the
final point of delivery, however – for example, a controller – the contents of the
imbedded message, written using Modbus protocol, define the action to be taken.

PI–MBUS–300 Modbus Protocol 3

Figure 1 shows how devices might be interconnected in a hierarchy of networks
that employ widely differing communication techniques. In message transactions,
the Modbus protocol imbedded into each network’s packet structure provides the
common language by which the devices can exchange data.

BM85

S985

984A/B

AND

MODBUS PLUS

MAP

HOST

PROCESSOR

HOST/MMI

AT/MC–984

AND

S980 (TO MAP)

984–685

AND
MODBUS

UP TO FOUR
MODBUS DEVICES

OR NETWORKS
P230

PROGRAMMER

MODBUS MODBUS

P230

PROGRAMMER

(TO MB PLUS)

Figure 1 Overview of Modbus Protocol Application

PI–MBUS–300Modbus Protocol4

Introducing Modbus Protocol (Continued)

Transactions on Modbus Networks

Standard Modbus ports on Modicon controllers use an RS–232C compatible serial
interface that defines connector pinouts, cabling, signal levels, transmission baud
rates, and parity checking. Controllers can be networked directly or via modems.

Controllers communicate using a master–slave technique, in which only one
device (the master) can initiate transactions (called ‘queries’). The other devices
(the slaves) respond by supplying the requested data to the master, or by taking
the action requested in the query. Typical master devices include host processors
and programming panels. Typical slaves include programmable controllers.

The master can address individual slaves, or can initiate a broadcast message to
all slaves. Slaves return a message (called a ‘response’) to queries that are
addressed to them individually. Responses are not returned to broadcast queries
from the master.

The Modbus protocol establishes the format for the master’s query by placing into
it the device (or broadcast) address, a function code defining the requested action,
any data to be sent, and an error–checking field. The slave’s response message
is also constructed using Modbus protocol. It contains fields confirming the action
taken, any data to be returned, and an error–checking field. If an error occurred in
receipt of the message, or if the slave is unable to perform the requested action,
the slave will construct an error message and send it as its response.

Transactions on Other Kinds of Networks

In addition to their standard Modbus capabilities, some Modicon controller models
can communicate over Modbus Plus using built–in ports or network adapters, and
over MAP, using network adapters.

On these networks, the controllers communicate using a peer–to–peer technique,
in which any controller can initiate transactions with the other controllers. Thus a
controller may operate either as a slave or as a master in separate transactions.
Multiple internal paths are frequently provided to allow concurrent processing of
master and slave transactions.

PI–MBUS–300 Modbus Protocol 5

At the message level, the Modbus protocol still applies the master–slave principle
even though the network communication method is peer–to–peer. If a controller
originates a message, it does so as a master device, and expects a response from
a slave device. Similarly, when a controller receives a message it constructs a
slave response and returns it to the originating controller.

The Query–Response Cycle

Function Code

Data Bytes

Function Code

Query message from Master

Response message from Slave

Eight–Bit
Data Bytes

Eight–Bit

Device Address Device Address

Error Check Error Check

Figure 2 Master–Slave Query–Response Cycle

The Query: The function code in the query tells the addressed slave device what
kind of action to perform. The data bytes contain any additional information that
the slave will need to perform the function. For example, function code 03 will
query the slave to read holding registers and respond with their contents. The
data field must contain the information telling the slave which register to start at
and how many registers to read. The error check field provides a method for the
slave to validate the integrity of the message contents.

The Response: If the slave makes a normal response, the function code in the
response is an echo of the function code in the query. The data bytes contain the
data collected by the slave, such as register values or status. If an error occurs,
the function code is modified to indicate that the response is an error response,
and the data bytes contain a code that describes the error. The error check field
allows the master to confirm that the message contents are valid.

PI–MBUS–300Modbus Protocol6

The Two Serial Transmission Modes

Controllers can be setup to communicate on standard Modbus networks using
either of two transmission modes: ASCII or RTU. Users select the desired mode,
along with the serial port communication parameters (baud rate, parity mode, etc),
during configuration of each controller. The mode and serial parameters must be
the same for all devices on a Modbus network .

The selection of ASCII or RTU mode pertains only to standard Modbus networks.
It defines the bit contents of message fields transmitted serially on those networks.
It determines how information will be packed into the message fields and decoded.

On other networks like MAP and Modbus Plus, Modbus messages are placed into
frames that are not related to serial tranasmission. For example, a request to read
holding registers can be handled between two controllers on Modbus Plus without
regard to the current setup of either controller’s serial Modbus port.

ASCII Mode

When controllers are setup to communicate on a Modbus network using ASCII
(American Standard Code for Information Interchange) mode, each 8–bit byte in a
message is sent as two ASCII characters. The main advantage of this mode is
that it allows time intervals of up to one second to occur between characters
without causing an error.

The format for each byte in ASCII mode is:

Coding System: Hexadecimal, ASCII characters 0–9, A–F
One hexadecimal character contained in each
ASCII character of the message

Bits per Byte: 1 start bit
7 data bits, least significant bit sent first
1 bit for even/odd parity; no bit for no parity
1 stop bit if parity is used; 2 bits if no parity

Error Check Field: Longitudinal Redundancy Check (LRC)

PI–MBUS–300 Modbus Protocol 7

RTU Mode

When controllers are setup to communicate on a Modbus network using RTU
(Remote Terminal Unit) mode, each 8–bit byte in a message contains two 4–bit
hexadecimal characters. The main advantage of this mode is that its greater
character density allows better data throughput than ASCII for the same baud rate.
Each message must be transmitted in a continuous stream.

The format for each byte in RTU mode is:

Coding System: 8–bit binary, hexadecimal 0–9, A–F
Two hexadecimal characters contained in each
8–bit field of the message

Bits per Byte: 1 start bit
8 data bits, least significant bit sent first
1 bit for even/odd parity; no bit for no parity
1 stop bit if parity is used; 2 bits if no parity

Error Check Field: Cyclical Redundancy Check (CRC)

PI–MBUS–300Modbus Protocol8

Modbus Message Framing

In either of the two serial transmission modes (ASCII or RTU), a Modbus message
is placed by the transmitting device into a frame that has a known beginning and
ending point. This allows receiving devices to begin at the start of the message,
read the address portion and determine which device is addressed (or all devices,
if the message is broadcast), and to know when the message is completed.
Partial messages can be detected and errors can be set as a result.

On networks like MAP or Modbus Plus, the network protocol handles the framing
of messages with beginning and end delimiters that are specific to the network.
Those protocols also handle delivery to the destination device, making the
Modbus address field imbedded in the message unnecessary for the actual
transmission. (The Modbus address is converted to a network node address and
routing path by the originating controller or its network adapter.)

ASCII Framing

In ASCII mode, messages start with a ‘colon’ (:) character (ASCII 3A hex), and
end with a ‘carriage return – line feed’ (CRLF) pair (ASCII 0D and 0A hex).

The allowable characters transmitted for all other fields are hexadecimal 0–9, A–F.
Networked devices monitor the network bus continuously for the ‘colon’ character.
When one is received, each device decodes the next field (the address field) to
find out if it is the addressed device.

Intervals of up to one second can elapse between characters within the message.
If a greater interval occurs, the receiving device assumes an error has occurred.
A typical message frame is shown below.

START ADDRESS FUNCTION DATA LRC
CHECK

END

1 CHAR
:

2 CHARS 2 CHARS n CHARS 2 CHARS 2 CHARS
CRLF

Figure 3 ASCII Message Frame

PI–MBUS–300 Modbus Protocol 9

Exception: With the 584 and 984A/B/X controllers, an ASCII message can
normally terminate after the LRC field without the CRLF characters being sent.
An interval of at least one second must then occur. If this happens, the controller
will assume that the message terminated normally.

RTU Framing

In RTU mode, messages start with a silent interval of at least 3.5 character times.
This is most easily implemented as a multiple of character times at the baud rate
that is being used on the network (shown as T1–T2–T3–T4 in the figure below).
The first field then transmitted is the device address.

The allowable characters transmitted for all fields are hexadecimal 0–9, A–F.
Networked devices monitor the network bus continuously, including during the
‘silent’ intervals. When the first field (the address field) is received, each device
decodes it to find out if it is the addressed device.

Following the last transmitted character, a similar interval of at least 3.5 character
times marks the end of the message. A new message can begin after this interval.

The entire message frame must be transmitted as a continuous stream. If a silent
interval of more than 1.5 character times occurs before completion of the frame,
the receiving device flushes the incomplete message and assumes that the next
byte will be the address field of a new message.

Similarly, if a new message begins earlier than 3.5 character times following a
previous message, the receiving device will consider it a continuation of the
previous message. This will set an error, as the value in the final CRC field will not
be valid for the combined messages. A typical message frame is shown below.

START ADDRESS FUNCTION DATA CRC
CHECK

END

T1–T2–T3–T4 8 BITS n x 8 BITS 16 BITS T1–T2–T3–T48 BITS

Figure 4 RTU Message Frame

PI–MBUS–300Modbus Protocol10

Modbus Message Framing (Continued)

How the Address Field is Handled

The address field of a message frame contains two characters (ASCII) or eight
bits (RTU). Valid slave device addresses are in the range of 0 – 247 decimal.
The individual slave devices are assigned addresses in the range of 1 – 247. A
master addresses a slave by placing the slave address in the address field of the
message. When the slave sends its response, it places its own address in this
address field of the response to let the master know which slave is responding.

Address 0 is used for the broadcast address, which all slave devices recognize.
When Modbus protocol is used on higher level networks, broadcasts may not be
allowed or may be replaced by other methods. For example, Modbus Plus uses a
shared global database that can be updated with each token rotation.

How the Function Field is Handled

The function code field of a message frame contains two characters (ASCII) or
eight bits (RTU). Valid codes are in the range of 1 – 255 decimal. Of these, some
codes are applicable to all Modicon controllers, while some codes apply only to
certain models, and others are reserved for future use. Current codes are
described in Chapter 2.

When a message is sent from a master to a slave device the function code field
tells the slave what kind of action to perform. Examples are to read the ON/OFF
states of a group of discrete coils or inputs; to read the data contents of a group of
registers; to read the diagnostic status of the slave; to write to designated coils or
registers; or to allow loading, recording, or verifying the program within the slave.

When the slave responds to the master, it uses the function code field to indicate
either a normal (error–free) response or that some kind of error occurred (called
an exception response). For a normal response, the slave simply echoes the
original function code. For an exception response, the slave returns a code that is
equivalent to the original function code with its most–significant bit set to a logic 1.

For example, a message from master to slave to read a group of holding registers
would have the following function code:

0000 0011 (Hexadecimal 03)

PI–MBUS–300 Modbus Protocol 11

If the slave device takes the requested action without error, it returns the same
code in its response. If an exception occurs, it returns:

1000 0011 (Hexadecimal 83)

In addition to its modification of the function code for an exception response, the
slave places a unique code into the data field of the response message. This tells
the master what kind of error occurred, or the reason for the exception.

The master device’s application program has the responsibility of handling
exception responses. Typical processes are to post subsequent retries of the
message, to try diagnostic messages to the slave, and to notify operators.

Contents of the Data Field

The data field is constructed using sets of two hexadecimal digits, in the range of
00 to FF hexadecimal. These can be made from a pair of ASCII characters, or
from one RTU character, according to the network’s serial transmission mode.

The data field of messages sent from a master to slave devices contains
additional information which the slave must use to take the action defined by the
function code. This can include items like discrete and register addresses, the
quantity of items to be handled, and the count of actual data bytes in the field.

For example, if the master requests a slave to read a group of holding registers
(function code 03), the data field specifies the starting register and how many
registers are to be read. If the master writes to a group of registers in the slave
(function code 10 hexadecimal), the data field specifies the starting register, how
many registers to write, the count of data bytes to follow in the data field, and the
data to be written into the registers.

If no error occurs, the data field of a response from a slave to a master contains
the data requested. If an error occurs, the field contains an exception code that
the master application can use to determine the next action to be taken.

The data field can be nonexistent (of zero length) in certain kinds of messages.
For example, in a request from a master device for a slave to respond with its
communications event log (function code 0B hexadecimal), the slave does not
require any additional information. The function code alone specifies the action.

PI–MBUS–300Modbus Protocol12

Modbus Message Framing (Continued)

Contents of the Error Checking Field

Two kinds of error–checking methods are used for standard Modbus networks.
The error checking field contents depend upon the method that is being used.

ASCII

When ASCII mode is used for character framing, the error checking field contains
two ASCII characters. The error check characters are the result of a Longitudinal
Redundancy Check (LRC) calculation that is performed on the message contents,
exclusive of the beginning ‘colon’ and terminating CRLF characters.

The LRC characters are appended to the message as the last field preceding the
CRLF characters.

RTU

When RTU mode is used for character framing, the error checking field contains a
16–bit value implemented as two 8–bit bytes. The error check value is the result
of a Cyclical Redundancy Check calculation performed on the message contents.

The CRC field is appended to the message as the last field in the message.
When this is done, the low–order byte of the field is appended first, followed by the
high–order byte. The CRC high–order byte is the last byte to be sent in the
message.

Additional information about error checking is contained later in this chapter.
Detailed steps for generating LRC and CRC fields can be found in Appendix C.

PI–MBUS–300 Modbus Protocol 13

How Characters are Transmitted Serially

When messages are transmitted on standard Modbus serial networks, each
character or byte is sent in this order (left to right):

Least Significant Bit (LSB) . . . Most Significant Bit (MSB)

With ASCII character framing, the bit sequence is:

Start 1 2 3 4 5 76 Par Stop

With Parity Checking

Start 1 2 3 4 5 76 Stop

Without Parity Checking

Stop

Figure 5 Bit Order (ASCII)

With RTU character framing, the bit sequence is:

Start 1 2 3 4 5 76 Par Stop

With Parity Checking

Start 1 2 3 4 5 76 Stop

Without Parity Checking

Stop

8

8

Figure 6 Bit Order (RTU)

PI–MBUS–300Modbus Protocol14

Error Checking Methods

Standard Modbus serial networks use two kinds of error checking. Parity checking
(even or odd) can be optionally applied to each character. Frame checking (LRC
or CRC) is applied to the entire message. Both the character check and message
frame check are generated in the master device and applied to the message
contents before transmission. The slave device checks each character and the
entire message frame during receipt.

