
KwikNet ®
TCP/IP Stack

USER'S GUIDE

First Printing: May 15, 1998
Last Printing: September 15, 2002

Manual Order Number: PN303-9

Copyright © 1997 - 2002

KADAK Products Ltd.
206 - 1847 West Broadway Avenue
Vancouver, BC, Canada, V6J 1Y5

Phone: (604) 734-2796
Fax: (604) 734-8114

KwikNet User's Guide KADAK i

TECHNICAL SUPPORT

KADAK Products Ltd. is committed to technical support for its software products. Our
programs are designed to be easily incorporated in your systems and every effort has
been made to eliminate errors.

Engineering Change Notices (ECNs) are provided periodically to repair faults or to
improve performance. You will automatically receive these updates for a period of one
year. After that period, you may purchase additional updates. Please keep us informed
of the primary user in your company to whom these update notices and other pertinent
information should be directed.

Should you require direct technical assistance in your use of this KADAK software
product, engineering support is available by telephone, fax or e-mail without charge.
KADAK reserves the right to charge for technical support services which it deems to be
beyond the normal scope of technical support.

We would be pleased to receive your comments and suggestions concerning this product
and its documentation. Your feedback helps in the continuing product evolution.

KADAK Products Ltd.
206 - 1847 West Broadway Avenue
Vancouver, BC, Canada, V6J 1Y5

Phone: (604) 734-2796
Fax: (604) 734-8114
e-mail: amxtech@kadak.com

ii KADAK KwikNet User's Guide

Copyright © 1997-2002 by KADAK Products Ltd.
All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated into any language or computer
language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual or otherwise, without the prior
written permission of KADAK Products Ltd., Vancouver, BC, CANADA.

DISCLAIMER

KADAK Products Ltd. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any implied
warranties or merchantability or fitness for any particular purpose.
Further, KADAK Products Ltd. reserves the right to revise this
publication and to make changes from time to time in the content
hereof without obligation of KADAK Products Ltd. to notify any
person of such revision or changes.

TRADEMARKS

AMX in the stylized form and KwikNet are registered trademarks of KADAK Products Ltd.
AMX, AMX/FS, InSight, KwikLook and KwikPeg are trademarks of KADAK Products Ltd.
UNIX is a registered trademark of AT&T Bell Laboratories.
Microsoft, MS-DOS and Windows are registered trademarks of Microsoft Corporation.
All other trademarked names are the property of their respective owners.

KwikNet User's Guide KADAK Copyright © 1997-2000 KADAK Products Ltd. iii

Copyright Notice

The KwikNet TCP/IP Stack is derived from the University of
California's Berkeley Software Distribution (BSD). Some components
have been adapted from software made available by the Massachusetts
Institute of Technology and Carnegie Mellon University. Use of this
software requires the following software copyright acknowledgements.

Copyright © 1982, 1986 Regents of the University of California
All rights reserved.

Redistribution and use in source and binary forms are permitted
provided that the above copyright notice and this paragraph are
duplicated in all such forms and that any documentation, advertising
materials, and other materials related to such distribution and use
acknowledge that the software was developed by the University of
California, Berkeley. The name of the University may not be used to
endorse or promote products derived from this software without
specific prior written permission. THIS SOFTWARE IS PROVIDED
"AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

Copyright © 1988, 1989 Carnegie Mellon University
All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of CMU not be used in
advertising or publicity pertaining to distribution of the software
without specific, written prior permission.

CMU DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
CMU BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

iv Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet User's Guide

This page left blank intentionally.

KwikNet User's Guide KADAK Copyright © 1997-2000 KADAK Products Ltd. v

KwikNet TCP/IP Stack User's Guide
Table of Contents

Page

1. KwikNet Overview 1

1.1 Introduction.. 1
1.2 General Operation .. 3

KwikNet Operation.. 5
Multitasking Operation .. 6
Single Threaded Operation .. 7
The Single Threaded Server Queue ... 8

1.3 KwikNet Nomenclature.. 9
1.4 Byte Ordering and Endianness ... 10
1.5 Memory Allocation Requirements ... 12

Memory Heap Assignment .. 12
Memory Acquisition Function ... 12
Memory Allocation Protection... 13

1.6 KwikNet Data Logging Service ... 14
Message Formatting... 14
Message Print Attributes.. 15
KwikNet Data Log Function.. 16

1.7 KwikNet Message Recording Service.. 17
1.8 KwikNet Console Driver.. 18

Serial I/O Terminal as the Console Device .. 19
PC Display/Keyboard as the Console Device 19
Telnet as the Console Device... 19
AMX Console Devices .. 19

1.9 Debugging Aids ... 20
Debug Logging .. 20
Breakpoint Traps.. 21
Fatal Errors .. 21
Debug Mask ... 22

1.10 KwikNet TCP/IP Sample Program - A Tutorial................................. 23
Startup.. 24
Client - Server Using TCP Sockets.. 24
Client - Server Using UDP Sockets ... 26
Logging.. 27
Shutdown ... 27
Running the TCP/IP Sample Program ... 28

vi Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet User's Guide

KwikNet TCP/IP Stack User's Guide
Table of Contents (continued)

Page

2. KwikNet System Configuration 29

2.1 Introduction.. 29
KwikNet Libraries ... 29
Network Configuration Module... 31

2.2 KwikNet Configuration Builder... 33
Starting the Builder .. 33
Screen Layout .. 34
Menus... 35
Field Editing... 36
Add, Edit and Delete KwikNet Objects ... 37

2.3 KwikNet Library Parameter File .. 39
Target Parameters .. 40
OS Parameters.. 42
IP Stack Parameters ... 45
TCP Stack Parameters.. 48
Ethernet / SLIP Parameters .. 50
Modem Parameters .. 52
DNS / DHCP Client Parameters .. 54
Debug and Trace Parameters ... 57

2.4 KwikNet Network Parameter File .. 59
General Application Parameters .. 60
Ethernet Network Definition.. 62
SLIP Network Definition ... 64
Network Device Driver Definition... 66
Network IP Address Definition.. 68
Modem Options ... 70

3. KwikNet System Construction 73

3.1 Building an Application ... 73
3.2 Making the KwikNet Libraries... 74

KwikNet Directories and Files... 76
Getting Ready .. 76
Network Library Make File ... 77
Gathering Files... 77
Creating the KwikNet Libraries ... 78
Generated KwikNet Library Modules.. 79

3.3 Compiling the Network Configuration Module 80
3.4 Compiling Application Modules .. 81
3.5 Linking the Application ... 82
3.6 Making the TCP/IP Sample Program... 83

TCP/IP Sample Program Directories ... 83
TCP/IP Sample Program Files ... 84
TCP/IP Sample Program Parameter Files .. 85
TCP/IP Sample Program KwikNet Libraries 85
The TCP/IP Sample Program Make Process.. 86

KwikNet User's Guide KADAK Copyright © 1997-2000 KADAK Products Ltd. vii

KwikNet TCP/IP Stack User's Guide
Table of Contents (continued)

Page

3. KwikNet System Construction (continued) 87

3.7 Using KwikNet with AMX .. 87
3.7.1 AMX System Configuration ... 87

KwikNet Task .. 87
AMX Interrupt Stack ... 88
KwikNet Semaphores .. 88
KwikNet Memory Pool.. 88
KwikNet Timer .. 88
KwikNet Restart and Exit Procedures.. 89
AMX 86 and AMX 386/EP PC Supervisor ... 89

3.7.2 AMX Target Configuration... 90
32-Bit AMX Systems... 90
16-Bit AMX 86 Systems.. 90

3.7.3 Toolset Considerations.. 91
Tailoring Files.. 91
Compiler Configuration Header File.. 91
OS Interface Make File .. 91

3.7.4 AMX Application Construction Summary.. 92

4. KwikNet IP/UDP Services 93

4.1 The UDP Programming Interface... 93
The UDP Channel .. 93
Receiving UDP Datagrams .. 94
Processing Received UDP Datagrams ... 95
Broadcast UDP Datagrams .. 95
UDP Echo Requests ... 95
UDP Sockets .. 95

4.2 The DHCP (BOOTP) Client .. 96
DHCP Operation.. 96
DHCP Timeout .. 97
DHCP Leases ... 97
DNS Server Support .. 97
DHCP Option Request ... 97

4.3 The DNS Client.. 98
DNS Server List ... 98
DNS Queries .. 99
DNS Name Lookup.. 99
Get Host By Name ... 100
Interpreting DNS Results ... 101

4.4 ICMP Protocol ... 102
ICMP Destination Unreachable Hook.. 102
Using PING.. 103
Initiating a Ping.. 103
Handling a Ping Reply ... 104

4.5 KwikNet State Management .. 105
Network States ... 105
KwikNet States .. 106

4.6 KwikNet IP and UDP Library Services.. 107

viii Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet User's Guide

KwikNet TCP/IP Stack User's Guide
Table of Contents (continued)

Page

5. KwikNet TCP/IP Sockets 149

5.1 Introduction to KwikNet Sockets ... 149
KwikNet Procedure Descriptions... 149
KwikNet Sockets API .. 150
Socket Addresses ... 150
Non-Blocking Sockets ... 151
KwikNet Error Codes .. 151

5.2 Socket Types .. 152
Stream Socket (for TCP).. 152
Datagram Socket (for UDP)... 152
Using UDP Sockets.. 153
UDP Sockets Examples ... 154

5.3 Socket Options ... 155
Unsupported Socket Options.. 157

5.4 KwikNet Socket Services... 159

KwikNet User's Guide KADAK Copyright © 1997-2000 KADAK Products Ltd. ix

KwikNet TCP/IP Stack User's Guide
Appendices

Page

Appendix A. Reference Materials and Glossary A-1

A.1 Reference Materials... A-1
Books ... A-1
Internet Sources ... A-1

A.2 KwikNet Glossary ... A-3

Appendix B. KwikNet Error Codes B-1

Appendix C. KwikNet Universal File System Interface C-1

C.1 Introduction ... C-1
C.2 KwikNet File System Parameters ... C-2
C.3 Using the AMX/FS File System .. C-4
C.4 Using the MS-DOS File System .. C-6
C.5 Using a Custom File System .. C-7

Appendix D. KwikNet Administration Interface D-1

D.1 Introduction ... D-1
User Definitions ... D-1
User Access Rights .. D-2
Customizing Administration Services.. D-2

D.2 KwikNet Administration Parameters ... D-3

Appendix E. KwikNet Sample Program Architecture E-1

Console Interface ... E-1
KwikNet Sample Program Operation with AMX E-3
KwikNet Porting Kit Sample Program - Multitasking Operation E-5
KwikNet Porting Kit Sample Program - Single Threaded Operation E-7

KwikNet TCP/IP Stack User's Guide
Table of Figures

Page

Figure 1.2-1 KwikNet Application Block Diagram 4
Figure 1.2-2 KwikNet Operation ... 5

Figure 2.1-1 Creating the KwikNet Network Library Make File 30
Figure 2.1-2 Creating the KwikNet Network Configuration Module 32
Figure 2.2-1 Configuration Manager Screen Layout.................................. 34

Figure 3.2-1 KwikNet Library Construction .. 75

Figure E-1 KwikNet Sample Program Procedures..................................... E-2

x Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet User's Guide

This page left blank intentionally.

KwikNet Overview KADAK rev 7 1

1. KwikNet Overview

1.1 Introduction
The KwikNet® TCP/IP Stack is a compact, reliable, high performance TCP/IP stack, well
suited for use in embedded networking applications.

The KwikNet TCP/IP Stack includes a complete complement of protocols, some of which
are optional. You can readily tailor the KwikNet stack to accommodate your needs by
using the KwikNet Configuration Builder, a Windows® utility which makes configuring
KwikNet a snap. Your KwikNet stack will only include the features required by your
application.

KwikNet is best used with a real-time operating system (RTOS) such as KADAK's AMX™

Real-Time Multitasking Kernel. However, KwikNet can also be used in a single threaded
environment without an RTOS.

When used with the AMX multitasking kernel, KwikNet is delivered to you ready for use
on a particular target processor with any of the software development tools which
KADAK supports for that target. You can concentrate on your application, knowing that
the integration of KwikNet with AMX is fully functional.

KwikNet can also be provided in a form most suitable for porting to your own operating
system, target hardware and software development tools. The KwikNet Porting Kit
permits KwikNet to be used with your own in-house RTOS or with the commercial RTOS
of your choice. The kit includes an RTOS example illustrating the use of KwikNet with a
custom RTOS and three examples of single threaded use: one for MS-DOS, one for the
Tenberry DOS/4GW DOS Extender and one for a custom operating system. Detailed
porting instructions are provided in the KwikNet Porting Kit User's Guide.

This manual makes no attempt to describe TCP/IP, what it is or how it operates. It is
assumed that you have a working knowledge of the TCP/IP protocol suite as it applies to
your needs. Reference materials are provided in Appendix A.