The master is configured by the user to wait for a predetermined timeout interval
before aborting the transaction. This interval is set to be long enough for any
slave to respond normally. If the slave detects a transmission error, the message
will not be acted upon. The slave will not construct a response to the master.
Thus the timeout will expire and allow the master’s program to handle the error.
Note that a message addressed to a nonexistent slave device will also cause a
timeout.

Other networks such as MAP or Modbus Plus use frame checking at a level above
the Modbus contents of the message. On those networks, the Modbus message
LRC or CRC check field does not apply. In the case of a transmission error, the
communication protocols specific to those networks notify the originating device
that an error has occurred, and allow it to retry or abort according to how it has
been setup. If the message is delivered, but the slave device cannot respond, a
timeout error can occur which can be detected by the master’s program.

Parity Checking

Users can configure controllers for Even or Odd Parity checking, or for No Parity
checking. This will determine how the parity bit will be set in each character.

If either Even or Odd Parity is specified, the quantity of 1 bits will be counted in the
data portion of each character (seven data bits for ASCII mode, or eight for RTU).
The parity bit will then be set to a 0 or 1 to result in an Even or Odd total of 1 bits.

For example, these eight data bits are contained in an RTU character frame:

1100 0101

The total quantity of 1 bits in the frame is four. If Even Parity is used, the frame’s
parity bit will be a 0, making the total quantity of 1 bits still an even number (four).
If Odd Parity is used, the parity bit will be a 1, making an odd quantity (five).

PI–MBUS–300 Modbus Protocol 15

When the message is transmitted, the parity bit is calculated and applied to the
frame of each character. The receiving device counts the quantity of 1 bits and
sets an error if they are not the same as configured for that device (all devices on
the Modbus network must be configured to use the same parity check method).

Note that parity checking can only detect an error if an odd number of bits are
picked up or dropped in a character frame during transmission. For example, if
Odd Parity checking is employed, and two 1 bits are dropped from a character
containing three 1 bits, the result is still an odd count of 1 bits.

If No Parity checking is specified, no parity bit is transmitted and no parity check
can be made. An additional stop bit is transmitted to fill out the character frame.

LRC Checking

In ASCII mode, messages include an error–checking field that is based on a
Longitudinal Redundancy Check (LRC) method. The LRC field checks the
contents of the message, exclusive of the beginning ‘colon’ and ending CRLF pair.
It is applied regardless of any parity check method used for the individual
characters of the message.

The LRC field is one byte, containing an 8–bit binary value. The LRC value is
calculated by the transmitting device, which appends the LRC to the message.
The receiving device calculates an LRC during receipt of the message, and
compares the calculated value to the actual value it received in the LRC field.
If the two values are not equal, an error results.

The LRC is calculated by adding together successive 8–bit bytes of the message,
discarding any carries, and then two’s complementing the result. It is performed
on the ASCII message field contents excluding the ‘colon’ character that begins
the message, and excluding the CRLF pair at the end of the message.

In ladder logic, the CKSM function calculates a LRC from the message contents.
For applications using host computers, a detailed example of LRC generation is
contained in Appendix C.

PI–MBUS–300Modbus Protocol16

Error Checking Methods (Continued)

CRC Checking

In RTU mode, messages include an error–checking field that is based on a
Cyclical Redundancy Check (CRC) method. The CRC field checks the contents
of the entire message. It is applied regardless of any parity check method used
for the individual characters of the message.

The CRC field is two bytes, containing a 16–bit binary value. The CRC value is
calculated by the transmitting device, which appends the CRC to the message.
The receiving device recalculates a CRC during receipt of the message, and
compares the calculated value to the actual value it received in the CRC field.
If the two values are not equal, an error results.

The CRC is started by first preloading a 16–bit register to all 1’s. Then a process
begins of applying successive 8–bit bytes of the message to the current contents
of the register. Only the eight bits of data in each character are used for generating
the CRC. Start and stop bits, and the parity bit, do not apply to the CRC.

During generation of the CRC, each 8–bit character is exclusive ORed with the
register contents. Then the result is shifted in the direction of the least significant
bit (LSB), with a zero filled into the most significant bit (MSB) position. The LSB is
extracted and examined. If the LSB was a 1, the register is then exclusive ORed
with a preset, fixed value. If the LSB was a 0, no exclusive OR takes place.

This process is repeated until eight shifts have been performed. After the last
(eighth) shift, the next 8–bit byte is exclusive ORed with the register’s current
value, and the process repeats for eight more shifts as described above. The final
contents of the register, after all the bytes of the message have been applied, is
the CRC value.

When the CRC is appended to the message, the low-order byte is appended first,
followed by the high-order byte.

In ladder logic, the CKSM function calculates a CRC from the message contents.
For applications using host computers, a detailed example of CRC generation is
contained in Appendix C.

PI–MBUS–300 Data and Control Functions 17

Chapter 2
Data and Control Functions

Modbus Function Formats

A Summary of Function Codes

Details of Modbus Functions

PI–MBUS–300Data and Control Functions18

Modbus Function Formats

How Numerical Values are Expressed

Unless specified otherwise, numerical values (such as addresses, codes, or data)
are expressed as decimal values in the text of this section. They are expressed
as hexadecimal values in the message fields of the figures,

Data Addresses in Modbus Messages

All data addresses in Modbus messages are referenced to zero. The first
occurrence of a data item is addressed as item number zero. For example:

The coil known as ‘coil 1’ in a programmable controller is addressed as coil
0000 in the data address field of a Modbus message.

Coil 127 decimal is addressed as coil 007E hex (126 decimal).

Holding register 40001 is addressed as register 0000 in the data address field
of the message. The function code field already specifies a ‘holding register’
operation. Therefore the ‘4XXXX’ reference is implicit.

Holding register 40108 is addressed as register 006B hex (107 decimal).

Field Contents in Modbus Messages

Figure 7 shows an example of a Modbus query message. Figure 8 is an example
of a normal response. Both examples show the field contents in hexadecimal, and
also show how a message could be framed in ASCII or in RTU mode.

The master query is a Read Holding Registers request to slave device address 06.
The message requests data from three holding registers, 40108 through 40110.
Note that the message specifies the starting register address as 0107 (006B hex).

The slave response echoes the function code, indicating this is a normal
response. The ‘Byte Count’ field specifies how many 8–bit data items are being
returned.
It shows the count of 8–bit bytes to follow in the data, for either ASCII or RTU..
With ASCII, this value is one–half the actual count of ASCII characters in the data.
In ASCII, each 4–bit hexadecimal value requires one ASCII character, therefore
two ASCII characters must follow in the message to contain each 8–bit data item.

PI–MBUS–300 Data and Control Functions 19

For example, the value 63 hex is sent as one 8–bit byte in RTU mode (01100011).
The same value sent in ASCII mode requires two bytes, for ASCII ‘6’ (0110110)
and ‘3’ (0110011). The ‘Byte Count’ field counts this data as one 8–bit item,
regardless of the character framing method (ASCII or RTU).

How to Use the Byte Count Field: When you construct responses in buffers,
use a Byte Count value that equals the count of 8–bit bytes in your message data.
The value is exclusive of all other field contents, including the Byte Count field.
Figure 8 shows how the byte count field is implemented in a typical response.

Example ASCII RTU
Field Name (Hex) Characters 8–Bit Field

Header : (colon) None
Slave Address 06 0 6 0000 0110
Function 03 0 3 0000 0011
Starting Address Hi 00 0 0 0000 0000
Starting Address Lo 6B 6 B 0110 1011
No. of Registers Hi 00 0 0 0000 0000
No. of Registers Lo 03 0 3 0000 0011
Error Check LRC (2 chars.) CRC (16 bits)
Trailer CR LF None

Total Bytes: 17 8

QUERY

Figure 7 Master Query with ASCII/RTU Framing

RESPONSE
Example ASCII RTU

Field Name (Hex) Characters 8–Bit Field

Header : (colon) None
Slave Address 06 0 6 0000 0110
Function 03 0 3 0000 0011
Byte Count 06 0 6 0000 0110
Data Hi 02 0 2 0000 0010
Data Lo 2B 2 B 0010 1011
Data Hi 00 0 0 0000 0000
Data Lo 00 0 0 0000 0000
Data Hi 00 0 0 0000 0000
Data Lo 63 6 3 0110 0011
Error Check LRC (2 chars.) CRC (16 bits)
Trailer CR LF None

Total Bytes: 23 11

Figure 8 Slave Response with ASCII/RTU Framing

PI–MBUS–300Data and Control Functions20

Modbus Function Formats (Continued)

Field Contents on Modbus Plus

Modbus messages sent on Modbus Plus networks are imbedded into the Logical
Link Control (LLC) level frame. Modbus message fields consist of 8–bit bytes,
similar to those used with RTU framing.

The Slave Address field is converted to a Modbus Plus routing path by the
sending device. The CRC field is not sent in the Modbus message, because it
would be redundant to the CRC check performed at the High–level Data Link
Control (HDLC) level.

The rest of the message remains as in the standard serial format. The application
software (e.g., MSTR blocks in controllers, or Modcom III in hosts) handles the
framing of the message into a network packet.

Figure 9 shows how a Read Holding Registers query would be imbedded into a
frame for Modbus Plus transmission.

PI–MBUS–300 Data and Control Functions 21

HDLC LEVEL:

PREAMBLE OPENING
 FLAG

 BDCST
ADDRESS MAC / LLC FIELD CRC

CLOSING
 FLAG

MAC LEVEL:

 DEST
ADDRESS

SOURCE
ADDRESS

 MAC
FUNCTION LLC FIELD

LLC LEVEL:

OUTPUT
 PATH

ROUTER
COUNTER

 TRANS
SEQUENCE ROUTING PATH

 BYTE
 COUNT

MODBUS FRAME (MODIFIED)

MODBUS MESSAGE:

FUNCTION
 CODE

STARTING
ADDRESS HI

STARTING
ADDRESS LO

NUMBER OF
REGISTERS HI

NUMBER OF
REGISTERS LO

SLAVE
ADDR

Figure 9 Field Contents on Modbus Plus

PI–MBUS–300Data and Control Functions22

Function Codes Supported by Controllers

The listing below shows the function codes supported by Modicon controllers.
Codes are listed in decimal.

‘Y’ indicates that the function is supported. ‘N’ indicates that it is not supported.

Code Name 384 484 584 884 M84 984

01 Read Coil Status Y Y Y Y Y Y

02 Read Input Status Y Y Y Y Y Y

03 Read Holding Registers Y Y Y Y Y Y

04 Read Input Registers Y Y Y Y Y Y

05 Force Single Coil Y Y Y Y Y Y

06 Preset Single Register Y Y Y Y Y Y

07 Read Exception Status Y Y Y Y Y Y

08 Diagnostics (see Chapter 3)

09 Program 484 N Y N N N N

10 Poll 484 N Y N N N N

11 Fetch Comm. Event Ctr. Y N Y N N Y

12 Fetch Comm. Event Log Y N Y N N Y

13 Program Controller Y N Y N N Y

14 Poll Controller Y N Y N N Y

15 Force Multiple Coils Y Y Y Y Y Y

16 Preset Multiple Registers Y Y Y Y Y Y

17 Report Slave ID Y Y Y Y Y Y

18 Program 884/M84 N N N Y Y N

19 Reset Comm. Link N N N Y Y N

20 Read General Reference N N Y N N Y

21 Write General Reference N N Y N N Y

PI–MBUS–300 Data and Control Functions 23

Code Name 384 484 584 884 M84 984

22 Mask Write 4X Register N N N N N (1)

23 Read/Write 4X Registers N N N N N (1)

24 Read FIFO Queue N N N N N (1)

Notes:

(1) Function is supported in 984–785 only.

PI–MBUS–300Data and Control Functions24

01 Read Coil Status

Description

Reads the ON/OFF status of discrete outputs (0X references, coils) in the slave.
Broadcast is not supported.

Appendix B lists the maximum parameters supported by various controller models.

Query

The query message specifies the starting coil and quantity of coils to be read.
Coils are addressed starting at zero: coils 1–16 are addressed as 0–15.

Here is an example of a request to read coils 20–56 from slave device 17:

Example
Field Name (Hex)

Slave Address 11
Function 01
Starting Address Hi 00
Starting Address Lo 13
No. of Points Hi 00
No. of Points Lo 25
Error Check (LRC or CRC) ––

QUERY

Figure 10 Read Coil Status – Query

PI–MBUS–300 Data and Control Functions 25

Response

The coil status in the response message is packed as one coil per bit of the data
field. Status is indicated as: 1 = ON; 0 = OFF. The LSB of the first data byte
contains the coil addressed in the query. The other coils follow toward the high
order end of this byte, and from ‘low order to high order’ in subsequent bytes.

If the returned coil quantity is not a multiple of eight, the remaining bits in the final
data byte will be padded with zeros (toward the high order end of the byte). The
Byte Count field specifies the quantity of complete bytes of data.

Here is an example of a response to the query on the opposite page:

Example
Field Name (Hex)

Slave Address 11
Function 01
Byte Count 05
Data (Coils 27–20) CD
Data (Coils 35–28) 6B
Data (Coils 43–36) B2
Data (Coils 51–44) 0E
Data (Coils 56–52) 1B
Error Check (LRC or CRC) ––

RESPONSE

Figure 11 Read Coil Status – Response

The status of coils 27–20 is shown as the byte value CD hex, or binary 1100 1101.
Coil 27 is the MSB of this byte, and coil 20 is the LSB. Left to right, the status of
coils 27 through 20 is: ON–ON–OFF–OFF–ON–ON–OFF–ON.

By convention, bits within a byte are shown with the MSB to the left, and the LSB
to the right. Thus the coils in the first byte are ‘27 through 20’, from left to right.
The next byte has coils ‘35 through 28’, left to right. As the bits are transmitted
serially, they flow from LSB to MSB: 20 . . . 27, 28 . . . 35, and so on.

In the last data byte, the status of coils 56–52 is shown as the byte value 1B hex,
or binary 0001 1011. Coil 56 is in the fourth bit position from the left, and coil 52 is
the LSB of this byte. The status of coils 56 through 52 is: ON–ON–OFF–ON–ON.
Note how the three remaining bits (toward the high order end) are zero–filled.

PI–MBUS–300Data and Control Functions26

02 Read Input Status

Description

Reads the ON/OFF status of discrete inputs (1X references) in the slave.
Broadcast is not supported.

Appendix B lists the maximum parameters supported by various controller models.

Query

The query message specifies the starting input and quantity of inputs to be read.
Inputs are addressed starting at zero: inputs 1–16 are addressed as 0–15.

Here is an example of a request to read inputs 10197–10218 from slave device
17:

Example
Field Name (Hex)

Slave Address 11
Function 02
Starting Address Hi 00
Starting Address Lo C4
No. of Points Hi 00
No. of Points Lo 16
Error Check (LRC or CRC) ––

QUERY

Figure 12 Read Input Status – Query

PI–MBUS–300 Data and Control Functions 27

Response

The input status in the response message is packed as one input per bit of the
data field. Status is indicated as: 1 = ON; 0 = OFF. The LSB of the first data
byte contains the input addressed in the query. The other inputs follow toward the
high order end of this byte, and from ‘low order to high order’ in subsequent bytes.

If the returned input quantity is not a multiple of eight, the remaining bits in the final
data byte will be padded with zeros (toward the high order end of the byte). The
Byte Count field specifies the quantity of complete bytes of data.

Here is an example of a response to the query on the opposite page:

Example
Field Name (Hex)

Slave Address 11
Function 02
Byte Count 03
Data (Inputs 10204–10197) AC
Data (Inputs 10212–10205) DB
Data (Inputs 10218–10213) 35
Error Check (LRC or CRC) ––

RESPONSE

Figure 13 Read Input Status – Response

The status of inputs 10204–10197 is shown as the byte value AC hex, or binary
1010 1100. Input 10204 is the MSB of this byte, and input 10197 is the LSB.
Left to right, the status of inputs 10204 through 10197 is: ON–OFF–ON–OFF–
ON–ON–OFF–OFF.

The status of inputs 10218–10213 is shown as the byte value 35 hex, or binary
0011 0101. Input 10218 is in the third bit position from the left, and input 10213 is
the LSB. The status of inputs 10218 through 10213 is: ON–ON–OFF–ON–OFF–
ON. Note how the two remaining bits (toward the high order end) are zero–filled.

PI–MBUS–300Data and Control Functions28

03 Read Holding Registers

Description

Reads the binary contents of holding registers (4X references) in the slave.
Broadcast is not supported.

Appendix B lists the maximum parameters supported by various controller models.

Query

The query message specifies the starting register and quantity of registers to be
read. Registers are addressed starting at zero: registers 1–16 are addressed as
0–15.

Here is an example of a request to read registers 40108–40110 from slave device
17:

Example
Field Name (Hex)

Slave Address 11
Function 03
Starting Address Hi 00
Starting Address Lo 6B
No. of Points Hi 00
No. of Points Lo 03
Error Check (LRC or CRC) ––

QUERY

Figure 14 Read Holding Registers – Query

PI–MBUS–300 Data and Control Functions 29

Response

The register data in the response message are packed as two bytes per register,
with the binary contents right justified within each byte. For each register, the first
byte contains the high order bits and the second contains the low order bits.

Data is scanned in the slave at the rate of 125 registers per scan for 984–X8X
controllers (984–685, etc), and at the rate of 32 registers per scan for all other
controllers. The response is returned when the data is completely assembled.

Here is an example of a response to the query on the opposite page:

Example
Field Name (Hex)

Slave Address 11
Function 03
Byte Count 06
Data Hi (Register 40108) 02
Data Lo (Register 40108) 2B
Data Hi (Register 40109) 00
Data Lo (Register 40109) 00
Data Hi (Register 40110) 00
Data Lo (Register 40110) 64
Error Check (LRC or CRC) ––

RESPONSE

Figure 15 Read Holding Registers – Response

The contents of register 40108 are shown as the two byte values of 02 2B hex, or
555 decimal. The contents of registers 40109–40110 are 00 00 and 00 64 hex, or
0 and 100 decimal.

PI–MBUS–300Data and Control Functions30

04 Read Input Registers

Description

Reads the binary contents of input registers (3X references) in the slave.
Broadcast is not supported.

Appendix B lists the maximum parameters supported by various controller models.

Query

The query message specifies the starting register and quantity of registers to be
read. Registers are addressed starting at zero: registers 1–16 are addressed as
0–15.

Here is an example of a request to read register 30009 from slave device 17:

Example
Field Name (Hex)

Slave Address 11
Function 04
Starting Address Hi 00
Starting Address Lo 08
No. of Points Hi 00
No. of Points Lo 01
Error Check (LRC or CRC) ––

QUERY

Figure 16 Read Input Registers – Query

PI–MBUS–300 Data and Control Functions 31

Response

The register data in the response message are packed as two bytes per register,
with the binary contents right justified within each byte. For each register, the first
byte contains the high order bits and the second contains the low order bits.

Data is scanned in the slave at the rate of 125 registers per scan for 984–X8X
controllers (984–685, etc), and at the rate of 32 registers per scan for all other
controllers. The response is returned when the data is completely assembled.

Here is an example of a response to the query on the opposite page:

Example
Field Name (Hex)

Slave Address 11
Function 04
Byte Count 02
Data Hi (Register 30009) 00
Data Lo (Register 30009) 0A
Error Check (LRC or CRC) ––

RESPONSE

Figure 17 Read Input Registers – Response

The contents of register 30009 are shown as the two byte values of 00 0A hex, or
10 decimal.

PI–MBUS–300Data and Control Functions32

05 Force Single Coil

Description

Forces a single coil (0X reference) to either ON or OFF. When broadcast, the
function forces the same coil reference in all attached slaves.

Note The function will override the controller’s memory protect state
and the coil’s disable state. The forced state will remain valid until the
controller’s logic next solves the coil. The coil will remain forced if it is
not programmed in the controller’s logic.

Appendix B lists the maximum parameters supported by various controller models.

Query

The query message specifies the coil reference to be forced. Coils are addressed
starting at zero: coil 1 is addressed as 0.

The reguested ON/OFF state is specified by a constant in the query data field.
A value of FF 00 hex requests the coil to be ON. A value of 00 00 requests it to be
OFF. All other values are illegal and will not affect the coil.

Here is an example of a request to force coil 173 ON in slave device 17:

Example
Field Name (Hex)

Slave Address 11
Function 05
Coil Address Hi 00
Coil Address Lo AC
Force Data Hi FF
Force Data Lo 00
Error Check (LRC or CRC) ––

QUERY

Figure 18 Force Single Coil – Query

PI–MBUS–300 Data and Control Functions 33

Response

The normal response is an echo of the query, returned after the coil state has
been forced.

Here is an example of a response to the query on the opposite page:

Example
Field Name (Hex)

Slave Address 11
Function 05
Coil Address Hi 00
Coil Address Lo AC
Force Data Hi FF
Force Data Lo 00
Error Check (LRC or CRC) ––

RESPONSE

Figure 19 Force Single Coil – Response

PI–MBUS–300Data and Control Functions34

06 Preset Single Register

Description

Presets a value into a single holding register (4X reference). When broadcast, the
function presets the same register reference in all attached slaves.

Note The function will override the controller’s memory protect state.
The preset value will remain valid in the register until the controller’s
logic next solves the register contents. The register’s value will remain
if it is not programmed in the controller’s logic.

Appendix B lists the maximum parameters supported by various controller models.

Query

The query message specifies the register reference to be preset. Registers are
addressed starting at zero: register 1 is addressed as 0.

The reguested preset value is specified in the query data field. M84 and 484
controllers use a 10–bit binary value, with the six high order bits set to zeros.
All other controllers use 16–bit values.

Here is an example of a request to preset register 40002 to 00 03 hex in slave
device 17:

Example
Field Name (Hex)

Slave Address 11
Function 06
Register Address Hi 00
Register Address Lo 01
Preset Data Hi 00
Preset Data Lo 03
Error Check (LRC or CRC) ––

QUERY

Figure 20 Preset Single Register – Query

PI–MBUS–300 Data and Control Functions 35

Response

The normal response is an echo of the query, returned after the register contents
have been preset.

Here is an example of a response to the query on the opposite page:

Example
Field Name (Hex)

Slave Address 11
Function 06
Register Address Hi 00
Register Address Lo 01
Preset Data Hi 00
Preset Data Lo 03
Error Check (LRC or CRC) ––

RESPONSE

Figure 21 Preset Single Register – Response

PI–MBUS–300Data and Control Functions36

07 Read Exception Status

Description

Reads the contents of eight Exception Status coils within the slave controller.
Certain coils have predefined assignments in the various controllers. Other coils
can be programmed by the user to hold information about the contoller’s status,
for example, ‘machine ON/OFF’, ‘heads retracted’, ‘safeties satisfied’, ‘error
conditions exist’, or other user–defined flags. Broadcast is not supported.

The function provides a simple method for accessing this information, because the
Exception Coil references are known (no coil reference is needed in the function).
The predefined Exception Coil assignments are:

Controller Model Coil Assignment

M84, 184/384, 584, 984 1 – 8 User defined

484 257 Battery Status
258 – 264 User defined

884 761 Battery Status
762 Memory Protect Status
763 RIO Health Status
764–768 User defined

Query

Here is an example of a request to read the exception status in slave device 17:

Example
Field Name (Hex)

Slave Address 11
Function 07
Error Check (LRC or CRC) ––

QUERY

Figure 22 Read Exception Status – Query

PI–MBUS–300 Data and Control Functions 37

Response

The normal response contains the status of the eight Exception Status coils.
The coils are packed into one data byte, with one bit per coil. The status of the
lowest coil reference is contained in the least significant bit of the byte.

Here is an example of a response to the query on the opposite page:

Example
Field Name (Hex)

Slave Address 11
Function 07
Coil Data 6D
Error Check (LRC or CRC) ––

RESPONSE

Figure 23 Read Exception Status – Response

In this example, the coil data is 6D hex (0110 1101 binary). Left to right, the coils
are: OFF–ON–ON–OFF–ON–ON–OFF–ON. The status is shown from the
highest to the lowest addressed coil.

If the controller is a 984, these bits are the status of coils 8 through 1.

If the controller is a 484, these bits are the status of coils 264 through 257. In this
example, coil 257 is ON, indicating that the controller’s batteries are OK.

PI–MBUS–300Data and Control Functions38

11 (0B Hex) Fetch Comm Event Counter

Description

Returns a status word and an event count from the slave’s communications event
counter. By fetching the current count before and after a series of messages, a
master can determine whether the messages were handled normally by the slave.
Broadcast is not supported.

The controller’s event counter is incremented once for each successful message
completion. It is not incremented for exception responses, poll commands, or
fetch event counter commands.

The event counter can be reset by means of the Diagnostics function (code 08),
with a subfunction of Restart Communications Option (code 00 01) or Clear
Counters and Diagnostic Register (code 00 0A).

Query

Here is an example of a request to fetch the communications event counter in
slave device 17:

Example
Field Name (Hex)

Slave Address 11
Function 0B
Error Check (LRC or CRC) ––

QUERY

Figure 24 Fetch Communications Event Counter – Query

PI–MBUS–300 Data and Control Functions 39

Response

The normal response contains a two–byte status word, and a two–byte event
count. The status word will be all ones (FF FF hex) if a previously–issued
program command is still being processed by the slave (a busy condition exists).
Otherwise, the status word will be all zeros.

Here is an example of a response to the query on the opposite page:

Example
Field Name (Hex)

Slave Address 11
Function 0B
Status HI FF
Status Lo FF
Event Count Hi 01
Event Count Lo 08
Error Check (LRC or CRC) ––

RESPONSE

Figure 25 Fetch Communications Event Counter – Response

In this example, the status word is FF FF hex, indicating that a program function is
still in progress in the slave. The event count shows that 264 (01 08 hex) events
have been counted by the controller.

PI–MBUS–300Data and Control Functions40

12 (0C Hex) Fetch Comm Event Log

Description

Returns a status word, event count, message count, and a field of event bytes
from the slave. Broadcast is not supported.

The status word and event count are identical to that returned by the Fetch
Communications Event Counter function (11, 0B hex).

The message counter contains the quantity of messages processed by the slave
since its last restart, clear counters operation, or power–up. This count is identical
to that returned by the Diagnostic function (code 08), subfunction Return Bus
Message Count (code 11, 0B hex).

The event bytes field contains 0-64 bytes, with each byte corresponding to the
status of one Modbus send or receive operation for the slave. The events are
entered by the slave into the field in chronological order. Byte 0 is the most recent
event. Each new byte flushes the oldest byte from the field.

Query

Here is an example of a request to fetch the communications event log in slave
device 17:

Example
Field Name (Hex)

Slave Address 11
Function 0C
Error Check (LRC or CRC) ––

QUERY

Figure 26 Fetch Communications Event Log – Query

PI–MBUS–300 Data and Control Functions 41

Response

The normal response contains a two–byte status word field, a two–byte event
count field, a two–byte message count field, and a field containing 0-64 bytes of
events. A byte count field defines the total length of the data in these four fields.

Here is an example of a response to the query on the opposite page:

Example
Field Name (Hex)

Slave Address 11
Function 0C
Byte Count 08
Status HI 00
Status Lo 00
Event Count Hi 01
Event Count Lo 08
Message Count Hi 01
Message Count Lo 21
Event 0 20
Event 1 00
Error Check (LRC or CRC) ––

RESPONSE

Figure 27 Fetch Communications Event Log – Response

In this example, the status word is 00 00 hex, indicating that the slave is not
processing a program function. The event count shows that 264 (01 08 hex)
events have been counted by the slave. The message count shows that 289
(01 21 hex) messages have been processed.

The most recent communications event is shown in the Event 0 byte. Its contents
(20 hex) show that the slave has most recently entered the Listen Only Mode.

The previous event is shown in the Event 1 byte. Its contents (00 hex) show that
the slave received a Communications Restart.

The layout of the response’s event bytes is described on the next page.

PI–MBUS–300Data and Control Functions42

12 (0C Hex) Fetch Comm Event Log (Continued)

What the Event Bytes Contain

An event byte returned by the Fetch Communications Event Log function can be
any one of four types. The type is defined by bit 7 (the high–order bit) in each
byte. It may be further defined by bit 6. This is explained below.