The purpose of this manual is to provide the system designer and applications
programmer with the information required to properly configure and implement a
networking system using the KwikNet TCP/IP Stack. It is assumed that you are familiar
with the architecture of the target processor. It is further assumed that you are familiar
with the rudiments of microprocessor programming including the concepts of code, data
and stack separation.

KwikNet is available in C source format to ensure that regardless of your development
environment, your ability to use and support KwikNet is uninhibited. The source program
may also include code fragments programmed in the assembly language of the target
processor to improve execution speed.

The C programming language, commonly used in real-time systems, is used throughout
this manual to illustrate the features of KwikNet.

2 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Overview

Manual Overview

This chapter provides an overview of the KwikNet TCP/IP Stack. The general operation
of KwikNet is described and the nomenclature used by KADAK is introduced. Appendix
A includes a glossary which will help when you are stuck trying to remember what one of
the many protocol mnemonics means. A number of topics unrelated to network issues
are covered in this chapter. KwikNet memory allocation requirements are examined.
KwikNet data logging, message recording, console support and debugging features are also
presented. Finally, the KwikNet TCP/IP Sample Program used to exercise KwikNet and
illustrate its proper use is described in a tutorial fashion.

Chapter 2 is your system configuration guide. You may wish to read this chapter to learn
how easy it is to use the KwikNet Configuration Builder to customize KwikNet for your use.

Chapter 3 describes how KwikNet is configured for use and combined with your
application to form an executable load module. It also describes how users of KADAK's
AMX Real-Time Multitasking Kernel must adapt their AMX configuration for use with
KwikNet. If you are porting KwikNet to your own operating environment, the material
provided in this chapter will simply augment the more detailed description presented in
the KwikNet Porting Kit User' Guide.

Chapter 4 presents the KwikNet IP/UDP application programming interface (API). This
chapter includes descriptions of the lower level (IP and UDP) services which are
available for applications which choose not to use the TCP protocol and its socket
interface. Topics such as the UDP programming interface, the DHCP and DNS clients
and PING are also covered. It also describes common utility procedures which are
available for use by applications and device drivers.

Chapter 5 presents the KwikNet socket application programming interface (socket API). It
includes an alphabetic summary of all the KwikNet socket procedures at your disposal.

The KwikNet device driver interface is described in the KwikNet Device Driver Technical
Reference Manual. The use of the KwikNet Modem Driver and serial device drivers with
SLIP or PPP networks is described in that manual.

Optional KwikNet components such as PPP, FTP, HTTP and SNMP are described in
separate reference manuals. These components will be of interest only if you have
purchased and are using the relevant KwikNet options.

Note

Throughout this manual the term RT/OS is used to refer to
any operating system (OS), be it a multitasking RTOS or a
single threaded OS.

KwikNet Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 3

1.2 General Operation
The KwikNet TCP/IP Stack and your application operate as illustrated in Figure 1.2-1. If
you are using KwikNet with AMX, all of the components shown in the block diagram are
provided with KwikNet, ready to use with AMX. You simply provide the application.

If you are using the KwikNet Porting Kit to port KwikNet to your operating environment,
then the shaded blocks indicate modules which will require modification to adapt KwikNet
for use with your application. As you can see, very few modules require adaptation.

The KwikNet TCP/IP Stack sits between your application and the network. In some cases,
your application may exclude the TCP stack and interface directly with the UDP and IP
stack using the services described in Chapter 4. In most cases, your application will use
the KwikNet TCP or UDP socket services presented in Chapter 5. The KwikNet application
interface shields you from any direct involvement with the underlying network, device
drivers or operating system.

KwikNet includes an operating system interface which makes it suitable for use with or
without a real-time operating system. KwikNet is connected to the RT/OS by an OS
Interface Module, a C file containing procedures which provide access to the services of
the RT/OS. This module is incorporated into the KwikNet IP Library so that it is always
available for use by your application.

The KwikNet TCP/IP Stack consists of one or more KwikNet Libraries built according to
your specifications to meet your particular needs. The stack interacts directly with one or
more KwikNet device drivers, each of which connects KwikNet to a particular network.
Each network and its associated device driver is identified in the KwikNet Network
Configuration Module. Your KwikNet Libraries and the KwikNet Network Configuration
Module are derived from parameter files generated by the KwikNet Configuration Builder
(see Chapter 2).

KwikNet communicates with an external network through the device driver which handles
the hardware device physically connected to the network. The KwikNet device driver
interface is described in the KwikNet Device Driver Technical Reference Manual. In most
applications, the device driver is interrupt driven. Only in the simplest of systems can the
device driver afford to use a polling strategy. The device driver interface allows KwikNet
to call the driver to initiate transmissions on the network. It also allows the driver to
signal KwikNet upon receipt of a packet from the network. A separate board driver
connects KwikNet, its device drivers and the OS Interface Module to your target hardware
in an RT/OS independent manner.

Figure 1.2-1 also shows an application OS interface, a C module used by KADAK to
provide a standard interface between the RT/OS and the sample programs (applications)
provided with KwikNet and its options. If you port the KwikNet sample programs (and it is
recommended that you do so), you will have to use this module. You may also find that
portions of this module can, with very little adaptation, be used by your own application.

Finally, the RT/OS must provide a timing source. Although the RT/OS clock driver is
shown as a separate component, it may be implemented as an interrupt service routine
which resides in the OS Interface Module or in the application OS interface. When AMX
is used, your AMX clock driver will generate the fundamental timing needed by KwikNet.

4 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Overview

Application

Application
OS Interface
KNSAMOS.C
KNSAMOS.H

KwikNet
TCP/IP
Stack

OS Interface
Module

KN_OSIF.C
KN_OSIF.H

RT/OS

RT/OS
Clock Driver

Board Driver
KN_BOARD.C

KwikNet
Device

Driver(s)

Network
Configuration

Module

Target Hardware

Figure 1.2-1 KwikNet Application Block Diagram

KwikNet Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 5

KwikNet Operation

The KwikNet TCP/IP Stack can be used with either a multitasking RTOS or a single
threaded operating system. KwikNet and your application operate together as illustrated in
Figure 1.2-2. Although the application interface with KwikNet is the same in both cases,
the way it executes is quite different.

KwikNet
Task

ISR

Network
Devices Clock

ISR

Device
Driver(s)

KwikNet
Server
Task(s)

Application
Task(s)

or

App-Task

Interrupt Domain

User
Domain

KwikNet
Domain

Figure 1.2-2 KwikNet Operation

6 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Overview

Multitasking Operation

In a multitasking system which uses an RTOS, operation of the TCP/IP stack is
controlled by a single task called the KwikNet Task. This task begins execution after your
application calls procedure kn_enter() to start KwikNet. The KwikNet Task executes at a
priority above that of all other tasks which use KwikNet services.

The KwikNet Task receives timer ticks from the RTOS through the KwikNet OS interface.
These ticks, KwikNet's fundamental timing source, occur at the frequency which you
specify when you configure your KwikNet Libraries.

KwikNet uses its Ethernet, SLIP or PPP network driver to interact with a particular
network's device driver. The KwikNet Task and the device driver cooperate to ensure that
network packet transmission and reception occur in a timely fashion. Interrupts
generated by the device's hardware interface are serviced by an RTOS compatible
interrupt service routine (ISR) which calls the device driver's interrupt handler.

Your application tasks interact with KwikNet using the UDP or IP programming interface
described in Chapter 4 or the TCP or UDP socket services presented in Chapter 5.

At times, KwikNet may be forced to suspend your application task pending completion of
a requested service. How this is done depends on the magic of the KwikNet OS interface.
In a multitasking environment, only the task requesting service is suspended. Other tasks
are free to execute and use KwikNet services. KwikNet and its OS interface resolve the
problems, if any, which may occur when multiple tasks make conflicting demands on the
use of the stack.

If you use any of the optional KwikNet components such as the FTP Server or Web Server,
you will observe that these servers are also implemented as tasks running under the
auspices of the RTOS. These tasks will be of lower priority than the KwikNet Task but
will usually be of higher priority than your application tasks which use KwikNet services.

Finally, note that most applications will probably include one or more tasks of higher
priority than the KwikNet Task. These tasks, although critical for the success of your
application, must not starve the KwikNet Task's demands for execution time.

Note

All application tasks which use KwikNet services MUST
execute at a priority below that of the KwikNet Task.

KwikNet Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 7

Single Threaded Operation

Single threaded operation is only supported by KwikNet if you are using the KwikNet
Porting Kit.

In a single threaded system, there is a single application task which, for reference
purposes, is called the App-Task.

The App-Task starts in your main() function and executes in what will be referred to as
the user domain. Once the App-Task starts, the thread of execution is sequential,
flowing back and forth between your application and KwikNet. When KwikNet code is
being executed, your application is said to be in the KwikNet domain.

An interrupt can occur while executing in either the user domain or the KwikNet domain.
When an interrupt occurs, an interrupt service routine (ISR) begins execution in what is
called the interrupt domain. All interrupts, even if nested, are serviced in the interrupt
domain. When service of an interrupt is finished, execution resumes in the domain which
was in effect when the interrupt occurred.

Operation of the TCP/IP stack is controlled by a single body of KwikNet code which, by
definition, executes in the KwikNet domain. This body of code is called the KwikNet Task,
to distinguish it from your App-Task.

Your App-Task controls the flow of execution within your application. The KwikNet Task
can only execute when your App-Task permits. The KwikNet Task does not begin until
your application calls procedure kn_enter() to start KwikNet.

Once KwikNet has been started, your App-Task must regularly call KwikNet procedure
kn_yield() to let the KwikNet Task service the TCP/IP stack. Procedure kn_yield() is
included in the KwikNet IP Library and is described in Chapter 4.6.

The KwikNet Task receives timer ticks from the clock ISR through the KwikNet OS
interface. These ticks, KwikNet's fundamental timing source, occur at the frequency which
you specify when you configure your KwikNet Libraries. For best performance, your
App-Task should yield to the KwikNet Task at this frequency or higher.

KwikNet uses its Ethernet, SLIP or PPP network driver to interact with a particular
network's device driver. The KwikNet Task and the device driver cooperate to ensure that
network packet transmission and reception occur in a timely fashion. Interrupts
generated by the device's hardware interface are serviced by an interrupt service routine
(ISR) which calls the device driver's interrupt handler.

Warning

Your application MUST regularly yield to the KwikNet Task
by calling procedure kn_yield(). Failure to yield at least
at the defined KwikNet clock frequency may result in poor
performance of the TCP/IP stack.

8 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Overview

Your App-Task can interact with KwikNet using the UDP or IP programming interface
described in Chapter 4 or the TCP or UDP socket services presented in Chapter 5.

At times, KwikNet will be forced to suspend your App-Task pending completion of a
requested service. How this is done depends on the magic of the KwikNet OS interface
which ensures that the KwikNet Task continues to service the TCP/IP stack while waiting
for the event of interest. Execution continues in the KwikNet domain until the service
completes and KwikNet returns to the App-Task in the user domain.

If your App-Task makes requests for non-blocking data transfers across high speed
Ethernet networks, it must increase the frequency at which it yields to the KwikNet Task in
order to achieve optimum network performance.

The Single Threaded Server Queue

In a single threaded system, the KwikNet Task maintains a server queue to support the
optional KwikNet components such as the FTP Server or Web Server. The KwikNet Task
periodically executes each of the servers on its server queue, thereby letting these servers
operate much as they would in a multitasking system.

Your application can append its own servers to the KwikNet server queue, adding a very
primitive form of non-preemptive multitasking to an otherwise single threaded system.

The KwikNet TCP/IP Sample Program illustrates the process. The App-Task calls
procedure kn_addserver() to add a TCP server to the KwikNet Task server queue. The
App-Task then acts as a client using TCP to communicate with the server. When the
sample is finished, the TCP server removes itself from the server queue.

Procedure kn_addserver() is included in the KwikNet IP Library and is described in
Chapter 4.6.

KwikNet Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 9

1.3 KwikNet Nomenclature
The following nomenclature standards have been adopted throughout this manual.

Numbers used in this manual are decimal unless otherwise indicated. Hexadecimal
numbers are indicated in the format 0xABCD.

The terminology A(Table XYZ) is used to define addresses. It is read as "the address of
Table XYZ".

Read/write memory is referred to as RAM. Read only memory (non-volatile storage) is
referred to as ROM.

KwikNet symbol names and reserved words are identified as follows:

kn_pppp KwikNet C procedure name pppp
knxtttt KwikNet structure name of type tttt
xttttyyy Member yyy of a KwikNet structure of type tttt

KN_ssssss Reserved symbols defined in KwikNet header files

KN_EReeee KwikNet Error Code eeee
KN_WReeee KwikNet Warning Code eeee
KN_FEeeee KwikNet Fatal Error Code eeee

KN_FFFFF.xxx KwikNet reserved filenames
kkkkFFFF.xxx KwikNet reserved filenames for the following protocols kkkk

(standard: IP, TCP, UDP, SLIP, MDM, DNS, DHCP client)
(options: PPP, FTP, HTTP, SNMP, SMTP, etc.)