Slave Modbus Receive Event

This type of event byte is stored by the slave when a query message is received.
It is stored before the slave processes the message. This event is defined by bit 7
set to a logic ‘1’. The other bits will be set to a logic ‘1’ if the corresponding
condition is TRUE. The bit layout is:

Bit Contents

0 Not Used
1 Communications Error
2 Not Used
3 Not Used
4 Character Overrun
5 Currently in Listen Only Mode
6 Broadcast Received
7 1

Slave Modbus Send Event

This type of event byte is stored by the slave when it finishes processing a query
message. It is stored if the slave returned a normal or exception response, or no
response. This event is defined by bit 7 set to a logic ‘0’, with bit 6 set to a ‘1’.
The other bits will be set to a logic ‘1’ if the corresponding condition is TRUE.
The bit layout is:

Bit Contents

0 Read Exception Sent (Exception Codes 1-3)
1 Slave Abort Exception Sent (Exception Code 4)
2 Slave Busy Exception Sent (Exception Codes 5-6)
3 Slave Program NAK Exception Sent (Exception Code 7)
4 Write Timeout Error Occurred
5 Currently in Listen Only Mode

PI–MBUS–300 Data and Control Functions 43

6 1
7 0

Slave Entered Listen Only Mode

This type of event byte is stored by the slave when it enters the Listen Only Mode.
The event is defined by a contents of 04 hex. The bit layout is:

Bit Contents

0 0
1 0
2 1
3 0
4 0
5 0
6 0
7 0

Slave Initiated Communication Restart

This type of event byte is stored by the slave when its communications port. is
restarted. The slave can be restarted by the Diagnostics function (code 08), with
subfunction Restart Communications Option (code 00 01).

That function also places the slave into a ‘Continue on Error’ or ‘Stop on Error’
mode. If the slave is placed into ‘Continue on Error’ mode, the event byte is
added to the existing event log. If the slave is placed into ‘Stop on Error’ mode,
the byte is added to the log and the rest of the log is cleared to zeros.

The event is defined by a contents of zero. The bit layout is:

Bit Contents

0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0

PI–MBUS–300Data and Control Functions44

15 (0F Hex) Force Multiple Coils

Description

Forces each coil (0X reference) in a sequence of coils to either ON or OFF. When
broadcast, the function forces the same coil references in all attached slaves.

Note The function will override the controller’s memory protect state
and a coil’s disable state. The forced state will remain valid until the
controller’s logic next solves each coil. Coils will remain forced if they
are not programmed in the controller’s logic.

Appendix B lists the maximum parameters supported by various controller models.

Query

The query message specifies the coil references to be forced. Coils are addressed
starting at zero: coil 1 is addressed as 0.

The reguested ON/OFF states are specified by contents of the query data field.
A logical ‘1’ in a bit position of the field requests the corresponding coil to be ON.
A logical ‘0’ requests it to be OFF.

The following page shows an example of a request to force a series of ten coils
starting at coil 20 (addressed as 19, or 13 hex) in slave device 17.

The query data contents are two bytes: CD 01 hex (1100 1101 0000 0001 binary).
The binary bits correspond to the coils in the following way:

Bit: 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1

Coil: 27 26 25 24 23 22 21 20 – – – – – – 29 28

The first byte transmitted (CD hex) addresses coils 27-20, with the least significant
bit addressing the lowest coil (20) in this set.

The next byte transmitted (01 hex) addresses coils 29-28, with the least significant
bit addressing the lowest coil (28) in this set. Unused bits in the last data byte
should be zero–filled.

PI–MBUS–300 Data and Control Functions 45

Example
Field Name (Hex)

Slave Address 11
Function 0F
Coil Address Hi 00
Coil Address Lo 13
Quantity of Coils Hi 00
Quantity of Coils Lo 0A
Byte Count 02
Force Data Hi (Coils 27-20) CD
Force Data Lo (Coils 29-28) 01
Error Check (LRC or CRC) ––

QUERY

Figure 28 Force Multiple Coils – Query

Response

The normal response returns the slave address, function code, starting address,
and quantity of coils forced.

Here is an example of a response to the query shown above.

Example
Field Name (Hex)

Slave Address 11
Function 0F
Coil Address Hi 00
Coil Address Lo 13
Quantity of Coils Hi 00
Quantity of Coils Lo 0A
Error Check (LRC or CRC) ––

RESPONSE

Figure 29 Force Multiple Coils – Response

PI–MBUS–300Data and Control Functions46

16 (10 Hex) Preset Multiple Registers

Description

Presets values into a sequence of holding registers (4X references). When
broadcast, the function presets the same register references in all attached slaves.

Note The function will override the controller’s memory protect state.
The preset values will remain valid in the registers until the controller’s
logic next solves the register contents. The register values will remain
if they are not programmed in the controller’s logic.

Appendix B lists the maximum parameters supported by various controller models.

Query

The query message specifies the register references to be preset. Registers are
addressed starting at zero: register 1 is addressed as 0.

The requested preset values are specified in the query data field. M84 and 484
controllers use a 10–bit binary value, with the six high order bits set to zeros.
All other controllers use 16–bit values. Data is packed as two bytes per register.

Here is an example of a request to preset two registers starting at 40002 to 00 0A
and 01 02 hex, in slave device 17:

Example
Field Name (Hex)

Slave Address 11
Function 10
Starting Address Hi 00
Starting Address Lo 01
No. of Registers Hi 00
No. of Registers Lo 02
Byte Count 04
Data Hi 00
Data Lo 0A
Data Hi 01
Data Lo 02
Error Check (LRC or CRC) ––

QUERY

Figure 30 Preset Multiple Registers – Query

PI–MBUS–300 Data and Control Functions 47

Response

The normal response returns the slave address, function code, starting address,
and quantity of registers preset.

Here is an example of a response to the query shown above.

Example
Field Name (Hex)

Slave Address 11
Function 10
Starting Address Hi 00
Starting Address Lo 01
No. of Registers Hi 00
No. of Registers Lo 02
Error Check (LRC or CRC) ––

RESPONSE

Figure 31 Preset Multiple Registers – Response

PI–MBUS–300Data and Control Functions48

17 (11 Hex) Report Slave ID

Description

Returns a description of the type of controller present at the slave address, the
current status of the slave Run indicator, and other information specific to the
slave device. Broadcast is not supported.

Query

Here is an example of a request to report the ID and status of slave device 17:

Example
Field Name (Hex)

Slave Address 11
Function 11
Error Check (LRC or CRC) ––

QUERY

Figure 32 Report Slave ID – Query

PI–MBUS–300 Data and Control Functions 49

Response

The format of a normal response is shown below. The data contents are specific
to each type of controller. They are listed on the following pages.

Field Name Contents

Slave Address Echo of Slave Address
Function 11
Byte Count Device Specific
Slave ID Device Specific
Run Indicator Status 00 = OFF, FF = ON
Additional Data Device Specific
. . .
Error Check (LRC or CRC) ––

RESPONSE

Figure 33 Report Slave ID – Response

A Summary of Slave IDs

These are the Slave ID codes returned by Modicon controllers in the first byte of
the data field:

Slave ID Controller

0 Micro 84
1 484
2 184/384
3 584
8 884
9 984

PI–MBUS–300Data and Control Functions50

17 (11 Hex) Report Slave ID (Continued)

184/384

The 184 or 384 controller returns a byte count of either 4 or 74 (4A hexadecimal).
If the controller’s J347 Modbus Slave Interface is setup properly, and its internal
PIB table is normal, the byte count will be 74. Otherwise the byte count will be 4.

The four bytes that are always returned are:

Byte Contents

1 Slave ID (2 for 184/384). See bytes 3, 4 for further definition.

2 RUN indicator status (0 = OFF, FF = ON)

3, 4 Status word:
Bit 0 = 0
Bit 1 = Memory Protect status (0 = OFF, 1 = ON)
Bit 2, 3 = Controller type: Bit 2 = 0 and Bit 3 = 0 indicates 184

Bit 2 = 1 and Bit 3 = 0 indicates 384
Bits 4 - 15 = Unused

The additonal 70 bytes returned for a correct J347 setup and normal PIB are:

Byte Contents

5, 6 PIB table starting address

7, 8 Controller serial number

9, 10 Executive ID

Bytes 11 - 74 contain the PIB table. This data is valid only if the
controller is running (as shown in Byte 2). The table is as follows:

11, 12 Maximum quantity of output coils

13, 14 Output coil enable table

15, 16 Address of input coil/run table

17, 18 Quantity of input coils

19, 20 Input coil enable table

21, 22 First latch number (must be multiple of 16)

23, 24 Last latch number (must be multiple of 16)

PI–MBUS–300 Data and Control Functions 51

25, 26 Address of input registers

27, 28 Quantity of input registers

29, 30 Quantity of output and holding registers

31, 32 Address of user logic

33, 34 Address of output coil RAM table

35, 36 Function inhibit mask

37, 38 Address of extended function routine

39, 40 Address of data transfer routine

41, 42 Address of traffic cop

43, 44 Unused

45, 46 Function inhibit mask

47, 48 Address of ‘A’ Mode history table

49, 50 Request table for DX printer

51, 52 Quantity of sequence groups

53, 54 Address of sequence image table

55, 56 Address of sequence RAM

57, 58 Quantity of 50XX registers

59, 60 Address of 50XX table

61, 62 Address of output coil RAM image

63, 64 Address of input RAM image

65, 66 Delayed output start group

67, 68 Delayed output end group

69, 70 Watchdog line

71, 72 RAM Address of latches

73, 74 Quantity of delayed output groups

PI–MBUS–300Data and Control Functions52

17 (11 Hex) Report Slave ID (Continued)

584

The 584 controller returns a byte count of 9, as follows:

Byte Contents

1 Slave ID (3 for 584)

2 RUN indicator status (0 = OFF, FF = ON)

3 Quantity of 4K sections of page 0 memory

4 Quantity of 1K sections of state RAM

5 Quantity of segments of user logic

6, 7 Machine state word (configuration table word 101, 65 hex).
The word is organized as follows:

Byte 6:
Bit 15 (MSB of byte 6) = Port 1 setup
Bit 14 = Port 2 setup
Bit 13 = Port 1 address set
Bit 12 = Port 2 address set
Bit 11 = Unassigned
Bit 10 = Constant Sweep status (0 = Constand Sweep OFF, 1 = ON)
Bit 9 = Single Sweep status (0 = Single Sweep OFF, 1 = ON)
Bit 8 = 16/24-bit nodes (0 = 24-bit nodes, 1 = 16-bit nodes)

Byte 7:
Bit 7 (MSB of byte 7) = Power ON (1 = ON, should never = ‘OFF’)
Bit 6 = RUN indicator status (0 = ON, 1 = OFF)
Bit 5 = Memory Protect status (0 = ON, 1 = OFF)
Bit 4 = Battery OK (0 = OK, 1 = Not OK)
Bits 3 - 0 = Unassigned

PI–MBUS–300 Data and Control Functions 53

8, 9 Machine stop code (configuration table word 105, 69 hex).
The word is organized as follows:

Byte 8:
Bit 15 (MSB of byte 8) = Peripheral port stop (controlled stop)
Bit 14 = Unassigned
Bit 13 = Dim awareness
Bit 12 = Illegal peripheral intervention
Bit 11 = Multirate solve table invalid
Bit 10 = Start of Node did not start segment
Bit 9 = State RAM test failed
Bit 8 = No End of Logic detected, or bad quantity of segments

Byte 9:
Bit 7 (MSB of byte 9) = Watchdog timer expired
Bit 6 = Real time clock error
Bit 5 = CPU diagnostic failed
Bit 4 = Invalid traffic cop type
Bit 3 = Invalid node type
Bit 2 = Logic checksum error
Bit 1 = Backup checksum error
Bit 0 = Illegal configuration

PI–MBUS–300Data and Control Functions54

17 (11 Hex) Report Slave ID (Continued)

984

The 984 controller returns a byte count of 9, as follows:

Byte Contents

1 Slave ID (9 for 984)

2 RUN indicator status (0 = OFF, FF = ON)

3 Quantity of 4K sections of page 0 memory

4 Quantity of 1K sections of state RAM

5 Quantity of segments of user logic

6, 7 Machine state word (configuration table word 101, 65 hex).
The word is organized as follows:

Byte 6:
Bit 15 (MSB of byte 6) = Unassigned
Bits 14 - 11 = Unassigned
Bit 10 = Constant Sweep status (0 = Constand Sweep OFF, 1 = ON)
Bit 9 = Single Sweep status (0 = Single Sweep OFF, 1 = ON)
Bit 8 = 16/24-bit nodes (0 = 24-bit nodes, 1 = 16-bit nodes)

Byte 7:
Bit 7 (MSB of byte 7) = Power ON (1 = ON, should never = ‘OFF’)
Bit 6 = RUN indicator status (0 = ON, 1 = OFF)
Bit 5 = Memory Protect status (0 = ON, 1 = OFF)
Bit 4 = Battery OK (0 = OK, 1 = Not OK)
Bits 3 - 1 = Unassigned
Bit 0 = Memory downsize flag (0 = NO, 1 = Downsize

Memory Downsize: Bit 0 of the Machine State word defines the use of the
memory downsize values in words 99, 100, and 175 (63, 64, and AF hexadecimal)
of the configuration table. If bit 0 = logic 1, downsizing is calculated as follows:

Page 0 size (16-bit words) = (Word 99 * 4096) – (Word 175 low byte * 16)

State table size (16 bit words) = (Word 100 * 1024) – (Word 175 high byte * 16)

PI–MBUS–300 Data and Control Functions 55

8, 9 Machine stop code (configuration table word 105, 69 hex).
The word is organized as follows:

Byte 8:
Bit 15 (MSB of byte 8) = Peripheral port stop (controlled stop)
Bit 14 (984A, B, X) = Extended memory parity failure
Bit 14 (Other 984) = Bad IO traffic cop
Bit 13 = Dim awareness
Bit 12 = Illegal peripheral intervention
Bit 11 = Bad segment scheduler table
Bit 10 = Start of Node did not start segment
Bit 9 = State RAM test failed
Bit 8 = No End of Logic detected, or bad quantity of segments

Byte 9:
Bit 7 (MSB of byte 9) = Watchdog timer expired
Bit 6 = Real time clock error
Bit 5 (984A, B, X) = CPU diagnostic failed
Bit 5 (Other 984) = Bad coil used table
Bit 4 = S908 remote IO head failure
Bit 3 = Invalid node type
Bit 2 = Logic checksum error
Bit 1 = Coil disabled while in RUN mode
Bit 0 = Illegal configuration

PI–MBUS–300Data and Control Functions56

17 (11 Hex) Report Slave ID (Continued)

Micro 84

The Micro 84 controller returns a byte count of 8, as follows:

Byte Contents

1 Slave ID (0 for Micro 84)

2 RUN indicator status (0 = OFF, FF = ON)

3 Current port number

4 Memory size (1 = 1K, 2 = 2K)

5 Unused (all zeros)

484

The 484 controller returns a byte count of 5, as follows:

Byte Contents

1 Slave ID (1 for 484)

2 RUN indicator status (0 = OFF, FF = ON)

3 System state

4 First configuration byte

5 Second configuration byte

PI–MBUS–300 Data and Control Functions 57

884

The 884 controller returns a byte count of 8, as follows:

Byte Contents

1 Slave ID (8 for 884)

2 RUN indicator status (0 = OFF, FF = ON)

3 Current port number

4 Size of user logic plus state RAM, in kilobytes (1 word = 2 bytes)

5 Reserved

6 Hook bits:
Bits 0 - 2 = Reserved
Bit 3 = Mapper bypass: 1 = Do not execute standard mapper
Bit 4 = End of Scan tests: 1 = Test end of scan hooks
Bit 5 = Reserved
Bit 6 = Logic Solver bypass: 1 = Do not execute standard
logic solver
Bit 7 = Reserved

7, 8 Reserved

PI–MBUS–300Data and Control Functions58

20 (14Hex) Read General Reference

Description

Returns the contents of registers in Extended Memory file (6XXXXX) references.
Broadcast is not supported.