KNnnnFFF.xxx KwikNet target and toolset specific filenames
KNZZZFFF.xxx KwikNet filenames for application portability
KN_LIB.H KwikNet Library Configuration Module (an include file)

The nnn in a KwikNet filename is the 3-digit KwikNet part number used by KADAK to
identify a particular version of KwikNet. For example, file KN713CM.EXE is the KwikNet
Configuration Manager provided with the KwikNet Porting Kit which is identified by
KADAK part number 713.

Files with names of the form KNZZZFFF.xxx are intended to make KwikNet less sensitive
to the environment in which it is used. For example, the KwikNet compiler configuration
header file KNZZZCC.H is used to identify the particular characteristics of the compiler
being used to construct your KwikNet application.

File KN_LIB.H is the KwikNet Library Configuration Module, an include file which
includes the subset of KwikNet header files needed for compilation of your application C
code. By including file KN_LIB.H in your source modules, your KwikNet application
becomes readily portable to other target processors.

Throughout this manual examples are provided in C. Code examples are presented in
lower case. File names are shown in upper case. C code assumes that an int is 32 bits
on 32-bit processors or 16 bits on 16-bit processors as is common for most C compilers.

10 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Overview

1.4 Byte Ordering and Endianness
To use a TCP/IP stack, you must adhere to the byte ordering rules defined by the TCP/IP
protocol suite. Doing so is complicated by the fact that not all target processors follow
these rules.

The TCP/IP network uses the big endian model for byte ordering. Sequential bytes in the
data stream always appear in sequential bytes in memory. The initial byte of the data
stream is at the lowest memory address and the final byte is at the highest memory
address. The network over which the transfer takes place is said to be big endian.

If a multi-byte value appears within the TCP/IP data stream, the most significant byte of
that data value will always appear first in the stream. When stored in memory, the most
significant byte of a multi-byte value will always appear at the lower memory address
with successive bytes of the value stored at sequential, higher memory addresses. Data
which resides in memory in this fashion is said to be in net endian form.

When TCP/IP is used on a processor such as the Motorola 68xxx, the network endianness
matches the processor endianness. Both are big endian. Consequently, the natural
storage of multi-byte values in memory matches that required by the TCP/IP data stream.

However, when TCP/IP is used on a processor such as the Intel 80x86, the network
endianness conflicts with the processor endianness. The network requires big endian
values in the data stream but the processor’s natural storage of multi-byte values in
memory is little endian.

Fortunately the KwikNet TCP/IP Stack can be used on target processors which are either
big or little endian. The endianness of the target processor is a configuration parameter in
the KwikNet Library Parameter File used in the construction of the KwikNet Libraries as
described in Chapter 2.3.

Although KwikNet may be used with either big or little endian processors, it does not
alleviate your application from the responsibility for correct presentation or interpretation
of data delivered over the TCP/IP network. KwikNet treats your application data as a byte
stream with no particular endian characteristics. It is up to your application to present the
data for delivery to a remote destination in a byte ordered format that the remote end can
understand.

For example, two little endian machines can send and receive data streams containing
multi-byte values ordered in little endian form. The multi-byte values can be directly
fetched from or stored into memory. However, if one of these machines is replaced by a
big endian machine, suddenly the application will fail even though KwikNet will continue
to successfully deliver the data streams between the two machines. Of course, the newer
big endian machine could be reprogrammed to properly store and retrieve the little endian
values expected by the other machine.

This example illustrates the absolute need for applications to agree upon the manner in
which data values will be delivered to each other. Conventional wisdom suggests that if
multi-byte values are always stored in net endian form, then any machine can participate
in the conversation, regardless of the machine’s endianness.

KwikNet Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 11

Net Endian Data

KwikNet provides a set of macros (or functions) which can be used by applications to
convert 2-byte (short) values and 4-byte (long) values between net endian form and host
endian form. These macros assume the host endianness defined in the KwikNet Library
Parameter File.

The following macros are available in the KwikNet IP Library.

nlv = htonl(hlv) Convert long from host to network endian form
nsv = htons(hsv) Convert short from host to network endian form
hlv = ntohl(nlv) Convert long from network to host endian form
hsv = ntohs(nsv) Convert short from network to host endian form

On big endian machines, these macros leave the data parameter unaltered since the
network is also big endian. On little endian machines, these macros reverse the order of
the bytes in the macro parameter.

It should be obvious that htonl and ntohl are equivalent as are htons and ntohs. So
which macro should be used if two are identical? Although it does not matter, it is
recommended that the macro be chosen for best meaning in the context of its use. For
example, when storing a long value hlv into memory for delivery in the data stream, use
htonl(hlv) to indicate the conversion of the data from host to net endian form.
Similarly, when fetching a long value hlv from a received data packet, use ntohl(nlv)
to indicate the conversion of the data from net to host endian form.

So how does your application know which data values require conversion? There is no
simple answer. The content of the data portion of any packet delivered on the network is
known only to the sender and receiver. Both must agree to the method of interpretation.

Of greater concern is the management of the data while it is under the control of your
application. Most hosts prefer to operate with data in the natural form dictated by the
target processor. For this reason, data is usually converted to net endian form prior to
sending and from net endian form upon receipt.

There are several data values which applications frequently use which, by convention, are
always maintained in net endian form. These are network parameters such as IP
addresses, subnet masks and default gateway addresses. It is good programming practice
to always use comments to identify variables which are assumed to be kept in net endian
form. All other variables can then safely be assumed to be in host endian form.

12 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Overview

1.5 Memory Allocation Requirements
KwikNet must be able to dynamically allocate and free blocks of memory of varying sizes.
KwikNet supports two memory allocation strategies, both of which are implemented in the
OS Interface Module.

The first strategy uses standard C library functions calloc() and free() to allocate and
free memory. The second alternative is to use the memory allocation services provided
by the operating system (RT/OS) with which KwikNet is being used.

The KwikNet Library must be configured to select one of the two memory allocation
strategies. The strategy is defined by the parameters in your Library Parameter File. The
choices are made on the OS property page using the KwikNet Configuration Builder (see
Chapter 2.3).

When KwikNet is used with the AMX Real-Time Multitasking Kernel, either strategy can
be used. The examples provided with the KwikNet Porting Kit support standard C, but can
be easily modified to use memory allocation services in your RT/OS.

Memory Heap Assignment

You may be using an RT/OS which requires a fixed region of memory for use as a heap.
KwikNet can be configured so that the memory heap is provided by your application from
any of the following sources:

(1) a static array in the KwikNet Configuration Module,
(2) an absolute address in memory or
(3) a region provided by a memory acquisition procedure kn_memacquire().

Memory Acquisition Function

If you choose to dynamically assign the memory heap to your RT/OS, you must provide a
memory acquisition function kn_memacquire() which KwikNet will call when it first
starts. The prototype for this function is as follows:

unsigned long kn_memacquire(char **mempp);

The memory acquisition function must provide access to a fixed region of n bytes of
memory for use by the RT/OS as a heap. The function must install a pointer to the
memory region into the pointer variable referenced as *mempp and return the value n, the
size of the region.

When KwikNet shuts down it will call a function kn_memreturn() which you must
provide to dispose of the memory region, if necessary. The prototype for this function is
as follows:

int kn_memreturn(char *memp);

Parameter memp is a pointer to the region of memory previously acquired from your
kn_memacquire() function. If this function successfully handles the memory region
disposal, it must return the value 0. Otherwise, it must return a non-zero value.

KwikNet Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 13

Memory Allocation Protection

When operating in a multitasking environment, the memory allocation services must be
thread-safe. If the services you have chosen to use are not thread-safe, KwikNet can be
configured to use the memory locking mechanism in its OS Interface Module to protect
access to the unsafe memory allocation services.

The KwikNet sample programs provided for use with AMX use the AMX Memory
Manager to allocate memory from a static array located in the KwikNet Configuration
Module. These AMX memory allocation services are inherently thread-safe.

When KwikNet is used with AMX and standard C is used for memory allocation, you must
enable the memory locking protection in the KwikNet OS Interface to protect the unsafe
services in the C library.

The examples provided with the KwikNet Porting Kit are ready for use with standard C. If
you port KwikNet to a multitasking RTOS, be sure to implement the memory protection
mechanism or provide access to thread-safe services within the RTOS.

14 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Overview

1.6 KwikNet Data Logging Service
Like most TCP/IP stacks, KwikNet can generate a variety of messages to assist you in your
use of the stack. The messages can provide debug information and trace execution of the
stack through its various protocol layers. Your application can also generate a statistics
summary of event counts by calling KwikNet procedure kn_netstats().

For debug and trace messages to be generated, the KwikNet Libraries must be configured
accordingly. Statistics for a particular KwikNet component will only be available for
logging if the KwikNet Libraries are appropriately configured. To enable these features,
use the KwikNet Configuration Builder to edit your Library Parameter File as described in
Chapter 2.3.

Even with the message sources are enabled, KwikNet will only log the messages if your
KwikNet Network Parameter File has data logging enabled. This file is edited using the
KwikNet Configuration Builder as described in Chapter 2.4.

Edit the Network Parameter File as follows. Go to the Application property page and
check the box which enables data logging. On the same page, define the amount of
memory you are willing to reserve for KwikNet to use for data logging buffers. Specify
the maximum allowable message line length, usually about 80 characters. Finally, enter
the name of the data log function to be used by KwikNet to print each message. This
function will be described shortly.

The KwikNet Libraries and your Network Configuration Module, ready for data logging
use, will be generated and linked with your application as described in Chapter 3.

Message Formatting

Many TCP/IP stacks produce these data logging messages using the C library printf()
function which is often not even available in embedded systems. KwikNet provides its
own procedure called kn_dprintf() which, although similar to printf(), has several
special features not found in the latter. This procedure is fully described in Chapter 4.6.
The prototype is as follows.

int kn_dprintf(int attrib, const char *fmtp, ...);

Unlike printf(), KwikNet's procedure receives a parameter attrib which defines the
print attributes of the message. This encoded parameter defines the severity of the
message, the message class and the message source. These characteristics will be
described shortly.

The parameter fmtp is a pointer to a conventional format string which can be followed by
zero or more parameters as required by the format specification. Not all formats are
supported. For example, parameters of type float and double are not permitted.
However, a new format "%a" is introduced which greatly simplifies the formatting of
network IP addresses in dotted decimal notation.

For a complete specification of the formatting features supported by KwikNet procedure
kn_dprintf(), see the description of format procedure kn_fmt() in Chapter 4.6.

KwikNet Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 15

Message Print Attributes

The parameter defining the message print attributes includes three fields of interest to the
user: severity level, class and source type. These fields can be isolated using the
following symbolic masks defined in KwikNet header file KN_COMN.H. All other bits in the
parameter are reserved for the private use of KwikNet.

KN_PA_LEVEL Severity level
KN_PA_CLASS Message class
KN_PA_TYPE Source type

The severity levels are defined as follows:

KN_PA_INFO General information and application messages
KN_PA_WARN KwikNet warnings
KN_PA_FATAL KwikNet fatal error messages

The message classes, defined as follows, can be used to identify the device to which the
messages should be directed.

KN_PA_APP General information and application messages
KN_PA_DEBUG KwikNet debug logging
KN_PA_STATS KwikNet network statistics
KN_PA_MDMLOG KwikNet modem event log
KN_PA_PPPLOG KwikNet PPP protocol traces

The message source types define the module, network, device, protocol layer or service
which was executing when the message was generated. The list is extensive and subject
to change. The source types, defined in KwikNet header file KN_COMN.H, will generally be
of little interest to your application. The source types could be used to provide a sub-
classification if you wish to archive messages in some manner.

The message print attributes are defined such that an attribute of 0 will always describe
an application message of lowest severity and with no known source type. Hence,
applications can easily call kn_dprintf() with an attribute of 0 to log messages.

16 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Overview

KwikNet Data Log Function

When data logging is enabled, the KwikNet message generation procedure kn_dprintf()
calls the data log function specified in your Network Parameter File. It is the purpose of
this function to record (and display or print) the message contained in the KwikNet log
buffer which it receives.

The Application OS Interface module KNSAMOS.C provided for use with KwikNet sample
programs includes a working example of a data log function called sam_record(). With
some modifications, this procedure may be suitable for use by your application. At the
very least, it will provide a good model for you to use.

The data log function must be declared as follows:

int sam_record(int attrib, char *bufp, int count);

The character buffer referenced by pointer bufp is a KwikNet log buffer. It contains a
'\0' terminated string. The length of the string in bytes is specified by parameter count.
Message strings are limited to the line length which you specified in your configuration.
The newline character '\n' is used as the end of line indication in all KwikNet messages.

Parameter attrib defines the message print attributes. This is the same parameter
presented to KwikNet's kn_dprintf() procedure. Your log function can decode the
message class to determine the device on which the message must be recorded or
displayed. It can also decide if any special action is required because of the message
severity or source.

Finally, your log function must assume responsibility for the KwikNet log buffer. If your
function accepts the log buffer, it must eventually release it by passing the pointer bufp
to KwikNet procedure kn_logbuffree(). In this case, your log function must return the
value 0 to KwikNet indicating your acceptance of the log buffer.

If your log function cannot accept the log buffer for some reason, it must return the value
-1 to KwikNet. In this case, KwikNet will free the log buffer.

In a multitasking system, the log function should add the log buffer to a message queue
for eventual recording (and printing or display) by a print task which services the
message queue. The examples provided for use with AMX and with the KwikNet Porting
Kit pass the log buffer to a print task which uses the KwikNet message recording service
described in Chapter 1.7 to dispose of each message.

In a single threaded system, the log function should add the log buffer to a message
queue for eventual recording (and printing or display) by the App-Task. However, if
performance is not an issue, the log function can actually record the message and release
the log buffer itself. Care must be taken to ensure that such an action is not allowed to
occur while executing within the interrupt domain. The examples provided with the
KwikNet Porting Kit operate in the latter fashion, using the KwikNet message recording
service described in Chapter 1.7 to dispose of each message.

KwikNet Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 17

1.7 KwikNet Message Recording Service
Recognizing that embedded systems may not be able to display or print messages,
KADAK provides an alternate message recording service. This service is provided in
module KNRECORD.C which is located in the toolset dependent installation directory
TOOLXXX\SAM_COMN (see Chapter 3.6).

The KwikNet message recording service, used by all KwikNet sample programs, accepts a
message contained in a KwikNet log buffer. The message is copied from the log buffer
into a memory array and the log buffer is released.

The messages are stored sequentially in a character array called kn_records[]. As each
message is recorded, a pointer to the copy of the message is stored into the next available
entry in variable kn_recordlist[], an array of string pointers. The list of string pointers
is terminated with a NULL string pointer. Message recording ceases as soon as either
array becomes full.

Procedure kn_loginit() in module KNRECORD.C must be called by your application
before the message recording service can be used by KwikNet. For this reason, your
main() function should call kn_loginit() as one of its earliest operations.

Once the service is ready, procedure kn_logmsg() can be called to record a message
contained in a KwikNet log buffer. The Application OS Interface module KNSAMOS.C used
by KwikNet sample programs provides an example. The data log function sam_record()
in that module ensures that each KwikNet log buffer is eventually delivered to procedure
kn_logmsg() which records the message and releases the log buffer.

The data recording service can be adapted to your needs by editing the definitions in the
sample program's application header file KNZZZAPP.H. A unique header file is provided
with each KwikNet sample program. Symbol KN_REC_MEMORY must be set to 1 to enable
recording of messages into character array kn_records[]. Symbol KN_REC_MEMSIZE
defines the size of that array. Symbol KN_REC_NUM defines the maximum number of
message string pointers which can be recorded into array kn_recordlist[]. If symbol
KN_REC_CONSOLE is set to 1, each recorded message will also be echoed to the KwikNet
console driver as described in Chapter 1.8.

Some of the KwikNet sample programs implement a dump command to display the
recorded messages. These applications call procedure kn_loggets() to extract each
message string from the recording array. After displaying all messages in the order in
which they were recorded, procedure kn_loginit() is called to reset the array.

Also note that some debuggers will allow you to dump the strings in text form in a
display window by viewing the array variable kn_recordlist[] .

Warning

The procedures in the recording module KNRECORD.C are
NOT reentrant. Hence, in multitasking systems, you must
ensure that, if one task calls any one of these procedures,
no other task can execute any of the procedures until that
task completes its use of the recording service.

18 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Overview

1.8 KwikNet Console Driver
The KwikNet sample programs provide support for a simple, interactive console device.
The console driver, module KNCONSOL.C, is located in the toolset dependent installation
directory TOOLXXX\SAM_COMN (see Chapter 3.6). The console driver can be adapted to
use any of several possible console devices, including a terminal connected by a serial
UART interface, a PC screen and keyboard or a remote Telnet terminal.

To select a particular console device, edit the sample program's application header file
KNZZZAPP.H and change the definition of symbol KN_CS_DEVTYPE as instructed in the
file. Note that a unique application header file KNZZZAPP.H is provided with each
KwikNet sample program.

The basic KwikNet TCP/IP Sample Program uses the console device for displaying
messages logged by KwikNet and the application. The data recording procedure
kn_logmsg() in module KNRECORD.C echoes each message it receives to the console
device. You can disable this display of recorded messages by setting the value of symbol
KN_REC_CONSOLE to 0 in the sample program's application header file KNZZZAPP.H.

Other KwikNet sample programs (FTP Option, Web Server, etc) provide a simple
command interpreter which allows you to interact with the program to control its
operation. Since the console device is used by the application, it cannot be used by the
recording service to display KwikNet messages. Hence, for these programs, symbol
KN_REC_CONSOLE is defined to be 0 in the sample program's application header file
KNZZZAPP.H.

The interactive KwikNet sample programs implement a dump command to display the
recorded messages. These applications call procedure kn_loggets() in module
KNRECORD.C to extract all of the message strings from the recording array. The extracted
messages are displayed on the console device.

Warning

The message recording services are not reentrant. Hence,
the dump command implemented by some KwikNet sample
programs should only be used when KwikNet is not active
since the extraction of messages for display may occur
concurrently with the generation of messages by KwikNet.

If you use the Telnet console device, the dump command
must be used with caution. Since KwikNet must be active
for the Telnet console driver to operate, KwikNet may
generate several messages for every message that is
dumped, especially if you have enabled most of the KwikNet
debug and trace options.

KwikNet Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 19

Serial I/O Terminal as the Console Device

The KwikNet sample program includes a UART serial I/O driver which can be used with
the KwikNet console driver to provide access to a terminal. The driver supports the
INS8250 (NS16550) USART as implemented in PC compatible hardware. To select this
device for console driver use, edit the sample program's application header file
KNZZZAPP.H and change the definition of symbol KN_CS_DEVTYPE to be KN_CS_DEVUART.
This serial I/O driver can also be used with the KwikNet sample programs for AMX.

The UART driver KN8250S.C is located in the toolset dependent installation directory
TOOLXXX\SAM_COMN (see Chapter 3.6). Compile the console driver KNCONSOL.C and the
UART driver KN8250S.C and link the resulting object modules with the sample program.

PC Display/Keyboard as the Console Device

When used on PC hardware with MS-DOS, the KwikNet console driver can be directed to
use the PC display and keyboard as a terminal. Edit the sample program's application
header file KNZZZAPP.H and change the definition of symbol KN_CS_DEVTYPE to be
KN_CS_DEVPC. The PC display and keyboard can only be used with a C library that
supports the non-standard _putch(), _kbhit() and _getch() functions. This console
device can also be used with the KwikNet sample programs for AMX 86.

Telnet as the Console Device

If the KwikNet sample program is modified to provide access to a real network, the
KwikNet console driver can be directed to use the Telnet protocol to access a remote
terminal. Edit the sample program's application header file KNZZZAPP.H and change the
definition of symbol KN_CS_DEVTYPE to be KN_CS_DEVTELNET. The KwikNet Libraries
must have TCP support included. The console driver will listen on the well known
Telnet port number 23 for a connection. It then uses the TCP socket to communicate
with the remote terminal to which it is connected. The Telnet console device can also be
used with the KwikNet sample programs for AMX.

AMX Console Devices

The KwikNet console driver provided with AMX can be used with the KwikNet serial
UART driver described above. However, if you have already ported the AMX Sample
Program serial I/O driver to your hardware, you can direct the console driver to use it to
access a terminal. Edit the sample program's application header file KNZZZAPP.H and
change the definition of symbol KN_CS_DEVTYPE to be KN_CS_DEVAMX. Compile the
console driver KNCONSOL.C and link the resulting object module and your AMX serial
driver object module with the sample program.

If you are using AMX 86 or AMX 386/EP, the KwikNet console driver can use the AMX
PC Supervisor to access the PC display and keyboard as a terminal. Edit the sample
program's application header file KNZZZAPP.H and change the definition of symbol
KN_CS_DEVTYPE to be KN_CS_DEVAMXPCS. Be sure to link the sample program with the
AMX PCS Configuration Module and the PC Supervisor Library.

20 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Overview

1.9 Debugging Aids
KwikNet includes a number of debug features which, if used effectively, can help you test
your networking application. These features can also be used to provide information to
KADAK's technical support staff should you require their assistance.

KwikNet's debugging services fall into the following categories: debug logging, breakpoint
traps and fatal error detection. Most of these features can only be used to best advantage
if your application provides a data log function as described in Chapter 1.6.

Debug Logging

To use KwikNet's debug logging features, you must first build the KwikNet Libraries to
include the extra code necessary to detect and record the events of interest. To do so, use
the KwikNet Configuration Builder to edit your KwikNet Library Parameter File and view
the Debug property page (see Chapter 2.3). Check the box labeled "Enable debug logging".
Doing so enables the full range of debug capabilities within the KwikNet Libraries.

You can also choose the specific debug data which you wish KwikNet to log. You simply
check the features of interest from the list presented on the Debug property page. As you
will learn shortly, you can also dynamically define or alter your selections at runtime.

You also have the option on the Debug property page to enable code tracing as KwikNet
executes through any of several higher level protocol layers such as TCP. Tracing
through the PPP layers will only be operative if you have purchased and are using the
optional KwikNet PPP component. Unlike debug logging features, code trace selections
cannot be dynamically adjusted. To change your trace selections, you must edit your
Library Parameter File and rebuild your KwikNet Libraries.

KwikNet Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 21

Breakpoint Traps

KwikNet can generate a debug trap when it encounters an error condition which is
generally not expected in the normal course of events. Such errors are often the result of
modifications of private KwikNet data by errant applications which result in decision
conflicts which KwikNet cannot resolve.

Other KwikNet debug traps are also included whenever debug logging is enabled.

To use KwikNet's debug trap, you must first build the KwikNet Libraries to include the
extra code necessary to generate the trap. To do so, use the KwikNet Configuration
Builder to edit your KwikNet Library Parameter File and view the Debug property page
(see Chapter 2.3). Check the box labeled "Enable debug breakpoint".

Each debug trap generates a call to the KwikNet breakpoint procedure kn_bphit(). When
testing your application, you can place a breakpoint on this procedure to trap all errors
detected by KwikNet.

Fatal Errors

Some of the errors detected by KwikNet are serious enough to require that KwikNet cease
operation. To proceed would risk further corruption and would probably lead to a
catastrophic collapse in an unpredictable fashion.

When KwikNet detects such a fatal error, it calls procedure kn_panic() which attempts to
log a message describing the fault and then stop the RT/OS. When used with AMX,
KwikNet forces an AMX fatal exit.

When testing, it is always wise to execute with a breakpoint on procedure kn_panic().
If you are using KwikNet with AMX, you should also have a breakpoint on the AMX fatal
exit procedure cjksfatal (ajfatl and AAFATL for AMX 86).

22 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Overview

Debug Mask

KwikNet maintains a public debug control variable, an unsigned integer named
kn_dbgflags. The bits in this variable are used to determine which, if any, KwikNet
debug data is logged. The bit masks KN_DBxxxxx used to access this variable are defined
in KwikNet header file KN_COMN.H. Most of the bit masks correlate to the debug logging
options available on the Debug property page.

If bit KN_DBENABLE in variable kn_dbgflags is set to 0, all debug logging is disabled. In
this case, the remaining bits in the debug mask are ignored.

If bit KN_DBENABLE in variable kn_dbgflags is set to 1, debug logging is enabled. In this
case, data logging will occur for a particular feature only if the bit in the mask
corresponding to that feature is set to 1.

If logging is enabled and a warning or fatal message is logged (see Chapter 1.6), the
action taken depends on the state of the KN_DBHALT bit in variable kn_dbgflags. If this
bit is set to 1, KwikNet will enter a permanent loop, unconditionally calling its breakpoint
procedure kn_bphit().

The debug halt bit KN_DBHALT is never set by KwikNet. It is provided to allow you to stop
further KwikNet execution when a warning or fatal message is logged.

Note

Although the KwikNet variable kn_dbgflags is always
present, its content will only have an effect if your
application has been linked with a KwikNet Library
configured to support debug logging.

KwikNet Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 23

1.10 KwikNet TCP/IP Sample Program - A Tutorial
A TCP/IP Sample Program is provided with KwikNet to illustrate the use of the TCP/IP
stack within an application. The sample program is ready for use with the AMX Real-
Time Multitasking Kernel. The sample program has also been tested with each of the
five porting examples provided with the KwikNet Porting Kit.

The sample configuration supports a single network interface. The network uses the
KwikNet Ethernet Network Driver. Because the sample must operate on all supported
target processors without any specific Ethernet device dependence, KwikNet's Ethernet
Loopback Driver is used. Use of this driver provides two benefits: the illustration of a
very simple device driver and an example of its use for testing purposes when network
hardware is not available.