The function can read multiple groups of references. The groups can be separate
(non–contiguous), but the references within each group must be sequential.

Query

The query contains the standard Modbus slave address, function code, byte
count, and error check fields. The rest of the query specifies the group or groups
of references to be read. Each group is defined in a separate ‘sub-request’ field
which contains 7 bytes:

– The reference type: 1 byte (must be specified as 6)

– The Extended Memory file number: 2 bytes (1 to 10, hex 0001 to 000A)

– The starting register address within the file: 2 bytes

– The quantity of registers to be read: 2 bytes.

The quantity of registers to be read, combined with all other fields in the expected
response, must not exceed the allowable length of Modbus messages: 256 bytes.

The available quantity of Extended Memory files depends upon the installed size
of Extended Memory in the slave controller. Each file except the last one contains
10,000 registers, addressed as 0000-270F hexadecimal (0000-9999 decimal).

Note The addressing of Extended Register (6XXXXX) references
differs from that of Holding Register (4XXXX) references.

The lowest Extended Register is addressed as register ‘zero’ (600000).

The lowest Holding Register is addressed as register ‘one’ (40001).

PI–MBUS–300 Data and Control Functions 59

For controllers other than the 984–785 with Extended Registers, the last (highest)
register in the last file is:

Ext Mem Size Last File Last Register (Decimal)

16K 2 6383
32K 4 2767
64K 7 5535
96K 10 8303

For the 984–785 with Extended Registers, the last (highest) register in the last file
is shown in the two tables below.

984–785 with AS–M785–032 Memory Cartridge:

User State
Logic RAM Ext Mem Size Last File Last Register (Decimal)

32K 32K 0 0 0
16K 64K 72K 8 3727

984–785 with AS–M785–048 Memory Cartridge:

User State
Logic RAM Ext Mem Size Last File Last Register (Decimal)

48K 32K 24K 3 4575
32K 64K 96K 10 8303

Examples of a query and response are provided starting on the next page.

PI–MBUS–300Data and Control Functions60

20 (14 Hex) Read General Reference (Continued)

An example of a request to read two groups of references from slave device 17 is
shown below.

Group 1 consists of two registers from file 4, starting at register 1 (address 0001).
Group 2 consists of two registers from file 3, starting at register 9 (address 0009).

Example
Field Name (Hex)

Slave Address 11
Function 14
Byte Count 0E
Sub–Req 1, Reference Type 06
Sub–Req 1, File Number Hi 00
Sub–Req 1, File Number Lo 04
Sub–Req 1, Starting Addr Hi 00
Sub–Req 1, Starting Addr Lo 01
Sub–Req 1, Register Count Hi 00
Sub–Req 1, Register Count Lo 02
Sub–Req 2, Reference Type 06
Sub–Req 2, File Number Hi 00
Sub–Req 2, File Number Lo 03
Sub–Req 2, Starting Addr Hi 00
Sub–Req 2, Starting Addr Lo 09
Sub–Req 2, Register Count Hi 00
Sub–Req 2, Register Count Lo 02
Error Check (LRC or CRC) ––

QUERY

Figure 34 Read General Reference – Query

PI–MBUS–300 Data and Control Functions 61

Response

The normal response is a series of ‘sub-responses’, one for each ‘sub-request’.
The byte count field is the total combined count of bytes in all ‘sub-responses’.
In addition, each ‘sub-response’ contains a field that shows its own byte count.

Example
Field Name (Hex)

Slave Address 11
Function 14
Byte Count 0C
Sub–Res 1, Byte Count 05
Sub–Res 1, Reference Type 06
Sub–Res 1, Register Data Hi 0D
Sub–Res 1, Register Data Lo FE
Sub–Res 1, Register Data Hi 00
Sub–Res 1, Register Data Lo 20
Sub–Res 2, Byte Count 05
Sub–Res 2, Reference Type 06
Sub–Res 2, Register Data Hi 33
Sub–Res 2, Register Data Lo CD
Sub–Res 2, Register Data Hi 00
Sub–Res 2, Register Data Lo 40
Error Check (LRC or CRC) ––

RESPONSE

Figure 35 Read General Reference – Response

PI–MBUS–300Data and Control Functions62

21 (15Hex) Write General Reference

Description

Writes the contents of registers in Extended Memory file (6XXXXX) references.
Broadcast is not supported.

The function can write multiple groups of references. The groups can be separate
(non–contiguous), but the references within each group must be sequential.

Query

The query contains the standard Modbus slave address, function code, byte
count, and error check fields. The rest of the query specifies the group or groups
of references to be written, and the data to be written into them. Each group is
defined in a separate ‘sub-request’ field which contains 7 bytes plus the data:

– The reference type: 1 byte (must be specified as 6)

– The Extended Memory file number: 2 bytes (1 to 10, hex 0001 to 000A)

– The starting register address within the file: 2 bytes

– The quantity of registers to be written: 2 bytes

– The data to be written: 2 bytes per register.

The quantity of registers to be written, combined with all other fields in the query,
must not exceed the allowable length of Modbus messages: 256 bytes.

The available quantity of Extended Memory files depends upon the installed size
of Extended Memory in the slave controller. Each file except the last one contains
10,000 registers, addressed as 0000-270F hexadecimal (0000-9999 decimal).

Note The addressing of Extended Register (6XXXXX) references
differs from that of Holding Register (4XXXX) references.

The lowest Extended Register is addressed as register ‘zero’ (600000).

The lowest Holding Register is addressed as register ‘one’ (40001).

PI–MBUS–300 Data and Control Functions 63

For controllers other than the 984–785 with Extended Registers, the last (highest)
register in the last file is:

Ext Mem Size Last File Last Register (Decimal)

16K 2 6383
32K 4 2767
64K 7 5535
96K 10 8303

For the 984–785 with Extended Registers, the last (highest) register in the last file
is shown in the two tables below.

984–785 with AS–M785–032 Memory Cartridge:

User State
Logic RAM Ext Mem Size Last File Last Register (Decimal)

32K 32K 0 0 0
16K 64K 72K 8 3727

984–785 with AS–M785–048 Memory Cartridge:

User State
Logic RAM Ext Mem Size Last File Last Register (Decimal)

48K 32K 24K 3 4575
32K 64K 96K 10 8303

Examples of a query and response are provided starting on the next page.

PI–MBUS–300Data and Control Functions64

21 (15 Hex) Write General Reference (Continued)

An example of a request to write one group of references into slave device 17 is
shown below.

The group consists of three registers in file 4, starting at register 7 (address 0007).

Example
Field Name (Hex)

Slave Address 11
Function 15
Byte Count 0D
Sub–Req 1, Reference Type 06
Sub–Req 1, File Number Hi 00
Sub–Req 1, File Number Lo 04
Sub–Req 1, Starting Addr Hi 00
Sub–Req 1, Starting Addr Lo 07
Sub–Req 1, Register Count Hi 00
Sub–Req 1, Register Count Lo 03
Sub–Req 1, Register Data Hi 06
Sub–Req 1, Register Data Lo AF
Sub–Req 1, Register Data Hi 04
Sub–Req 1, Register Data Lo BE
Sub–Req 1, Register Data Hi 10
Sub–Req 1, Register Data Lo 0D
Error Check (LRC or CRC) ––

QUERY

Figure 36 Write General Reference – Query

PI–MBUS–300 Data and Control Functions 65

Response

The normal response is an echo of the query.

Example
Field Name (Hex)

Slave Address 11
Function 15
Byte Count 0D
Sub–Req 1, Reference Type 06
Sub–Req 1, File Number Hi 00
Sub–Req 1, File Number Lo 04
Sub–Req 1, Starting Addr Hi 00
Sub–Req 1, Starting Addr Lo 07
Sub–Req 1, Register Count Hi 00
Sub–Req 1, Register Count Lo 03
Sub–Req 1, Register Data Hi 06
Sub–Req 1, Register Data Lo AF
Sub–Req 1, Register Data Hi 04
Sub–Req 1, Register Data Lo BE
Sub–Req 1, Register Data Hi 10
Sub–Req 1, Register Data Lo 0D
Error Check (LRC or CRC) ––

RESPONSE

Figure 37 Write General Reference – Response

PI–MBUS–300Data and Control Functions66

22 (16Hex) Mask Write 4X Register

Description

Modifies the contents of a specified 4XXXX register using a combination of an
AND mask, an OR mask, and the register’s current contents. The function can be
used to set or clear individual bits in the register. Broadcast is not supported.

This function is supported in the 984–785 controller only.

Query

The query specifies the 4XXXX reference to be written, the data to be used as the
AND mask, and the data to be used as the OR mask.

The function’s algorithm is:

Result = (Current Contents AND And_Mask) OR (Or_Mask AND And_Mask)

For example: Hex Binary

Current Contents = 12 0001 0010
And_Mask = F2 1111 0010

Or_Mask = 25 0010 0101

And_Mask = 0D 0000 1101

Result = 17 0001 0111

Note that if the Or_Mask value is zero, the result is simply the logical ANDing of
the current contents and And_Mask. If the And_Mask value is zero, the result is
equal to the Or_Mask value.

Note that the contents of the register can be read with the Read Holding Registers
function (function code 03). They could, however, be changed subsequently as
the controller scans its user logic program.

An example of a Mask Write to register 5 in slave device 17, using the above
mask values, is shown on the next page.

PI–MBUS–300 Data and Control Functions 67

Example
Field Name (Hex)

Slave Address 11
Function 16
Reference Address Hi 00
Reference Address Lo 04
And_Mask Hi 00
And_Mask Lo F2
Or_Mask Hi 00
Or–Mask Lo 25
Error Check (LRC or CRC) ––

QUERY

Figure 38 Mask Write 4X Register – Query

Response

The normal response is an echo of the query. The response is returned after the
register has been written.

Example
Field Name (Hex)

Slave Address 11
Function 16
Reference Address Hi 00
Reference Address Lo 04
And_Mask Hi 00
And_Mask Lo F2
Or_Mask Hi 00
Or–Mask Lo 25
Error Check (LRC or CRC) ––

RESPONSE

Figure 39 Mask Write 4X Register – Response

PI–MBUS–300Data and Control Functions68

23 (17Hex) Read/Write 4X Registers

Description

Performs a combination of one read and one write operation in a single Modbus
transaction. The function can write new contents to a group of 4XXXX registers,
and then return the contents of another group of 4XXXX registers. Broadcast is
not supported. This function is supported in the 984–785 controller only.

Query

The query specifies the starting address and quantity of registers of the group to
be read. It also specifies the starting address, quantity of registers, and data for
the group to be written. The byte count field specifies the quantity of bytes to
follow in the write data field.

Here is an example of a query to read six registers starting at register 5, and to
write three registers starting at register 16, in slave device 17:

Example
Field Name (Hex)

Slave Address 11
Function 17
Read Reference Address Hi 00
Read Reference Address Lo 04
Quantity to Read Hi 00
Quantity to Read Lo 06
Write Reference Address Hi 00
Write Reference Address Lo 0F
Quantity to Write Hi 00
Quantity to Write Lo 03
Byte Count 06
Write Data 1 Hi 00
Write Data 1 Lo FF
Write Data 2 Hi 00
Write Data 2 Lo FF
Write Data 3 Hi 00
Write Data 3 Lo FF
Error Check (LRC or CRC) ––

QUERY

Figure 40 Read/Write 4X Registers – Query

PI–MBUS–300 Data and Control Functions 69

Response

The normal response contains the data from the group of registers that were read.
The byte count field specifies the quantity of bytes to follow in the read data field.

Here is an example of a response to the query on the opposite page:

Example
Field Name (Hex)

Slave Address 11
Function 17
Byte Count 0C
Read Data 1 Hi 00
Read Data 1 Lo FE
Read Data 2 Hi 0A
Read Data 2 Lo CD
Read Data 3 Hi 00
Read Data 3 Lo 01
Read Data 4 Hi 00
Read Data 4 Lo 03
Read Data 5 Hi 00
Read Data 5 Lo 0D
Read Data 6 Hi 00
Read Data 6 Lo FF
Error Check (LRC or CRC) ––

RESPONSE

Figure 41 Read/Write 4X Registers – Response

PI–MBUS–300Data and Control Functions70

24 (18Hex) Read FIFO Queue

Description

Reads the contents of a First–In–First–Out (FIFO) queue of 4XXXX registers. The
function returns a count of the registers in the queue, followed by the queued data.
Up to 32 registers can be read: the count, plus up to 31 queued data registers.
The queue count register is returned first, followed by the queued data registers.

The function reads the queue contents, but does not clear them. Broadcast is not
supported.

This function is supported in the 984–785 controller only.

Query

The query specifies the starting 4XXXX reference to be read from the FIFO queue.
This is the address of the pointer register used with the controller’s FIN and FOUT
function blocks. It contains the count of registers currently contained in the queue.
The FIFO data registers follow this address sequentially.

An example of a Read FIFO Queue query to slave device 17 is shown below. The
query is to read the queue starting at the pointer register 41247 (04DE hex).

Example
Field Name (Hex)

Slave Address 11
Function 18
FIFO Pointer Address Hi 04
FIFO Pointer Address Lo DE
Error Check (LRC or CRC) ––

QUERY

Figure 42 Read FIFO Queue – Query

PI–MBUS–300 Data and Control Functions 71

Response

In a normal response, the byte count shows the quantity of bytes to follow,
including the queue count bytes and data register bytes (but not including the error
check field).

The queue count is the quantity of data registers in the queue (not including the
count register).

If the queue count exceeds 31, an exception response is returned with an error
code of 03 (Illegal Data Value).