The KwikNet TCP/IP Stack requires a clock for proper network timing. The examples
provided with the KwikNet Porting Kit all illustrate the clock interface. However, the
sample program provided for use with AMX has been enhanced to eliminate any
dependence on specific target hardware. This sample program includes a very low
priority task which can detect if you have added a real AMX clock driver to the sample
configuration. If a real hardware clock is not available, this task simulates clock
interrupts, thereby providing AMX ticks which meet KwikNet's needs.

The sample includes two tasks, one acting as a server and the other as a client. In a
multitasking system, these tasks are real tasks managed by the RTOS. In a single
threaded system, the server is attached to the KwikNet Task's server queue and operates in
the KwikNet domain. The client is simply the App-Task executing in the user domain.

The client and server use the KwikNet sockets application programming interface (API) to
communicate. Two scenarios are followed, one after the other.

In the first scenario, the server creates a streaming socket, listens to the socket for a
connection request, accepts a message from the client and generates the correct response.
The client creates a streaming socket, establishes a connection with the server, sends its
request and verifies the proper response.

In the second scenario, the server creates a UDP (connectionless) socket and listens for
incoming requests. The server then uses the socket select feature to wait for the
availability of a message from the client. The server reads the message, identifies the
message source (client) and sends the correct response back to that client. The client
creates a UDP socket, sends its request to the server, waits for the availability of a
message from the server and verifies the proper response.

Once the final scenario has completed, the client calls KwikNet to log a summary of the
network statistics accumulated during the session.

The sample uses the KwikNet message recording service (see Chapter 1.7) to record
messages generated by the server, the client and KwikNet. Messages are stored as an array
of strings in memory but can be easily echoed to a console terminal (see Chapter 1.8).

24 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Overview

Startup

The manner in which the KwikNet TCP/IP Sample Program starts and operates is
completely dependent upon the underlying operating system with which KwikNet is being
used. All sample programs provided with KwikNet and its optional components share a
common implementation methodology which is described in Appendix E. Both
multitasking and single threaded operation are described in detail.

When used with AMX, the sample program operates as follows. AMX is launched from
the main() program. Restart Procedure rrproc() starts the client task and a print task.
A low priority background task is also started to simulate clock interrupts in the absence
of a hardware clock.

Once the AMX initialization is complete, the high priority print task executes and waits
for the arrival of AMX messages in its private mailbox. Each AMX message includes a
pointer to a log buffer containing a KwikNet message to be recorded.

Once the print task is ready and waiting, the client task finally begins to execute. It starts
KwikNet at its entry point kn_enter(). KwikNet self starts and forces the KwikNet Task to
execute. Because the KwikNet Task operates at a priority above all tasks which use its
services, it temporarily preempts the client task. The KwikNet Task initializes the network
and its associated loopback driver and prepares the IP and TCP protocol stacks for use by
the sample program.

Once the KwikNet initialization is complete, the client resumes execution, starts the server
and begins the first of two scenarios.

Client - Server Using TCP Sockets

This example illustrates the use of KwikNet's TCP/IP socket interface to establish a
connection between two end points for the reliable transfer of data. Although the end
points happen to be tasks running on the same host computer, the actions required by
each are still the same as would be required if they resided on separate hosts
interconnected by a real network.

The server's first scenario is embodied in function server1(). The corresponding
function executed by the client is client1().

The server calls kn_socket() to create a streaming socket. The server calls
kn_setsockopt() to revise the socket's attributes to permit the eventual reuse of the
unique server port number of 5001. It then calls kn_bind() to bind itself to the socket,
identifying itself as port 5001, but allowing KwikNet to assign its IP address. KwikNet
assigns IP address 192.168.1.73, the IP address of the only network present in the sample
configuration. The server then calls kn_listen() to prime the socket to listen for
incoming connection requests. Finally, the server calls kn_accept() to wait for such a
connection to be established. KwikNet gives the server a new socket which corresponds to
the server's end of the connection to its client.

Once the connection with the client has been made, the server uses procedure kn_recv()
to receive a 4 byte message, a long value which defines the length of a block of data
which the client intends to send to the server.

KwikNet Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 25

The server uses kn_send() to echo the 4 byte value back to the client as an
acknowledgement that the server is prepared to accept that amount of data from the
client. Then the server calls kn_recv() to acquire the data block from the client and
kn_send() to echo the data block back to the client.

Once the data has been echoed to the client, the server uses kn_shutdown() to terminate
all send operations on its connected socket and then repetitively calls kn_recv() until all
unexpected data, if any, from the client has been discarded. The connected socket and
the socket used for listening are then closed using kn_close().

The client calls kn_socket() to create a streaming socket. It then calls kn_bind() to
bind itself to the socket, allowing KwikNet to assign a port number and IP address.

The client then calls kn_connect() to connect to the server with port number 5001 and
IP address 192.168.1.73. Note that the client has to know the port number of the server
to which it is trying to connect. The IP address of the server happens to be the IP address
assigned to the Ethernet network in the KwikNet Network Configuration Module linked
with the TCP/IP Sample Program. The sample illustrates the use of procedure
kn_inet_addr() to convert an IP address in dotted decimal form to an equivalent
network compatible form.

Once the connection has been established, the client sends the long value 26 (defined as
SAMMSGSZ) as a 4 byte message to the server. The number SAMMSGSZ is the number of
data bytes which the client intends to send to the server. It happens to be the number of
characters in the alphabet, the data which will be sent.

The client then uses procedure kn_recv() to receive a 4 byte message, a long value
which confirms the length of the block of data which the server is willing to accept from
the client.

The client then prepares to send the 26 characters of the alphabet to the server. The client
does so using the kn_sendmsg() procedure which permits the data to be gathered from
disjoint locations in memory but delivered as a sequential byte stream. The 26 characters
are gathered from the following two strings: 10 from the first and 16 from the second.

"ABCDEFGHIJ1234"
"KLMNOPQRSTUVWXYZ5678"

The client then waits for an echo from the server of the data actually received by the
server. The client does so using the kn_recvmsg() procedure which permits the received
data to be scattered into disjoint locations in memory even though received as a
sequential byte stream. The data is scattered into a zero filled character buffer: 7 bytes at
offset 0, 11 bytes at offset 20 and 8 bytes at offset 40. The three strings at offsets 0, 20
and 40 are then expected to match as follows.

"ABCDEFG"
"HIJKLMNOPQR"
"STUVWXYZ"

Finally, the client uses kn_shutdown() to terminate all send operations on its connected
socket and then repetitively calls kn_recv() until all unexpected data, if any, from the
server has been discarded. The socket is then closed using kn_close().

26 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Overview

Client - Server Using UDP Sockets

This example illustrates the use of KwikNet's UDP socket interface to deliver UDP
datagrams between two end points. This data transfer mechanism is not considered
reliable. Furthermore, since TCP is not used, a logical connection between the end points
does not exist. Although the end points happen to be running on the same host computer,
the actions required by each are still the same as would be required if they resided on
separate hosts interconnected by a real network.

The server's second scenario is embodied in function server2(). The corresponding
function executed by the client is client2().

The server calls kn_socket() to create a connectionless datagram socket. The server
calls kn_setsockopt() to permit the ongoing reuse of the unique server port number of
5001. It then calls kn_bind() to bind itself to the socket, identifying itself as port 5001,
but allowing KwikNet to assign its IP address. KwikNet assigns IP address 192.168.1.73,
the IP address of the only network present in the sample configuration. Once the bind is
complete, the server can immediately receive data directed to IP address 192.168.1.73.

The server then uses procedure kn_select() to wait until some data from a client is
available for reading. The sample illustrates the proper use of the macros FD_ZERO,
FD_SET and FD_ISSET for manipulating socket sets.

Once data from the client is available, the server uses kn_recvfrom() to learn the client's
network address and to receive a 4 byte message, a long value, from the client.

The server then uses procedure kn_select() to wait until the server's socket is ready to
accept data for transmission. The value received from the client is incremented by two
and echoed to the client using the kn_sendto() procedure to send the 4 byte long value.

Once the value has been echoed to the client, the server uses kn_shutdown() to terminate
all send and receive operations on its socket. The socket is then closed using
kn_close().

The client calls kn_socket() to create a connectionless datagram socket. It then calls
kn_bind() to bind itself to the socket, allowing KwikNet to assign a port number and IP
address.

The client then uses procedure kn_select() to wait until the client's socket is ready to
accept data for transmission. The arbitrary value 8 is sent to the server using the
kn_sendto() procedure to send the 4 byte long value. The value is sent to the server
with port number 5001 and IP address 192.168.1.73.

Note that the client has to know the port number of the server to which it is trying to
connect. The IP address of the server happens to be the IP address assigned to the
Ethernet network in the KwikNet Network Configuration Module linked with the TCP/IP
Sample Program. The sample illustrates the use of procedure kn_inet_addr() to
convert an IP address in dotted decimal form to an equivalent network compatible form.

KwikNet Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 27

The client then uses procedure kn_select() to wait until some data from the server is
available for reading. The sample illustrates the proper use of the macros FD_ZERO,
FD_SET and FD_ISSET for manipulating socket sets. The client then uses procedure
kn_recvfrom() to receive a 4 byte message, a long value from the server and confirms
that the received value is 10, the value sent incremented by 2.

Once the echoed value has been received from the server, the client uses kn_shutdown()
to terminate all send and receive operations on its socket. The socket is then closed using
kn_close().

Logging

The KwikNet TCP/IP Sample Program includes a simple recorder for logging text
messages. The recorder saves the recorded text strings in a 30,000 byte memory buffer
until either 500 strings have been recorded or the memory buffer capacity is reached.

The application can generate messages by calling the KwikNet log procedure
kn_dprintf(). This procedure operates similarly to the C printf() function except
that an extra integer parameter of value 0 must precede the format string. The sample
program uses this feature to record startup and shutdown messages. The client and server
record progress messages and log errors as they are detected.

KwikNet formats the message into a log buffer and passes the buffer to an application log
function for printing. Log function sam_record() in the KwikNet Application OS
Interface serves this purpose.

In a multitasking system the log buffer is delivered as part of an RTOS dependent
message to a print task. The print task calls kn_logmsg() in the KwikNet message
recording module to record the message and release the log buffer.

In a single threaded system, the log function sam_record() can usually call
kn_logmsg() to record the message and release the log buffer. However, if the message
is being generated while executing in the interrupt domain, the log buffer must be passed
to the KwikNet Task to be logged. The sample programs provided with the KwikNet
Porting Kit illustrate this process.

Shutdown

Once the client and server have completed their second scenario, the client calls KwikNet
procedure kn_netstats() to record all network statistics gathered by KwikNet during the
session.

The client then calls procedure kn_exit() to stop operation of the KwikNet TCP/IP Stack.
A final completion message is then logged. Note that the KwikNet data logging services
continue to be used by the application even though the stack itself has ceased operation.
Finally, the client requests the operating system to shut down and return to the main()
function.

28 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Overview

Running the TCP/IP Sample Program

The KwikNet TCP/IP Sample Program load module is built just like any other KwikNet
application program. The KwikNet Library Parameter File and Network Parameter File
are first created using the KwikNet Configuration Builder as described in Chapter 2. Then
the KwikNet Libraries and the Network Configuration Module must be produced. Finally
these KwikNet modules must be linked with the application, the RT/OS libraries and the C
runtime library to create a load module suitable for testing with a debugger. This
construction process is explained in Chapter 3.

Since the KwikNet TCP/IP Sample Program has no visible output unless operated with a
console terminal, its operation can only be confirmed using your debugger. Since the
program has no hardware dependence, it can readily be used with a target processor
simulator, if one is available.

KwikNet includes a number of debug features (see Chapter 1.9) which will assist you in
running the TCP/IP Sample Program. With KwikNet's debug features enabled, you can
place a breakpoint on procedure kn_bphit() to trap all errors detected by KwikNet. Of
course, if you are using AMX, it is always wise to execute with a breakpoint on the AMX
fatal exit procedure cjksfatal (ajfatl for AMX 86).

If you breakpoint at the end of the main() program, you can examine the messages
recorded in memory. The messages are stored sequentially in a character array called
kn_records[]. Variable kn_recordlist[] is an array of string pointers referencing the
individual recorded messages. Most debuggers will allow you to dump the strings
referenced in kn_recordlist[] in text form in a display window. The list of string
pointers is terminated with a NULL string pointer.

If you are connected to the target processor by a serial link, do not be surprised if the
debugger takes quite some time to access and display all of the strings referenced by
kn_recordlist[]. You may be able to improve the response by limiting the display to
the actual number of strings in the array as defined by variable kn_recordindex.

Once you are confident that the KwikNet TCP/IP Sample Program is operating properly,
you may wish to breakpoint your way through the client and server (functions clientN()
and serverN()), monitoring the recorded messages as you go.

Do not be surprised by the large number of statistics messages generated by the client's
call to kn_netstats(). If you use the KwikNet Configuration Builder to view the Library
Parameter File KNSAMLIB.UP you will observe that all TCP and IP statistics gathering
options have been enabled.

KwikNet System Configuration KADAK Copyright © 1997-2000 KADAK Products Ltd. 29

2. KwikNet System Configuration

2.1 Introduction
Creating an application which uses the KwikNet TCP/IP Stack is a three step process.
First, the KwikNet Libraries must be constructed to reflect the options and features which
your application will require. Then a Network Configuration Module must be created
which describes the networks and devices present in your target hardware. Finally, your
application modules must be linked with the KwikNet Libraries and the Network
Configuration Module to create a load module suitable for execution in the target
processor.

With many portable network stacks, this process requires the tedious and error prone task
of editing a collection of files with which you have little familiarity. With KwikNet you
simply point and click using the KwikNet Configuration Builder, a Windows® utility
which greatly simplifies the process. You still have to pick the correct set of options and
define your particular network requirements but at least you are concentrating on what
you know best, your application.

KwikNet Libraries

The KwikNet Libraries must be constructed to reflect the options and features which your
application will require. This information is kept in a text file called the KwikNet Library
Parameter File which is created and edited for you by the KwikNet Configuration Builder.
This editing process is illustrated in Figures 2.1-1.

From the KwikNet Library Parameter File, say NETLIB.UP, the Builder generates a single
text file, a make file which can be used to create (make) the KwikNet Libraries as
described in Chapter 3.2. This file, called the Network Library Make File NETLIB.MAK, is
created by merging information from the Library Parameter File with the Network
Library Make Template File KNnnnLIB.MT.

30 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Configuration

Network Library Make
Template File
KNnnnLIB.MT

Library Parameter File
NETLIB.UP

Configuration
Manager

Enter/Edit/View
Library Parameters

Configuration
Generator

NETLIB.MAK

Network
Library
Make
File

Figure 2.1-1 Creating the KwikNet Network Library Make File

KwikNet System Configuration KADAK Copyright © 1997-2000 KADAK Products Ltd. 31

Network Configuration Module

A Network Configuration Module must also be created which describes the networks and
devices present in your target hardware. This information is kept in a text file called the
Network Parameter File which is created and edited for you by the KwikNet Configuration
Builder. This editing process is illustrated in Figure 2.1-2.

From the Network Parameter File, say NETCFG.UP, the Builder generates a single C
source file. This file, called the Network Configuration Module NETCFG.C, is created by
merging information from the Network Parameter File with the Network Configuration
Template File KNnnnCFG.CT.

This Network Configuration Module NETCFG.C is a C source file which completely
identifies for KwikNet the particular networks and device drivers present in your
application. This file must be compiled and linked as part of your KwikNet system.

32 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Configuration

Network Configuration
Template File
KNnnnCFG.CT

Network Parameter File
NETCFG.UP

Configuration
Manager

Enter/Edit/View
Network Parameters

Configuration
Generator

NETCFG.C

Network
Configuration
Module
File

Figure 2.1-2 Creating the KwikNet Network Configuration Module

KwikNet System Configuration KADAK Copyright © 1997-2000 KADAK Products Ltd. 33

2.2 KwikNet Configuration Builder
The KwikNet Configuration Builder is a software generation tool which can be used to
help create your KwikNet Libraries and your Network Configuration Module. The Builder
consists of two components: the Configuration Manager and the Configuration
Generator. The Configuration Manager is an interactive utility which allows you to
create and edit your Library Parameter File and your Network Parameter File. You can
think of the Builder as a very specialized editor.

For convenience, the Configuration Manager has the ability to directly invoke its own
copy of the Configuration Generator. The Configuration Generator reads your Parameter
File and merges the information from it with a template file to produce an output text file.
This process has been described in Chapter 2.1.

The Configuration Generator is also available as a separate, stand alone DOS utility.
This utility program can be used within your make files to generate, from your Parameter
Files and the KwikNet Template Files, any of the output text files which the Configuration
Builder generates.

Starting the Builder

The KwikNet Configuration Builder will operate on a PC or compatible running the
Microsoft® Windows® 9x or NT operating system. It can also be used under Windows
3.1 with Win32s extensions.

The KwikNet Configuration Builder is delivered with the following files.

File Purpose

KNnnnCM .EXE KwikNet Configuration Manager (utility program)
KNnnnCM .CNT KwikNet Configuration Manager Help Content File
KNnnnCM .HLP KwikNet Configuration Manager Help File
KNnnnCG .EXE KwikNet Configuration Generator (utility program)
KNnnnLIB.HT Network Library Configuration Template File
KNnnnLIB.MT Network Library Make Template File
KNnnnCFG.CT Network Configuration Template File

When KwikNet is installed on your hard disk, the KwikNet Configuration Manager utility
program and its related files are stored in directory CFGBLDW in your KwikNet installation
directory. To start the Configuration Manager, double click on its filename,
KNnnnCM.EXE. Alternatively, you can create a Windows shortcut to the Manager's
filename and then simply double click the shortcut's icon.

34 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Configuration

Screen Layout

Figure 2.2-1 illustrates the Configuration Manager's screen layout. The title bar identifies
the parameter file being created or edited. Below the title bar is the menu bar from which
the operations you wish the Manager to perform can be selected.

Below the menu bar is an optional Toolbar with buttons for many of the most frequently
used menu commands. The Toolbar is hidden or made visible using the View Toolbar
command on the Edit menu.

The leftmost Toolbar button labeled LIB is used to create a new Library Parameter File.
The button next to it labeled APP is used to create a new Network Parameter File.

Figure 2.2-1 Configuration Manager Screen Layout

KwikNet System Configuration KADAK Copyright © 1997-2000 KADAK Products Ltd. 35

At the bottom of the screen is the status bar. As you select menu items, a brief
description of their purpose is displayed in the status bar. If the Configuration Manager
encounters an error condition, it presents an error message on the status bar describing
the problem and, in many cases, the recommended solution.

Along the left margin of the screen are a set of one or more selector icons. These icons
identify the type of output files which the Manager can produce from the parameter file
being edited. The example illustrates that when editing a Library Parameter File, only the
Network Library MAKE File selector is visible.

The center of the screen is used as an interactive viewing window through which you can
view and modify your KwikNet library and network configuration parameters.

Menus

All commands to the Configuration Manager are available as items on the menus present
on the menu bar. The File menu provides the conventional New, Open, Save and
Save As... commands for creating and editing your parameter file. It also provides the Exit
command.

Once a particular selector icon has been chosen as the currently active selector, the
Generate... command on the File menu can be used to generate the corresponding output
product. The path to the template file required by the generator to create this product can
be defined using the Templates... command on the File Menu.

The Edit menu provides the conventional Cut, Copy, Paste and Undo editing commands.
It also includes an Undo Page command to restore the content of all fields on a property
page to undo a series of unwanted edits to the page. The Toolbar is hidden or made
visible using the View Toolbar command on the Edit menu.

The Help menu provides access to the complete KwikNet Configuration Manager
reference manual. Context sensitive help is also available by pressing the F1 function key
or clicking the ? button on the Toolbar.

36 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Configuration

Field Editing

When editing a parameter file, a collection of tabbed property sheets is displayed in the
central region of the screen. Each tab provides access to a particular property page
through which your library or network configuration parameters can be declared. For
instance, if while editing your Network Parameter File, you select the Networks tab, the
Configuration Manager will present a network definition window (property page)
containing all of the parameters you must provide to completely define a network.

Some fields are boolean options in which all you can do is turn the option on or off by
checking or unchecking the associated check box.

Some fields are option fields in which you must select one of a set of options identified
with radio buttons or pull down lists. Click on the option button or pick the list item
which meets your preference.

Other fields may require numeric or text entry. Parameters are entered or edited in these
fields by typing new values or text to replace the current field content. Only displayable
characters can be entered. New characters which you enter are inserted at the current
cursor position in the field. Right and left arrow, backspace and delete keys may be used
to edit the field.

When you are altering a numeric or text field, you tell the Configuration Manager that
you are finished editing the field by striking the Enter key. At that point, the
Configuration Manager checks the numeric value or text string that you have entered for
correctness in the context of the current field. If the value or text string that you have
entered is invalid, an error indication is provided on the status bar at the bottom of the
screen suggesting how the fault should be corrected.

The Tab and Shift-Tab keys can also be used to complete the editing of a field and move to
the next or previous field.

If you have modified some of the fields on a property page and then decide that these
modified values are not correct, use the Undo Page command on the Edit menu or Toolbar
to force the Configuration Manager to restore the content of all fields on the page to the
values which were in effect when you moved to that property page.

When you go to save your parameter file or prepare to move to another property page, the
Configuration Manager will validate all parameters on the page which you are leaving. If
any parameters are incomplete or inconsistent with each other, you will be forced to fix
the problem before being allowed to proceed.

KwikNet System Configuration KADAK Copyright © 1997-2000 KADAK Products Ltd. 37

Add, Edit and Delete KwikNet Objects

Separate property pages are provided to allow your definition of one or more KwikNet
objects such as networks and device drivers.

Pages of this type include a list box at the left side of the property page in which the
currently defined objects are listed. At the bottom of the list box there may be a counter
showing the number of objects in the list and the allowable maximum number of such
objects.

Also below the list are two control buttons labeled Add and Delete. If the allowable
maximum number of objects is 0 or if all such objects have already been defined, the Add
button will be disabled. If there are no objects defined, the Delete button and all other
fields on the page will be disabled.

To add a new object, click on the Add button. A new object with a default identifier will
appear at the bottom of the list and will be opened ready for editing. When you enter a
valid identifier for the object, your identifier will replace the default in the object list.

To edit an existing object's definition, double click on the object's identifier in the object
list. The current values of all of that object's parameters will appear in the property page
and the object will be opened ready for editing.

To delete an existing object, click on the object's identifier in the object list. Then click
on the Delete button. Be careful because you cannot undo an object deletion.

The objects in the object list can be rearranged by dragging an object's identifier to the
desired position in the list. You cannot drag an object directly to the end of the list. To
do so, first drag the object to precede the last object on the list. Then drag the last object
on the list to precede its predecessor on the list.

38 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Configuration

This page left blank intentionally.

KwikNet System Configuration KADAK Copyright © 1997-2000 KADAK Products Ltd. 39

2.3 KwikNet Library Parameter File
When the Network Library MAKE File selector icon is the currently active selector, the
Library Configuration's tabbed property sheet is displayed in the central region of the
screen. Each tab provides access to a particular property page through which your library
configuration parameters can be declared. For instance, if you select the IP tab, the
Configuration Manager will present an IP definition window (property page) containing
all of the parameters you can adjust to completely define your use of the IP protocol.

To create a new Library Parameter File, select New Library Parameter File from the File
menu. The Configuration Manager will create a new, as yet unnamed, file using its
default KwikNet library configuration parameters. When you have finished defining or
editing your library configuration, select Save As... from the File menu. The
Configuration Manager will save your Library Parameter File in the location which you
identify using the filename which you provide.

To open an existing Library Parameter File, say NETLIB.UP, select Open... from the File
menu and enter the file's name and location or browse to find the file. When you have
finished defining or editing your library configuration, select Save from the File menu.
The Configuration Manager will rename your original Library Parameter File to be
NETLIB.BAK and create an updated version of the file called NETLIB.UP.

When the Network Library MAKE File selector icon is the currently active selector, the
Generate... command on the File menu can be used to generate your Network Library
Make File, say NETLIB.MAK. The path to the template file required by the generator to
create this product can be defined using the Templates... command on the File Menu.

40 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Configuration

Target Parameters
The KwikNet Libraries must be tailored to operate on a particular target processor. These
KwikNet parameters are edited using the Target property page. The layout of the window
is shown below.

Target Processor

Select the target processor of interest from those available on the pull down list.

Byte Ordering

From the pull down list, choose the byte ordering scheme (big endian or little endian)
used by the target processor's memory system. If the byte ordering method is dictated by
the processor, this field will be preset and unalterable.

KwikNet System Configuration KADAK Copyright © 1997-2000 KADAK Products Ltd. 41

Target Parameters (continued)

Data Alignment Boundary

From the pull down list, choose the target processor's natural data alignment (16-bit or
32-bit) for long variables and structures. If the natural data alignment is dictated by the
processor, this field will be preset and unalterable.

Default I/O Method and I/O Cache

From the pull down list, choose the method (memory mapped or I/O ports) used for
device I/O addressing for the target processor. If the I/O addressing method is dictated
by the processor, this field will be preset and unalterable.

When memory mapped I/O is used on processors like the PowerPC, it may be necessary
to invalidate the data cache before reads and flush the data cache after writes. For such
systems, check the I/O...cache box.

KwikNet Clock Tick Frequency

Enter the frequency of the fundamental KwikNet clock tick. All KwikNet timing
measurements will be based on this frequency. The KwikNet Task will perform its stack
polling operations at this frequency.

The KwikNet clock frequency must be at least 2 Hz. A frequency of 10 Hz or 20 Hz is
recommended. Any frequency much above 50 Hz will simply introduce unnecessary
execution overhead with little noticeable improvement in network throughput.