This is an example of a normal response to the query on the opposite page:

Example
Field Name (Hex)

Slave Address 11
Function 18
Byte Count Hi 00
Byte Count Lo 08
FIFO Count Hi 00
FIFO Count Lo 03
FIFO Data Reg 1 Hi 01
FIFO Data Reg 1 Lo B8
FIFO Data Reg 2 Hi 12
FIFO Data Reg 2 Lo 84
FIFO Data Reg 3 Hi 13
FIFO Data Reg 3 Lo 22
Error Check (LRC or CRC) ––

RESPONSE

Figure 43 Read FIFO Queue – Response

In this example, the FIFO pointer register (41247 in the query) is returned with a
queue count of 3. The three data registers follow the queue count. These are:
41248 (contents 440 decimal -- 01B8 hex); 41249 (contents 4740 -- 1284 hex);
and 41250 (contents 4898 -- 1322 hex).

PI–MBUS–300 Diagnostic Subfunctions 73

Chapter 3
Diagnostic Subfunctions

Modbus Function 08 – Diagnostics

Diagnostic Subfunctions

PI–MBUS–300Diagnostic Subfunctions74

Function 08 – Diagnostics

Description

Modbus function 08 provides a series of tests for checking the communication
system between the master and slave, or for checking various internal error
conditions within the slave. Broadcast is not supported.

The function uses a two–byte subfunction code field in the query to define the
type of test to be performed. The slave echoes both the function code and
subfunction code in a normal response.

Most of the diagnostic queries use a two–byte data field to send diagnostic data or
control information to the slave. Some of the diagnostics cause data to be returned
from the slave in the data field of a normal response.

Diagnostic Effects on the Slave

In general, issuing a diagnostic function to a slave device does not affect the
running of the user program in the slave. User logic, like discretes and registers,
is not accessed by the diagnostics. Certain functions can optionally reset error
counters in the slave.

A slave device can, however, be forced into ‘Listen Only Mode’ in which it will
monitor the messages on the communications system but not respond to them.
This can affect the outcome of your application program it it depends upon any
further exchange of data with the slave device. Generally, the mode is forced to
remove a malfunctioning slave device from the communications system.

How This Information is Organized in Your Guide

An example diagnostics query and response are shown on the opposite page.
These show the location of the function code, subfunction code, and data field
within the messages.

A list of subfunction codes supported by the controllers is shown on the pages
after the example response. Each subfunction code is then listed with an example
of the data field contents that would apply for that diagnostic.

PI–MBUS–300 Diagnostic Subfunctions 75

Query

Here is an example of a request to slave device 17 to Return Query Data. This
uses a subfunction code of zero (00 00 hex in the two–byte field). The data to be
returned is sent in the two–byte data field (A5 37 hex).

Example
Field Name (Hex)

Slave Address 11
Function 08
Subfunction Hi 00
Subfunction Lo 00
Data Hi A5
Data Lo 37
Error Check (LRC or CRC) ––

QUERY

Figure 44 Diagnostics – Query

Response

The normal response to the Return Query Data request is to loopback the same
data. The function code and subfunction code are also echoed.

Example
Field Name (Hex)

Slave Address 11
Function 08
Subfunction Hi 00
Subfunction Lo 00
Data Hi A5
Data Lo 37
Error Check (LRC or CRC) ––

RESPONSE

Figure 45 Diagnostics – Response

The data fields in responses to other kinds of queries could contain error counts or
other information requested by the subfunction code.

PI–MBUS–300Diagnostic Subfunctions76

DiagnosticCodes Supportedby Controllers

The listing below shows the subfunction codes supported by Modicon controllers.
Codes are listed in decimal.

‘Y’ indicates that the subfunction is supported. ‘N’ indicates that it is not supported.

Code Name 384 484 584 884 M84 984

00 Return Query Data Y Y Y Y Y Y

01 Restart Comm Option Y Y Y Y Y Y

02 Return Diagnostic Register Y Y Y Y Y Y

03 Change ASCII Input Delimiter Y Y Y N N Y

04 Force Listen Only Mode Y Y Y Y Y Y

05–09 Reserved

10 Clear Ctrs and Diagnostic Reg. Y Y (1) N N (1)

11 Return Bus Message Count Y Y Y N N Y

12 Return Bus Comm. Error Count Y Y Y N N Y

13 Return Bus Exception Error Cnt Y Y Y N N Y

14 Return Slave Message Count Y Y Y N N N

15 Return Slave No Response Cnt Y Y Y N N N

16 Return Slave NAK Count Y Y Y N N Y

17 Return Slave Busy Count Y Y Y N N Y

18 Return Bus Char. Overrun Cnt Y Y Y N N Y

19 Return Overrun Error Count N N N Y N N

20 Clear Overrun Counter and Flag N N N Y N N

21 Get/Clear Modbus Plus Statistics N N N N N Y

22–up Reserved

Notes:

(1) Clears Counters only.

PI–MBUS–300 Diagnostic Subfunctions 77

Diagnostic Subfunctions

00 Return Query Data

The data passed in the query data field is to be returned (looped back) in the
response. The entire response message should be identical to the query.

Subfunction Data Field (Query) Data Field (Response)

00 00 Any Echo Query Data

01 Restart Communications Option

The slave’s peripheral port is to be initialized and restarted, and all of its
communications event counters are to be cleared. If the port is currently in Listen
Only Mode, no response is returned. This function is the only one that brings the
port out of Listen Only Mode. If the port is not currently in Listen Only Mode, a
normal response is returned. This occurs before the restart is executed.

When the slave receives the query, it attempts a restart and executes its
power–up confidence tests. Successful completion of the tests will bring the port
online.

A query data field contents of FF 00 hex causes the port’s Communications Event
Log to be cleared also. Contents of 00 00 leave the log as it was prior to the
restart.

Subfunction Data Field (Query) Data Field (Response)

00 01 00 00 Echo Query Data
00 01 FF 00 Echo Query Data

PI–MBUS–300Diagnostic Subfunctions78

08 Diagnostics (Continued)

02 Return Diagnostic Register

The contents of the slave’s 16–bit diagnostic register are returned in the response.

Subfunction Data Field (Query) Data Field (Response)

00 02 00 00 Diagnostic Register Contents

How the Register Data is Organized

The assignment of diagnostic register bits for Modicon controllers is listed below.

In each register, bit 15 is the high–order bit. The description is TRUE when the
corresponding bit is set to a logic ‘1‘.

184/384 Diagnostic Register

Bit Description

0 Continue on Error
1 Run Light Failed
2 T–Bus Test Failed
3 Asynchronous Bus Test Failed
4 Force Listen Only Mode
5 Not Used
6 Not Used
7 ROM Chip 0 Test Failed
8 Continuous ROM Checksum Test in Execution
9 ROM Chip 1 Test Failed

10 ROM Chip 2 Test Failed
11 ROM Chip 3 Test Failed
12 RAM Chip 5000-53FF Test Failed
13 RAM Chip 6000-67FF Test Failed, Even Addresses
14 RAM Chip 6000-67FF Test Failed, Odd Addresses
15 Timer Chip Test Failed

PI–MBUS–300 Diagnostic Subfunctions 79

484 Diagnostic Register

Bit Description

0 Continue on Error
1 CPU Test or Run Light Failed
2 Parallel Port Test Failed
3 Asynchronous Bus Test Failed
4 Timer 0 Test Failed
5 Timer 1 Test Failed
6 Timer 2 Test Failed
7 ROM Chip 0000-07FF Test Failed
8 Continuous ROM Checksum Test in Execution
9 ROM Chip 0800-0FFF Test Failed

10 ROM Chip 1000-17FF Test Failed
11 ROM Chip 1800-1FFF Test Failed
12 RAM Chip 4000-40FF Test Failed
13 RAM Chip 4100-41FF Test Failed
14 RAM Chip 4200-42FF Test Failed
15 RAM Chip 4300-43FF Test Failed

584/984 Diagnostic Register

Bit Description

0 Illegal Configuration
1 Backup Checksum Error in High–Speed RAM
2 Logic Checksum Error
3 Invalid Node Type
4 Invalid Traffic Cop Type
5 CPU/Solve Diagnostic Failed
6 Real Time Clock Failed
7 Watchdog Timer Failed - Scan Time exceeded 250 ms.
8 No End of Logic Node detected, or quantity of end of segment

words (DOIO) does not match quantity of segments configured
9 State Ram Test Failed

10 Start of Network (SON) did not begin network
11 Bad Order of Solve Table
12 Illegal Peripheral Intervention
13 Dim Awareness Flag
14 Not Used
15 Peripheral Port Stop Executed, not an error.

PI–MBUS–300Diagnostic Subfunctions80

08 Diagnostics (Continued)

884 Diagnostic Register

Bit Description

0 Modbus IOP Overrun Errors Flag
1 Modbus Option Overrun Errors Flag
2 Modbus IOP Failed
3 Modlbus Option Failed
4 Ourbus IOP Failed
5 Remote IO Failed
6 Main CPU Failed
7 Table RAM Checksum Failed
8 Scan Task exceeded its time limit - too much user logic
9 Not Used

10 Not Used
11 Not Used
12 Not Used
13 Not Used
14 Not Used
15 Not Used

PI–MBUS–300 Diagnostic Subfunctions 81

03 Change ASCII Input Delimiter

The character ‘CHAR’ passed in the query data field becomes the end of message
delimiter for future messages (replacing the default LF character). This function is
useful in cases where a Line Feed is not wanted at the end of ASCII messages.

Subfunction Data Field (Query) Data Field (Response)

00 03 CHAR 00 Echo Query Data

04 Force Listen Only Mode

Forces the addressed slave to its Listen Only Mode for Modbus communications.
This isolates it from the other devices on the network, allowing them to continue
communicating without interruption from the addressed slave. No response is
returned.

When the slave enters its Listen Only Mode, all active communication controls are
turned off. The Ready watchdog timer is allowed to expire, locking the controls off.
While in this mode, any Modbus messages addressed to the slave or broadcast
are monitored, but no actions will be taken and no responses will be sent.

The only function that will be processed after the mode is entered will be the
Restart Communications Option function (function code 8, subfunction 1).

Subfunction Data Field (Query) Data Field (Response)

00 04 00 00 No Response Returned

10 (0A Hex) Clear Counters and Diagnostic Register

For controllers other than the 584 or 984, clears all counters and the diagnostic
register. For the 584 or 984, clears the counters only. Counters are also cleared
upon power–up.

Subfunction Data Field (Query) Data Field (Response)

00 0A 00 00 Echo Query Data

PI–MBUS–300Diagnostic Subfunctions82

08 Diagnostics (Continued)

11 (0B Hex) Return Bus Message Count

The response data field returns the quantity of messages that the slave has
detected on the communications system since its last restart, clear counters
operation, or power–up.

Subfunction Data Field (Query) Data Field (Response)

00 0B 00 00 Total Message Count

12 (0C Hex) Return Bus Communication Error Count

The response data field returns the quantity of CRC errors encountered by the
slave since its last restart, clear counters operation, or power–up.

Subfunction Data Field (Query) Data Field (Response)

00 0C 00 00 CRC Error Count

13 (0D Hex) Return Bus Exception Error Count

The response data field returns the quantity of Modbus exception responses
returned by the slave since its last restart, clear counters operation, or power–up.
Exception responses are described and listed in Appendix A.

Subfunction Data Field (Query) Data Field (Response)

00 0D 00 00 Exception Error Count

PI–MBUS–300 Diagnostic Subfunctions 83

14 (0E Hex) Return Slave Message Count

The response data field returns the quantity of messages addressed to the slave,
or broadcast, that the slave has processed since its last restart, clear counters
operation, or power–up.

Subfunction Data Field (Query) Data Field (Response)

00 0E 00 00 Slave Message Count

15 (0F Hex) Return Slave No Response Count

The response data field returns the quantity of messages addressed to the slave
for which it returned no response (neither a normal response nor an exception
response), since its last restart, clear counters operation, or power–up.

Subfunction Data Field (Query) Data Field (Response)

00 0F 00 00 Slave No Response Count

16 (10 Hex) Return Slave NAK Count

The response data field returns the quantity of messages addressed to the slave
for which it returned a Negative Acknowledge (NAK) exception response, since its
last restart, clear counters operation, or power–up. Exception responses are
described and listed in Appendix A.

Subfunction Data Field (Query) Data Field (Response)

00 10 00 00 Slave NAK Count

PI–MBUS–300Diagnostic Subfunctions84

08 Diagnostics (Continued)

17 (11 Hex) Return Slave Busy Count

The response data field returns the quantity of messages addressed to the slave
for which it returned a Slave Device Busy exception response, since its last
restart, clear counters operation, or power–up. Exception responses are
described and listed in Appendix A.

Subfunction Data Field (Query) Data Field (Response)

00 11 00 00 Slave Device Busy Count

18 (12 Hex) Return Bus Character Overrun Count

The response data field returns the quantity of messages addressed to the slave
that it could not handle due to a character overrun condition, since its last restart,
clear counters operation, or power–up. A character overrun is caused by data
characters arriving at the port faster than they can be stored, or by the loss of a
character due to a hardware malfunction.

Subfunction Data Field (Query) Data Field (Response)

00 12 00 00 Slave Character Overrun Count

19 (13 Hex) Return IOP Overrun Count (884)

The response data field returns the quantity of messages addressed to the slave
that it could not handle due to an 884 IOP overrun condition, since its last restart,
clear counters operation, or power–up. An IOP overrun is caused by data
characters arriving at the port faster than they can be stored, or by the loss of a
character due to a hardware malfunction. This function is specific to the 884.

Subfunction Data Field (Query) Data Field (Response)

00 13 00 00 Slave IOP Overrun Count

PI–MBUS–300 Diagnostic Subfunctions 85

20 (14 Hex) Clear Overrun Counter and Flag (884)

Clears the 884 overrun error counter and resets the error flag. The current state
of the flag is found in bit 0 of the 884 diagnostic register (see subfunction 02).
This function is specific to the 884.

Subfunction Data Field (Query) Data Field (Response)

00 14 00 00 Echo Query Data

PI–MBUS–300Diagnostic Subfunctions86

08 Diagnostics (Continued)

21 (15 Hex) Get/Clear Modbus Plus Statistics

Returns a series of 54 16-bit words (108 bytes) in the data field of the response
(this function differs from the usual two-byte length of the data field). The data
contains the statistics for the Modbus Plus peer processor in the slave device.