Note that KwikNet must achieve the specified clock frequency using timing services
provided by the underlying operating system. You must therefore choose a KwikNet clock
frequency which is derivable by that operating system. Set the KwikNet clock frequency
so that the corresponding period is an integral number of OS system ticks.

Number of Messaging Blocks

KwikNet uses messaging blocks for its private internal communication. You may have to
increase the number of messaging blocks if any of the following conditions exist.

You have many tasks using network services
You service several networks concurrently
You expect high levels of network packet activity

Override Make Include File

The override option is provided to allow an alternate tailoring file to override the make
include file KNZZZCC.INC used in the construction of the KwikNet Libraries. Tailoring
files are described in Chapter 3.1 of the KwikNet TCP/IP Stack User's Guide.

If you must employ an alternate tailoring file for some reason, check the box and enter
the name of your tailoring file. Otherwise, leave this box unchecked.

42 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Configuration

OS Parameters
The KwikNet Libraries must be tailored to operate with a particular operating system.
These KwikNet parameters are edited using the OS property page. The layout of the
window is shown below.

KwikNet System Configuration KADAK rev 7 43

OS Parameters (continued)

Operating System

From the pull down list, choose the underlying operating system upon which KwikNet
must rely. KwikNet is ready for use without modification with KADAK's AMX kernels.
Choose AMX for any of the 32-bit AMX kernels. Choose AMX 86 for 16-bit, real mode
operation on any 80x86/88 processor.

The KwikNet Porting Kit can be used to port KwikNet to your operating environment, with
or without an RTOS. The kit includes examples of KwikNet which work with the
following single threaded operating systems: MS-DOS and the Tenberry DOS/4GW DOS
Extender for MS-DOS. Custom implementations for a user defined in-house or
commercial RTOS and for a single threaded OS are also provided with the kit.

Memory Allocation

KwikNet must be able to dynamically allocate and free blocks of memory of varying sizes.
KwikNet uses the memory allocation services in the OS Interface Module KN_OSIF.C.
KwikNet calls OS interface procedure kn_osmeminit() to initialize the memory allocator.
Thereafter, KwikNet calls kn_osmemget() to get a block of memory and kn_osmemrls()
to free a previously allocated block.

If you are porting KwikNet to your own operating environment, you may wish to edit these
procedures to use your memory allocation services as described in Chapter 2 of the
KwikNet Porting Kit User's Guide.

Two methods of memory allocation are supported.

If you check the Standard C radio button, the OS Interface Module provided with KwikNet
will use standard C library functions calloc() and free() to allocate and free memory.

If you are using an operating system which provides its own memory allocation services,
check the radio button labelled "Use OS memory services".

Protect Memory Get/Free Operations

When operating in a multitasking environment, the memory allocation services must be
thread-safe. If the memory allocation services you have chosen to use are safe, leave this
box unchecked. Otherwise, check this box and KwikNet will use its memory locking
mechanism to protect access to the unsafe memory allocation services.

When operating in a single threaded environment, memory allocation services are
inherently thread-safe. Hence, leave this box unchecked.

44 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Configuration

OS Parameters (continued)

OS Fixed Memory Region (Heap)

When using the operating system's memory allocation services, you may have to provide
memory for use as a heap. If so, check the radio button labelled "OS allocates memory
from a fixed region". For example, when AMX memory management services are used, a
private memory pool is created for network memory allocation, isolating KwikNet from
conflicts arising from memory allocation for other uses.

Source and Size of Fixed Memory Region (Heap)

If the operating system requires a private region of memory for use as a heap, you must
provide that memory. From the pull down list, choose the method to be used to allocate
such a memory region for use by the memory allocator.

If you choose the Static array option, you must enter the array size (in bytes) in the
Region size field. A character array kn_memstore[] of that size will be declared in the
KwikNet Network Configuration Module. KwikNet will allocate memory from that array.

If you choose the malloc() option, use the Region size field to define the number of bytes
to be allocated for use as a heap. During KwikNet's startup initialization, the KwikNet Task
will call C library function malloc() once to allocate a memory block of the specified
size. KwikNet will subsequently allocate memory from that single block. If you specify a
memory size of 0, KwikNet will estimate its total memory requirement and malloc() a
memory block accordingly.

When either of the above methods are chosen, the declared memory size becomes the
default value for that particular KwikNet Library. However, an override is allowed to
permit the library to be used with several different network configurations, each with its
own memory requirements. To override the default memory size for a particular network
configuration, edit its Network Parameter File and enter the required memory region size
in the field provided on the Application property page.

An alternate approach is to choose the User function option and provide a function called
kn_memacquire() which is prototyped as shown below. The Region size field is unused
in this case. When KwikNet starts up, it will call the function to get the size of your
memory region and a pointer to it. The function must install a pointer to a block of n
bytes of memory into *mempp and return the value n.

unsigned long kn_memacquire(char **mempp);

KwikNet System Configuration KADAK rev 6 45

IP Stack Parameters
The KwikNet IP Stack parameters are edited using the IP property page. The layout of the
window is shown below.

46 rev 6 KADAK KwikNet System Configuration

IP Stack Parameters (continued)

Multiple Networks

Leave this box unchecked if you have only one network interface through which you can
interconnect.

Check this box if your application must support more than one network interface. Such
configurations are called multi-homed. Enter the maximum number of network
interfaces which KwikNet must be able to support.

Enable Full IP Routing

IP routing is always optional, even if you have multiple network interfaces. Check the
box to enable full IP routing and define the maximum number of IP addresses for which
you wish KwikNet to be able to retain routing information. If you leave the box
unchecked, KwikNet will not retain any IP routing information as it processes IP
datagrams.

Enable Packet Forwarding

To enable IP packet forwarding, check this box. Otherwise, leave this box unchecked.

When IP routing and packet forwarding are enabled, KwikNet will attempt to forward
packets destined to IP addresses which are not present on the host machine being serviced
by KwikNet. IP packets which arrive on one network interface will be forwarded out
another network interface. You usually will not require forwarding unless you have
multiple network interfaces. However, if you only have one network interface, you can
still enable packet forwarding as long as you also allow reflections.

Reflections Allowed

Check this box if you wish to allow KwikNet to forward an IP packet, if necessary, by
reflecting the packet back onto the network interface from which the packet arrived. If
this box is left unchecked, KwikNet will not forward an IP packet back onto the originating
network. If you only have one network interface, reflections must be allowed in order to
provide packet forwarding.

Full ICMP

The IP stack will support the ICMP protocol for error and control message handling only
if this box is checked.

If you wish to use the TCP protocol or UDP with sockets, you must check this box. You
will not be allowed to remove the check from this box if either TCP or UDP sockets is
enabled.

KwikNet System Configuration KADAK rev 6 47

IP Stack Parameters (continued)

Enable Statistics Reporting

Check this box if you want KwikNet to be able to log the statistical information which it
maintains about events occurring at all layers on each supported network. This statistical
data will only be logged if your application calls the KwikNet procedure kn_netstats().

Leave this box unchecked to omit all statistics logging code from the KwikNet Libraries,
thereby completely precluding any logging of statistical data.

UDP Checksums

Datagrams sent and received using the User Datagram Protocol can include an optional
UDP checksum. UDP checksums, if present, are always checked upon reception of a
UDP datagram.

Check this box if you want UDP checksums to be generated on each UDP datagram sent
by KwikNet on any supported network. Otherwise, leave this box unchecked.

UDP Echo

Check this box if you want KwikNet to act as a UDP echo server, echoing UDP packets
received on the well known echo port number 7 back to the sender. Otherwise, leave this
box unchecked.

IP Fragmentation

If you wish KwikNet to be able to split IP datagrams for transmission and reassemble IP
datagrams which arrive as multiple IP datagram fragments, check this box and enter the
maximum number of fragmented datagrams which KwikNet must be able to concurrently
reassemble. Otherwise, leave this box unchecked.

Application Handles PING Replies

Your application can call KwikNet procedure kn_pingsend() to send a PING request.
The PING response, if any, will normally be discarded by KwikNet. If your application
wishes to receive notification of the PING response, you must check this box. Your
application can then call KwikNet procedure kn_pinguserfn() to post a pointer to the
function which KwikNet will call to deliver the PING response to your application.

If your application does not use PING or has no need to examine the PING response,
leave this box unchecked.

Little and Big Packet Buffers

Enter the total number of "little packet" and "big packet" buffers which KwikNet must
allocate. By default little buffers are 128 bytes each. Little buffers will be 200 bytes
each if the KwikNet Web Server is used. Big buffers are 1536 bytes each.

48 rev 6 KADAK KwikNet System Configuration

TCP Stack Parameters
The KwikNet TCP Stack parameters are edited using the TCP property page. The layout of
the window is shown below.

Include TCP

Check this box if you intend to use the TCP protocol and its KwikNet socket interface.
Otherwise, leave this box unchecked.

Support UDP Datagrams

Check this box if you wish to be able to use the KwikNet socket interface to communicate
using the User Datagram Protocol. Otherwise, leave this box unchecked.

KwikNet System Configuration KADAK rev 6 49

TCP Stack Parameters (continued)

Maximum Number of Sockets

Enter the maximum number of sockets which your application can have in use at any one
time. Remember that a TCP server needs one socket to listen for connection requests and
one socket for each accepted connection.

TCP Options

Maximum Listen Backlog

Enter the maximum number of backlogged connection requests which KwikNet must be
able to queue for a socket being used to listen for connections. Once this number of
connection requests have been queued for acceptance by the server, additional client
requests for connection will be rejected by KwikNet.

Allow Non-blocking Connects

Check this box if you wish the KwikNet procedure kn_connect() to process a request for
connection to another socket without forcing the caller to block waiting for the
connection to be established. Otherwise, leave this box unchecked.

Delay TCP Acknowledgements

Check this box if you wish KwikNet to delay sending its TCP acknowledgement packets as
long as possible while still adhering to the TCP protocol rules for packet
acknowledgement. If you leave this box unchecked, KwikNet will acknowledge each TCP
packet which it receives. Use of this option can yield improved throughput under some,
but not necessarily all, network conditions.

Include Local TCP MIB Statistics

Check this box if you wish the KwikNet TCP Stack to maintain a local Management
Information Base (MIB) database for inclusion in the network statistics log generated by
the KwikNet procedure kn_netstats(). To omit these statistics, and the code which
gathers and logs them, leave this box unchecked.

Report Extensive BSD Statistics

Check this box if you wish the KwikNet TCP Stack to maintain the extensive list of
statistics usually found in the Berkeley Software Distribution (BSD) TCP/IP stack.
These statistics will be included in the network statistics log generated by the KwikNet
procedure kn_netstats(). To omit these statistics, and the code which gathers and logs
them, leave this box unchecked.

50 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Configuration

Ethernet / SLIP Parameters
KwikNet includes an Ethernet and a SLIP network driver. Each of these drivers can
support multiple networks of the same type. From the Ether/SLIP property page, you can
select these network drivers for inclusion in the KwikNet Libraries and edit their operating
parameters. The layout of the window is shown below.

Support Ethernet

If you have one or more networks with Ethernet device drivers, check this box to include
the KwikNet Ethernet Network Driver in your KwikNet Library. Otherwise, leave this box
unchecked.

Transmit Packet Queue Limit

The KwikNet Ethernet Network Driver queues packets for transmission until they can be
accepted for transmission by the Ethernet device driver. This parameter defines the
maximum number of packets which the network driver will queue.

KwikNet System Configuration KADAK Copyright © 1997-2000 KADAK Products Ltd. 51

Ethernet / SLIP Parameters (continued)

Number of ARP Cache Entries

The KwikNet Ethernet Network Driver uses the Address Resolution Protocol (ARP) to
associate a specific hardware Ethernet address with a particular IP address. This
parameter defines the maximum number of ARP address pairs which KwikNet can
maintain in its ARP data cache for all supported networks.

If your network interfaces are interconnected with only a few other hosts, set this
parameter to the number of such interconnections.

ARP Entry Age Limit

This parameter defines the length of time, measured in seconds, that an ARP address pair
can reside in the ARP cache before it is purged. Any ARP entry whose age exceeds this
time limit will not be used for address resolution.

Support SLIP

If you have one or more SLIP networks with serial UART device drivers, check this box
to include the KwikNet SLIP Network Driver in your KwikNet Library. Otherwise, leave
this box unchecked.

Transmit Packet Queue Limit

The KwikNet SLIP Network Driver queues packets for transmission until they can be
accepted for transmission by the serial device driver. This parameter defines the
maximum number of packets which the network driver will queue.

Optimize SLIP Encoding and Decoding

The SLIP protocol translates certain octets occurring in the data stream into an octet pair
to avoid conflicts with the octet values reserved for use by the protocol. This encoding
and decoding can be optimized to avoid unnecessary data movement in buffers if the data
stream has no reserved octet conflicts. Check this box to enable this optimization. To
omit this optimization code, leave this box unchecked.