In addition to the Function code (08) and Subfunction code (00 15 hex) in the
query, a two-byte Operation field is used to specify either a ‘Get Statistics’ or a
‘Clear Statistics’ operation. The two operations are exclusive - the ‘Get’ operation
cannot clear the statistics, and the ‘Clear’ operation does not return statistics prior
to clearing them. Statistics are also cleared on power-up of the slave device.

The operation field immediately follows the subfunction field in the query:

–– A value of 00 03 specifies the ‘Get Statistics’ operation.

–– A value of 00 04 specifies the ‘Clear Statistics’ operation.

QUERY: This is the field sequence in the query:

Function Subfunction Operation

08 00 15 00 03 (Get Statistics)
08 00 15 00 04 (Clear Statistics)

GET STATISTICS RESPONSE: This is the field sequence in the normal response
to a Get Statistics query:

Function Subfunction Operation Byte Count Data

08 00 15 00 03 00 6C Words 00 - 53

CLEAR STATISTICS RESPONSE: The normal response to a Clear Statistics
query is an echo of the query:

Function Subfunction Operation

08 00 15 00 04

PI–MBUS–300 Diagnostic Subfunctions 87

Modbus Plus Network Statistics

Word Bits Meaning

00 Node type ID:
0 Unknown node type
1 Programmable controller node
2 Modbus bridge node
3 Host computer node
4 Bridge Plus node
5 Peer I/O node

01 0 ... 11 Software version number in hex (to read, strip bits 12–15 from word)
12 ... 14 Reserved
15 Defines Word 15 error counters (see Word 15)

Most significant bit defines use of error counters in Word 15.
Least significant half of upper byte, plus lower byte, contain software version.

Layout: | Upper Byte | Lower Byte |
[] [––––Software version in hex––––]
 \
Most significant bit defines Word 15 error counters
 (see Word 15)

02 Network address for this station

03 MAC state variable:
 0 Power up state
 1 Monitor offline state
 2 Duplicate offline state
 3 Idle state
 4 Use token state
 5 Work response state
 6 Pass token state
 7 Solicit response state
 8 Check pass state
 9 Claim token state
10 Claim response state

04 Peer status (LED code); provides status of this unit
relative to the network:

 0 Monitor link operation
 32 Normal link operation
 64 Never getting token
 96 Sole station
128 Duplicate station

PI–MBUS–300Diagnostic Subfunctions88

08 Diagnostics (Continued)

Modbus Plus Network Statistics (Continued)

Word Bits Meaning

05 Token pass counter; increments each time this station gets the token

06 Token rotation time in ms

07 LO Data master failed during token ownership bit map
HI Program master failed during token ownership bit map

08 LO Data master token owner work bit map
HI Program master token owner work bit map

09 LO Data slave token owner work bit map
HI Program slave token owner work bit map

10 HI Data slave/get slave command transfer request bit map

11 LO Program master/get master rsp transfer request bit map
HI Program slave/get slave command transfer request bit map

12 LO Program master connect status bit map
 HI Program slave automatic logout request bit map

13 LO Pretransmit deferral error counter
HI Receive buffer DMA overrun error counter

14 LO Repeated command received counter
HI Frame size error counter

15 If Word 1 bit 15 is not set, Word 15 has the following meaning:

LO Receiver collision–abort error counter
HI Receiver alignment error counter

If Word 1 bit 15 is set, Word 15 has the following meaning:

LO Cable A framing error
HI Cable B framing error

16 LO Receiver CRC error counter
HI Bad packet–length error counter

17 LO Bad link–address error counter
HI Transmit buffer DMA–underrun error counter

PI–MBUS–300 Diagnostic Subfunctions 89

Word Byte Meaning

18 LO Bad internal packet length error counter
HI Bad MAC function code error counter

19 LO Communication retry counter
HI Communication failed error counter

20 LO Good receive packet success counter
HI No response received error counter

21 LO Exception response received error counter
HI Unexpected path error counter

22 LO Unexpected response error counter
HI Forgotten transaction error counter

23 LO Active station table bit map, nodes 1 ... 8
HI Active station table bit map, nodes 9 ...16

24 LO Active station table bit map, nodes 17 ... 24
HI Active station table bit map, nodes 25 ... 32

25 LO Active station table bit map, nodes 33 ... 40
HI Active station table bit map, nodes 41 ... 48

26 LO Active station table bit map, nodes 49 ... 56
HI Active station table bit map, nodes 57 ... 64

27 LO Token station table bit map, nodes 1 ... 8
HI Token station table bit map, nodes 9 ... 16

28 LO Token station table bit map, nodes 17 ... 24
HI Token station table bit map, nodes 25 ... 32

29 LO Token station table bit map, nodes 33 ... 40
HI Token station table bit map, nodes 41 ... 48

30 LO Token station table bit map, nodes 49 ... 56
HI Token station table bit map, nodes 57 ... 64

31 LO Global data present table bit map, nodes 1 ... 8
HI Global data present table bit map, nodes 9 ... 16

32 LO Global data present table bit map, nodes 17 ... 24
HI Global data present table bit map, nodes 25 ... 32

33 LO Global data present table bit map, nodes 33 ... 40
HI Global data present table bit map, nodes 41 ... 48

34 LO Global data present table map, nodes 49 ... 56
HI Global data present table bit map, nodes 57 ... 64

PI–MBUS–300Diagnostic Subfunctions90

08 Diagnostics (Continued)

Modbus Plus Network Statistics (Continued)

Word Bits Meaning

35 LO Receive buffer in use bit map, buffer 1–8
HI Receive buffer in use bit map, buffer 9 ... 16

36 LO Receive buffer in use bit map, buffer 17 ... 24
HI Receive buffer in use bit map, buffer 25 ... 32

37 LO Receive buffer in use bit map, buffer 33 ... 40
HI Station management command processed initiation counter

38 LO Data master output path 1 command initiation counter
HI Data master output path 2 command initiation counter

39 LO Data master output path 3 command initiation counter
HI Data master output path 4 command initiation counter

40 LO Data master output path 5 command initiation counter
HI Data master output path 6 command initiation counter

41 LO Data master output path 7 command initiation counter
HI Data master output path 8 command initiation counter

42 LO Data slave input path 41 command processed counter
HI Data slave input path 42 command processed counter

43 LO Data slave input path 43 command processed counter
HI Data slave input path 44 command processed counter

44 LO Data slave input path 45 command processed counter
HI Data slave input path 46 command processed counter

45 LO Data slave input path 47 command processed counter
HI Data slave input path 48 command processed counter

46 LO Program master output path 81 command initiation counter
HI Program master output path 82 command initiation counter

47 LO Program master output path 83 command initiation counter
HI Program master output path 84 command initiation counter

48 LO Program master command initiation counter
HI Program master output path 86 command initiation counter

49 LO Program master output path 87 command initiation counter
HI Program master output path 88 command initiation counter

PI–MBUS–300 Diagnostic Subfunctions 91

Word Bits Meaning

50 LO Program slave input path C1 command processed counter
HI Program slave input path C2 command processed counter

51 LO Program slave input path C3 command processed counter
HI Program slave input path C4 command processed counter

52 LO Program slave input path C5 command processed counter
HI Program slave input path C6 command processed counter

53 LO Program slave input path C7 command processed counter
HI Program slave input path C8 command processed counter

PI–MBUS–300 Exception Responses 93

Appendix A
Exception Responses

Exception Responses

Exception Codes

PI–MBUS–300Exception Responses94

Exception Responses

Except for broadcast messages, when a master device sends a query to a slave
device it expects a normal response. One of four possible events can occur from
the master’s query:

If the slave device receives the query without a communication error, and can
handle the query normally, it returns a normal response.

If the slave does not receive the query due to a communication error, no
response is returned. The master program will eventually process a timeout
condition for the query.

If the slave receives the query, but detects a communication error (parity, LRC,
or CRC), no response is returned. The master program will eventually process
a timeout condition for the query.

If the slave receives the query without a communication error, but cannot
handle it (for example, if the request is to read a non–existent coil or register),
the slave will return an exception response informing the master of the nature of
the error.

The exception response message has two fields that differentiate it from a normal
response:

Function Code Field: In a normal response, the slave echoes the function code
of the original query in the function code field of the response. All function codes
have a most–significant bit (MSB) of 0 (their values are all below 80 hexadecimal).
In an exception response, the slave sets the MSB of the function code to 1. This
makes the function code value in an exception response exactly 80 hexadecimal
higher than the value would be for a normal response.

With the function code’s MSB set, the master’s application program can recognize
the exception response and can examine the data field for the exception code.

Data Field: In a normal response, the slave may return data or statistics in the
data field (any information that was requested in the query). In an exception
response, the slave returns an exception code in the data field. This defines the
slave condition that caused the exception.

PI–MBUS–300 Exception Responses 95

Figure 46 shows an example of a master query and slave exception response.
The field examples are shown in hexadecimal.

Byte Contents Example

1 Slave Address 0A
2 Function 01
3 Starting Address Hi 04
4 Starting Address Lo A1
5 No. of Coils Hi 00
6 No. of Coils Lo 01
7 LRC 4F

QUERY

Byte Contents Example

1 Slave Address 0A
2 Function 81
3 Exception Code 02
4 LRC 73

EXCEPTION RESPONSE

Figure 46 Master Query and Slave Exception Response

In this example, the master addresses a query to slave device 10 (0A hex). The
function code (01) is for a Read Coil Status operation. It requests the status of the
coil at address 1245 (04A1 hex). Note that only that one coil is to be read, as
specified by the number of coils field (0001).

If the coil address is non–existent in the slave device, the slave will return the
exception response with the exception code shown (02). This specifies an illegal
data address for the slave. For example, if the slave is a 984–385 with 512 coils,
this code would be returned.

A listing of exception codes begins on the next page.

PI–MBUS–300Exception Responses96

Exception Codes

Code Name Meaning

01 ILLEGAL FUNCTION The function code received in the query
is not an allowable action for the slave.
If a Poll Program Complete command
was issued, this code indicates that no
program function preceded it.

02 ILLEGAL DATA ADDRESS The data address received in the query
is not an allowable address for the
slave.

03 ILLEGAL DATA VALUE A value contained in the query data
field is not an allowable value for the
slave.

04 SLAVE DEVICE FAILURE An unrecoverable error occurred while
the slave was attempting to perform the
requested action.

05 ACKNOWLEDGE The slave has accepted the request
and is processing it, but a long duration
of time will be required to do so. This
response is returned to prevent a
timeout error from occurring in the
master. The master can next issue a
Poll Program Complete message to
determine if processing is completed.

06 SLAVE DEVICE BUSY The slave is engaged in processing a
long–duration program command. The
master should retransmit the message
later when the slave is free.

PI–MBUS–300 Exception Responses 97

07 NEGATIVE ACKNOWLEDGE The slave cannot perform the program
function received in the query. This
code is returned for an unsuccessful
programming request using function
code 13 or 14 decimal. The master
should request diagnostic or error
information from the slave.

08 MEMORY PARITY ERROR The slave attempted to read extended
memory, but detected a parity error in
the memory. The master can retry the
request, but service may be required on
the slave device.

PI–MBUS–300 Application Notes 99

Appendix B
Application Notes

This Appendix contains information and suggestions for using
Modbus in your application.

Maximum Query/Response Parameters for Modicon Controllers

Estimating Serial Transaction Timing

Application Notes for the 584 and 984A/B/X Controllers

PI–MBUS–300Application Notes100

Maximum Query/Response Parameters

The listings in this section show the maximum amount of data that each controller
can request or send in a master query, or return in a slave response. All function
codes and quantities are in decimal.

184/384

Function Description Query Response

1 Read Coil Status 800 coils 800 coils

2 Read Input Status 800 inputs 800 inputs

3 Read Holding Registers 100 registers 100 registers

4 Read Input Registers 100 registers 100 registers

5 Force Single Coil 1 coil 1 coil

6 Preset Single Register 1 register 1 register

7 Read Exception Status N/A 8 coils

8 Diagnostics N/A N/A

9 Program 484 Not supported Not supported

10 Poll 484 Not supported Not supported

11 Fetch Comm. Event Ctr. N/A N/A

12 Fetch Comm. Event Log N/A 70 data bytes

13 Program Controller 32 data bytes 32 data bytes

14 Poll Controller N/A 32 data bytes

15 Force Multiple Coils 800 coils 800 coils

16 Preset Multiple Registers 100 registers 100 registers

17 Report Slave ID N/A N/A

18 Program 884/M84 Not supported Not supported

19 Reset Comm. Link Not supported Not supported

20 Read General Reference Not supported Not supported

21 Write General Reference Not supported Not supported

PI–MBUS–300 Application Notes 101

484

These values are for an 8K controller. See the 484 User’s Guide for limits of
smaller controllers.

Function Description Query Response

1 Read Coil Status 512 coils 512 coils

2 Read Input Status 512 inputs 512 inputs

3 Read Holding Registers 254 registers 254 registers

4 Read Input Registers 32 registers 32 registers

5 Force Single Coil 1 coil 1 coil

6 Preset Single Register 1 register 1 register

7 Read Exception Status N/A 8 coils

8 Diagnostics N/A N/A

9 Program 484 16 data bytes 16 data bytes

10 Poll 484 N/A 16 data bytes

11 Fetch Comm. Event Ctr. Not supported Not supported

12 Fetch Comm. Event Log Not supported Not supported

13 Program Controller Not supported Not supported

14 Poll Controller Not supported Not supported

15 Force Multiple Coils 800 coils 800 coils

16 Preset Multiple Registers 60 registers 60 registers

17 Report Slave ID N/A N/A

18 Program 884/M84 Not supported Not supported

19 Reset Comm. Link Not supported Not supported

20 Read General Reference Not supported Not supported

21 Write General Reference Not supported Not supported

PI–MBUS–300Application Notes102

Maximum Q/R Parameters (Continued)

584

Function Description Query Response

1 Read Coil Status 2000 coils 2000 coils

2 Read Input Status 2000 inputs 2000 inputs

3 Read Holding Registers 125 registers 125 registers

4 Read Input Registers 125 registers 125 registers

5 Force Single Coil 1 coil 1 coil

6 Preset Single Register 1 register 1 register

7 Read Exception Status N/A 8 coils

8 Diagnostics N/A N/A

9 Program 484 Not supported Not supported

10 Poll 484 Not supported Not supported

11 Fetch Comm. Event Ctr. N/A N/A

12 Fetch Comm. Event Log N/A 70 data bytes

13 Program Controller 33 data bytes 33 data bytes

14 Poll Controller N/A 33 data bytes

15 Force Multiple Coils 800 coils 800 coils

16 Preset Multiple Registers 100 registers 100 registers

17 Report Slave ID N/A N/A

18 Program 884/M84 Not supported Not supported

19 Reset Comm. Link Not supported Not supported

20 Read General Reference (1) (1)

21 Write General Reference (1) (1)

Notes:

(1) The maximum length of the entire message must not exceed 256 bytes.

PI–MBUS–300 Application Notes 103

884

Function Description Query Response

1 Read Coil Status 2000 coils 2000 coils

2 Read Input Status 2000 inputs 2000 inputs

3 Read Holding Registers 125 registers 125 registers

4 Read Input Registers 125 registers 125 registers

5 Force Single Coil 1 coil 1 coil

6 Preset Single Register 1 register 1 register

7 Read Exception Status N/A 8 coils

8 Diagnostics N/A N/A

9 Program 484 Not supported Not supported

10 Poll 484 Not supported Not supported

11 Fetch Comm. Event Ctr. Not supported Not supported

12 Fetch Comm. Event Log Not supported Not supported

13 Program Controller Not supported Not supported

14 Poll Controller Not supported Not supported

15 Force Multiple Coils 800 coils 800 coils

16 Preset Multiple Registers 100 registers 100 registers

17 Report Slave ID N/A N/A

18 Program 884/M84 (1) (1)

19 Reset Comm. Link N/A N/A

20 Read General Reference Not supported Not supported

21 Write General Reference Not supported Not supported

Notes:

(1) The maximum length of the entire message must not exceed 256 bytes.

PI–MBUS–300Application Notes104

Maximum Q/R Parameters (Continued)

M84

Function Description Query Response

1 Read Coil Status 64 coils 64 coils

2 Read Input Status 64 inputs 64 inputs

3 Read Holding Registers 32 registers 32 registers

4 Read Input Registers 4 registers 4 registers

5 Force Single Coil 1 coil 1 coil

6 Preset Single Register 1 register 1 register

7 Read Exception Status N/A 8 coils

8 Diagnostics N/A N/A

9 Program 484 Not supported Not supported

10 Poll 484 Not supported Not supported

11 Fetch Comm. Event Ctr. Not supported Not supported

12 Fetch Comm. Event Log Not supported Not supported

13 Program Controller Not supported Not supported

14 Poll Controller Not supported Not supported

15 Force Multiple Coils 64 coils 64 coils

16 Preset Multiple Registers 32 registers 32 registers

17 Report Slave ID N/A N/A

18 Program 884/M84 (1) (1)

19 Reset Comm. Link N/A N/A

20 Read General Reference Not supported Not supported

21 Write General Reference Not supported Not supported

Notes:

(1) The maximum length of the entire message must not exceed 256 bytes.

984

PI–MBUS–300 Application Notes 105

Function Description Query Response

1 Read Coil Status 2000 coils 2000 coils

2 Read Input Status 2000 inputs 2000 inputs

3 Read Holding Registers 125 registers 125 registers

4 Read Input Registers 125 registers 125 registers

5 Force Single Coil 1 coil 1 coil

6 Preset Single Register 1 register 1 register

7 Read Exception Status N/A 8 coils

8 Diagnostics N/A N/A

9 Program 484 Not supported Not supported

10 Poll 484 Not supported Not supported

11 Fetch Comm. Event Ctr. N/A N/A

12 Fetch Comm. Event Log N/A 70 data bytes

13 Program Controller 33 data bytes 33 data bytes

14 Poll Controller N/A 33 data bytes

15 Force Multiple Coils 800 coils 800 coils

16 Preset Multiple Registers 100 registers 100 registers

17 Report Slave ID N/A N/A

18 Program 884/M84 Not supported Not supported

19 Reset Comm. Link Not supported Not supported

20 Read General Reference (1) (1)

21 Write General Reference (1) (1)

Notes:

(1) The maximum length of the entire message must not exceed 256 bytes.

PI–MBUS–300Application Notes106

Estimating Serial Transaction Timing

The Transaction Sequence

The following sequence of events occusr during a Modbus serial transaction.
Letters in parentheses () refer to the timing notes at the end of the listing.

1. The Modbus master composes the message.

2. The master device modem RTS and CTS status are checked. (A)

3. The query message is transmitted to the slave. (B)

4. The slave processes the query message. (C) (D)

5. The slave calculates an error check field. (E)

6. The slave device modem RTS and CTS status are checked. (A)

7. The response message is transmitted to the master. (B)

8. The master application acts upon the response and its data.

Timing Notes

(A) If the RTS and CTS pins are jumpered together, this time is negligible.
For J478 modems, the time is about 5 ms.

(B) Use the following formula to estimate the transmission time:

Time (ms) = 1000 X (character count) X (bits per character)
Baud Rate

(C) The Modbus message is processed at the end of the controller scan. The
worst–case delay is one scan time, which occurs if the controller has just
begun a new scan. The average delay is 0.5 scan time.

The time allotted for servicing Modbus ports at the end of the controller
scan (before beginning a new scan) depends upon the controller model.
Timing for each model is described on the next page.

PI–MBUS–300 Application Notes 107

(C) Continued:

For 484 controllers the time is approximately 1.5 ms. The Modbus port is
available on a contention basis with any J470/J474/J475 that is present.

For 584 and 984 controllers the time is approximately 1.5 ms for each
Modbus port. The ports are serviced sequentially, starting with port 1.

For 184/384 controllers the time varies according to the amount of data
being handled. It ranges from a minimum of 0.5 ms to a maximum of about
6.0 ms (for 100 registers), or 7.0 ms (for 800 coils). If a programming panel
is currently being used with the controller, the Modbus port is locked out.

(D) Modbus functions 1 through 4, 15, and 16 permit the master to request
more data than can be processed during the time alloted for servicing the
slave’s Modbus port. If the slave cannot process all of the data, it will
buffer the data and process it at the end of subsequent scans.

The amount of data that can be processed during one service period at the
Modbus port is as follows:

Discretes Registers

Micro 84 16 4
184/384 800 100
484 32 16
584 64 32
984A/B/X 64 32
984–X8X 1000 125

Note: ‘984–X8X’ refers to 984 slot–mount models (984–385, –685, etc).

For the 884, the processing time for multiple data is as follows:
Read 768 coils: 14 scans Force single coil: 3 scans
Read 256 inputs: 7 scans Preset registers: 3 scans
Read 125 output registers: 5 scans Force 768 coils: 18 scans
Read 125 input registers: 8 scans Preset 100 registers: 10 scans

(E) LRC calculation time is less than 1 ms. CRC calculation time is about
0.3 ms for each 8 bits of data to be returned in the response.

PI–MBUS–300Application Notes108

Notes for the 584 and 984A/B/X

These application notes apply only to Modicon 584 and 984A/B/X controllers.

Baud Rates: When using both Modbus ports 1 and 2, the maximum allowable
combined baud rate is 19,200 baud.

Port Lockups: When using ASCII, avoid sending ‘zero data length’ messages,
or messages with no device address. For example, this is an illegal message:

: CR LF (colon, CR, LF)

Random port lockups can occur this kind of message is used.

Terminating ASCII Messages: ASCII messages should normally terminate
with a CRLF pair. With the 584 and 984A/B/X controllers, an ASCII message
can terminate after the LRC field (without the CRLF characters being sent), if
an interval of at least one second is allowed to occur after the LRC field. If this
happens, the controller will assume that the message terminated normally.

PI–MBUS–300 LRC/CRC Generation 109

Appendix C
LRC/CRC Generation

LRC Generation

CRC Generation

PI–MBUS–300LRC/CRC Generation110

LRC Generation

The Longitudinal Redundancy Check (LRC) field is one byte, containing an 8–bit
binary value. The LRC value is calculated by the transmitting device, which
appends the LRC to the message. The receiving device recalculates an LRC
during receipt of the message, and compares the calculated value to the actual
value it received in the LRC field. If the two values are not equal, an error results.

The LRC is calculated by adding together successive 8–bit bytes in the message,
discarding any carries, and then two’s complementing the result. The LRC is an
8–bit field, therefore each new addition of a character that would result in a value
higher than 255 decimal simply ‘rolls over’ the field’s value through zero. Because
there is no ninth bit, the carry is discarded automatically.

A procedure for generating an LRC is:

1. Add all bytes in the message, excluding the starting ‘colon’ and ending
CRLF. Add them into an 8–bit field, so that carries will be discarded.

2. Subtract the final field value from FF hex (all 1’s), to produce the
ones–complement.

3. Add 1 to produce the twos–complement.

Placing the LRC into the Message

When the the 8–bit LRC (2 ASCII characters) is transmitted in the message, the
high–order character will be transmitted first, followed by the low–order character.
For example, if the LRC value is 61 hex (0110 0001):

Addr Func Data
Data
Count

Data Data Data
LRC

Lo
LRC

Hi

16

Colon CR LF

Figure 47 LRC Character Sequence

PI–MBUS–300 LRC/CRC Generation 111

Example

An example of a C language function performing LRC generation is shown below.
The function takes two arguments:

unsigned char *auchMsg ; A pointer to the message buffer containing
binary data to be used for generating the LRC

unsigned short usDataLen ; The quantity of bytes in the message buffer.

The function returns the LRC as a type unsigned char .

LRC Generation Function

static unsigned char LRC(auchMsg, usDataLen)

unsigned char *auchMsg ; /* message to calculate LRC upon */

unsigned short usDataLen ; /* quantity of bytes in message */

{

unsigned char uchLRC = 0 ; /* LRC char initialized */

while (usDataLen––) /* pass through message buffer */

uchLRC += *auchMsg++ ; /* add buffer byte without carry */

return ((unsigned char)(–((char)uchLRC))) ; /* return twos complement */

}

PI–MBUS–300LRC/CRC Generation112

CRC Generation

The Cyclical Redundancy Check (CRC) field is two bytes, containing a 16–bit
binary value. The CRC value is calculated by the transmitting device, which
appends the CRC to the message. The receiving device recalculates a CRC
during receipt of the message, and compares the calculated value to the actual
value it received in the CRC field. If the two values are not equal, an error results.

The CRC is started by first preloading a 16–bit register to all 1’s. Then a process
begins of applying successive 8–bit bytes of the message to the current contents
of the register. Only the eight bits of data in each character are used for generating
the CRC. Start and stop bits, and the parity bit, do not apply to the CRC.

During generation of the CRC, each 8–bit character is exclusive ORed with the
register contents. Then the result is shifted in the direction of the least significant
bit (LSB), with a zero filled into the most significant bit (MSB) position. The LSB is
extracted and examined. If the LSB was a 1, the register is then exclusive ORed
with a preset, fixed value. If the LSB was a 0, no exclusive OR takes place.

This process is repeated until eight shifts have been performed. After the last
(eighth) shift, the next 8–bit character is exclusive ORed with the register’s current
value, and the process repeats for eight more shifts as described above. The final
contents of the register, after all the characters of the message have been applied,
is the CRC value.

A procedure for generating a CRC is:

1, Load a 16–bit register with FFFF hex (all 1’s). Call this the CRC register.

2. Exclusive OR the first 8–bit byte of the message with the low–order byte
of the 16–bit CRC register, putting the result in the CRC register.

3. Shift the CRC register one bit to the right (toward the LSB), zero–filling the
MSB. Extract and examine the LSB.

4. (If the LSB was 0): Repeat Step 3 (another shift).
(If the LSB was 1): Exclusive OR the CRC register with the polynomial

value A001 hex (1010 0000 0000 0001).

5. Repeat Steps 3 and 4 until 8 shifts have been performed. When this is
done, a complete 8–bit byte will have been processed.

PI–MBUS–300 LRC/CRC Generation 113

6. Repeat Steps 2 through 5 for the next 8–bit byte of the message.
Continue doing this until all bytes have been processed.

7. The final contents of the CRC register is the CRC value.

8. When the CRC is placed into the message, its upper and lower bytes
must be swapped as described below.

Placing the CRC into the Message

When the 16–bit CRC (two 8–bit bytes) is transmitted in the message, the
low-order byte will be transmitted first, followed by the high-order byte.
For example, if the CRC value is 1241 hex (0001 0010 0100 0001):

Addr Func Data
Data
Count

Data Data Data
CR
C Hi

CR
CLo

41 12

Figure 48 CRC Byte Sequence

Example

An example of a C language function performing CRC generation is shown on the
following pages. All of the possible CRC values are preloaded into two arrays,
which are simply indexed as the function increments through the message buffer.
One array contains all of the 256 possible CRC values for the high byte of the
16–bit CRC field, and the other array contains all of the values for the low byte.

Indexing the CRC in this way provides faster execution than would be achieved by
calculating a new CRC value with each new character from the message buffer.

Note This function performs the swapping of the high/low CRC bytes
internally. The bytes are already swapped in the CRC value that is
returned from the function.

Therefore the CRC value returned from the function can be directly
placed into the message for transmission.

PI–MBUS–300LRC/CRC Generation114

CRC Generation (Continued)

Example (Continued)

The function takes two arguments:

unsigned char *puchMsg ; A pointer to the message buffer containing
binary data to be used for generating the CRC

unsigned short usDataLen ; The quantity of bytes in the message buffer.

The function returns the CRC as a type unsigned short .

CRC Generation Function

unsigned short CRC16(puchMsg, usDataLen)

unsigned char *puchMsg ; /* message to calculate CRC upon */

unsigned short usDataLen ; /* quantity of bytes in message */

{

unsigned char uchCRCHi = 0xFF ; /* high byte of CRC initialized */

unsigned char uchCRCLo = 0xFF ; /* low byte of CRC initialized */

unsigned uIndex ; /* will index into CRC lookup table */

while (usDataLen––) /* pass through message buffer */

{

uIndex = uchCRCHi ^ *puchMsgg++ ; /* calculate the CRC */

uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex} ;

uchCRCLo = auchCRCLo[uIndex] ;

}

return (uchCRCHi << 8 | uchCRCLo) ;

}

PI–MBUS–300 LRC/CRC Generation 115

High-Order Byte Table

/* Table of CRC values for high–order byte */

static unsigned char auchCRCHi[] = {

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,

0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,

0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,

0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,

0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,

0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,

0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,

0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,

0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,

0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,

0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,

0x40

} ;

Low-Order Byte Table

/* Table of CRC values for low–order byte */

static char auchCRCLo[] = {

0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4,

0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,

0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD,

0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,

0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7,

0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,

0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE,

0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,

0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2,

0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,

0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,

0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,

0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91,

0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,

0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88,

0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,

0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80,

0x40

} ;