52 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Configuration

Modem Parameters
KwikNet includes a modem driver for use with any SLIP or PPP network driver. The
modem driver can operate concurrently on multiple networks. The modem driver is
selected and its parameters edited using the Modem property page. The layout of the
window is shown below.

KwikNet System Configuration KADAK Copyright © 1997-2000 KADAK Products Ltd. 53

Modem Parameters (continued)

Include Modem Support

If you have one or more SLIP or PPP networks with serial UART device drivers
requiring modem support, check this box to include the KwikNet Modem Driver in your
KwikNet Library. Otherwise, leave this box unchecked.

I/O Buffer Size

This parameter defines the size of the data buffers allocated for use by the Modem
Driver. A transmit buffer and a receive buffer of this size are allocated for each modem
which is attached to a UART device driver.

Telephone Number Storage Size

This parameter defines the size of the storage buffer required to hold a complete
telephone number which the modem may dial. A buffer of this size is allocated for each
modem which is attached to a UART device driver.

Initialization Command Storage

This parameter defines the size of the storage buffer required to hold the complete
modem initialization command string required to initialize the modem. A buffer of this
size is allocated for each modem which is attached to a UART device driver.

Enable Logging

Check this box if you wish the KwikNet Modem Driver to be able to record debug tracing
information on the debug logging device and to log script operations on the modem
logging device. If this box is checked, modem logging will occur for every modem
which is attached to a UART device driver.

Leave this box unchecked to omit all logging code from the KwikNet Modem Driver,
thereby completely precluding any modem logging.

Support Remote or Local Login

The KwikNet Modem Driver can support local or remote login scripts. If this box is
checked, then a local login script can be used by the Modem Driver to control the dialing
and login sequence when a local user attempts to login to a remote server. A remote
login script can be used to control the answering and login sequence when a remote user
attempts to login to a local server.

Leave this box unchecked if login scripting is not required on any network serviced by a
modem.

The KwikNet Modem Driver is described in Chapter 1.7 of the KwikNet Device Driver
Technical Reference Manual.

54 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Configuration

DNS / DHCP Client Parameters
KwikNet includes a DNS client for accessing Domain Name System services on
interconnected networks. The DNS client is described in Chapter 4.3. The DNS client is
selected and its parameters edited using the DNS/DHCP property page.

KwikNet includes a DHCP client for using the Dynamic Host Configuration Protocol
(DHCP) to derive an IP address, subnet mask and default gateway for any of your
network interfaces. The DHCP client is described in Chapter 4.2. The DHCP client is
selected and its parameters edited using the DNS/DHCP property page.

The layout of the DNS/DHCP window is shown below.

KwikNet System Configuration KADAK Copyright © 1997-2000 KADAK Products Ltd. 55

DNS / DHCP Client Parameters (continued)

Include DNS Client

If your application wishes to use the KwikNet DNS client to access Domain Name System
services on interconnected networks, check this box. Otherwise, leave this box
unchecked.

Maximum Domain Name Length

Domain names are strings consisting of dot separated labels such as www.kadak.com.
This parameter defines the longest string, including the terminating '\0' character,
which you expect the DNS client to be able to handle.

Maximum Number of Cached Names

The KwikNet DNS client maintains a list of the domain names which your application has
queried. This parameter defines the maximum number of domain names which you wish
the DNS client to cache. The larger you make this parameter, the more memory will be
allocated for caching. The amount of memory is also affected by the maximum domain
name length which you define.

Maximum Number of DNS Servers

The KwikNet DNS client maintains a list of the IP addresses of the DNS servers which it
can query to resolve a domain name. KwikNet and your application can add and remove
DNS servers from this list. This parameter defines the maximum number of DNS servers
allowed in the list.

Maximum Addresses in Response

A DNS server can provide more than one IP address which corresponds to a specific
domain name. This parameter defines the maximum number of IP addresses which
KwikNet will keep from any DNS server response. Additional IP addresses provided by a
DNS server will be ignored.

Number of Retries

This parameter defines the number of attempts which the DNS client will make to acquire
the IP address for a particular domain name before declaring failure.

Retry Timeout

This parameter defines the number of seconds which the DNS client will wait for a
response to a DNS query. If no response is received within this timeout period, the DNS
client resends its query. This process repeats up to the maximum number of retries which
you have specified.

56 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Configuration

DNS / DHCP Client Parameters (continued)

Server List Function

Your application can dynamically add and remove DNS servers from the list maintained
by the KwikNet DNS client. Alternatively, you can provide a function which KwikNet will
call upon startup to fetch a pointer to a list of DNS server IP addresses. This parameter is
the name of your function. This function must operate as described in Chapter 4.3 of the
KwikNet TCP/IP Stack User's Guide. If you have no such function, leave this field empty.

Support Gethostbyname() API

If your application must use the common function gethostbyname() or its KwikNet
reentrant equivalent kn_gethostbyname(), check this box and indicate the maximum
interval, in seconds, which you will allow for the host name to be resolved. Otherwise,
leave this box unchecked.

Include DHCP Client

If any of your network interfaces require the use of the Dynamic Host Configuration
Protocol (DHCP) to derive an IP address, subnet mask and default gateway, check this
box. Otherwise, leave this box unchecked.

Maximum DNS Servers

When a DHCP server responds to an IP address query, it can also provide a list of known
DNS server IP addresses. This parameter defines the maximum number of DNS server
IP addresses which will be accepted from the DHCP server. Additional DNS server IP
addresses provided by the DHCP server will be ignored. If you want the DHCP client to
ignore all DNS servers identified by any DHCP server, set this parameter to 0.

This parameter cannot be used unless you also include the KwikNet DNS client.

Send Option Request List

The KwikNet DHCP client can include an option request list in its DHCP query. The
option list explicitly indicates the DHCP options to which the DHCP server may choose
to respond. The KwikNet option list indicates that KwikNet will accept subnet masks,
gateways and DNS servers from the DHCP server. The DNS server option will only be
presented in the option list if you have included the KwikNet DNS client.

Check this box if you want the KwikNet DHCP client to send its option request list with
each DHCP query. Otherwise, leave this box unchecked.

KwikNet System Configuration KADAK rev 6 57

Debug and Trace Parameters
KwikNet includes a number of debugging and execution tracing options. These options
are enabled and selected using the Debug property page. The layout of the window is
shown below.

58 rev 6 KADAK KwikNet System Configuration

Debug and Trace Parameters (continued)

Enable Debugging

Check this box to enable debugging code. If this box is checked, code is inserted into the
KwikNet Libraries to generate progress messages and to log errors encountered as the
stack executes.

Leave this box unchecked to omit all debug logging code from the KwikNet Libraries,
thereby completely precluding any debug logging.

If this box is checked, you can qualify the specific debug information which is to be
logged on the debug recording device. Although code will exist to handle each option
listed, only those options which are checked will cause debug messages to be logged.

Debug Tracing

Check a particular protocol trace box to enable the logging of trace information for that
protocol layer on the debug recording device. If a trace box is checked, code will be
inserted into the KwikNet Libraries to log progress messages as that particular protocol
layer executes.

Leave a trace box unchecked to omit that particular protocol trace logging code from the
KwikNet Libraries, thereby completely precluding trace logging through that protocol
layer.

Packet Dump Limit

If the debug logging of IP packet dumps is enabled, KwikNet will log the content of each
IP datagram as it is sent or received. The entire IP datagram up to the limit defined by
this parameter will be dumped. The dump limit is specified in bytes. The debug log will
show the datagram bytes as two-character hexadecimal values, separated by spaces and
listed in net endian order. The data log will be split into lines according to the line length
specified on the Application property page in your Network Parameter File.

Make Private Functions Visible

Many KwikNet procedures are declared static and are hence not visible in link maps or
accessible by a debugger. The static declaration can be removed from many of these
procedures by checking this box.

Enable Debug Breakpoint

Many of the procedures in the KwikNet TCP/IP Stack and its optional modules can
generate a debug trap after logging a debug message when an error is detected. Check
this box if you wish all such debug traps to be vectored to the KwikNet breakpoint
procedure kn_bphit() on which you can place a debugger breakpoint. Otherwise, leave
this box unchecked.

KwikNet System Configuration KADAK Copyright © 1997-2000 KADAK Products Ltd. 59

2.4 KwikNet Network Parameter File
When the Network Configuration Module selector icon is the currently active selector, the
Network Configuration Module's tabbed property sheet is displayed in the central region
of the screen. Each tab provides access to a particular property page through which your
network configuration parameters can be declared. For instance, if you select the
Networks tab, the Configuration Manager will present a network definition window
(property page) containing all of the parameters you must provide to completely define a
network.

To create a new Network Parameter File, select New Network Parameter File from the File
menu. The Configuration Manager will create a new, as yet unnamed, file using its
default KwikNet network configuration parameters. When you have finished defining or
editing your network configuration, select Save As... from the File menu. The
Configuration Manager will save your Network Parameter File in the location which you
identify using the filename which you provide.

To open an existing Network Parameter File, say NETCFG.UP, select Open... from the File
menu and enter the file's name and location or browse to find the file. When you have
finished defining or editing your network configuration, select Save from the File menu.
The Configuration Manager will rename your original Network Parameter File to be
NETCFG.BAK and create an updated version of the file called NETCFG.UP.

When the Network Configuration Module selector icon is the currently active selector, the
Generate... command on the File menu can be used to generate your Network
Configuration Module, say NETCFG.C. The path to the template file required by the
generator to create this product can be defined using the Templates... command on the File
Menu.

60 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Configuration

General Application Parameters
Your Network Parameter File must provide a number of general parameters to adapt
KwikNet to meet the needs of your particular networking application. These KwikNet
parameters are edited using the Application property page. The layout of the window is
shown below.

KwikNet System Configuration KADAK Copyright © 1997-2000 KADAK Products Ltd. 61

General Application Parameters (continued)

OS Fixed Memory Region Override

If your KwikNet library has been configured to use a memory allocator which requires a
private region of memory for use as a heap, you must provide that memory. If the library
is configured so that the memory is to be provided using a Static array or malloc(), the
memory size declared in the library becomes the default memory region size.

To use the default region size from the library, leave the Override box unchecked.

To use an alternate memory region size for this particular network configuration, check
the Override box and enter the required size in the Region size field.

Enable Data Logging

Check this box if you wish to provide a logging function to record (display) text
messages generated by KwikNet's data logging services. When this box is checked, you
must provide all of the Logging parameters listed. If you do not want to provide a data
logging function, leave this box unchecked.

Log Buffer Storage

Specify the amount of memory to be reserved for use as data log buffers. A character
array of this size will be declared in the KwikNet Network Configuration Module.

Maximum Line Length

Specify the maximum number of characters that are allowed in each line of text logged to
your recording (display) device.

Log Function Name

This parameter provides the name of an application function which will be called to log
each line of text generated by KwikNet's data logging services. This function must operate
as specified in Chapter 1.6 of the KwikNet TCP/IP Stack User's Guide.

The sample programs provided with KwikNet and its optional components use data
logging procedure sam_record() in the Application OS Interface module KNSAMOS.C.
To use that procedure, enter the function name sam_record in this field.

62 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Configuration

Ethernet Network Definition
You must predefine each Ethernet network which your application must support. A
separate definition is required for each such network. The total number of networks must
not exceed the maximum number of networks which your KwikNet Library Parameter File
allows. Each Ethernet network is defined using the Networks property page. The layout
of the window is shown below.

KwikNet System Configuration KADAK Copyright © 1997-2000 KADAK Products Ltd. 63

Ethernet Network Definition (continued)

Tag

Each network must have a unique 4-character network tag. This parameter defines that
tag. Although KwikNet does not restrict the content of the tag in a network description,
the Configuration Manager only supports 4 ASCII characters as a tag.

Edit: Network

You must select the Edit: Network radio button to define the network parameters.

Network Driver

You must choose Ethernet from the pull down list to attach the KwikNet Ethernet Network
Driver to your Ethernet network.

Startup Hook

This parameter provides the name of an application function which will be called when
the network driver is being initialized. This function can modify the network's
configuration parameters and IP address information before the network has been fully
initialized. If your application does not require a startup hook for this network, leave this
field empty. The Ethernet network driver startup hook is described in Appendix A.1 of
the KwikNet Device Driver Technical Reference Manual.

MAC Frame Type

The KwikNet Ethernet Network Driver supports two standards for framing Ethernet data
packets, Ethernet-II and IEEE 802.3. An Ethernet network can only communicate with
other nodes that use the same framing standard. Select the type of framing to use from
the pull down list.

64 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Configuration

SLIP Network Definition
You must predefine each SLIP network which your application must support. A separate
definition is required for each such network. The total number of networks must not
exceed the maximum number of networks which your KwikNet Library Parameter File
allows. Each SLIP network is defined using the Networks property page. The layout of
the window is shown below.

KwikNet System Configuration KADAK Copyright © 1997-2000 KADAK Products Ltd. 65

SLIP Network Definition (continued)

Tag

Each network must have a unique 4-character network tag. This parameter defines that
tag. Although KwikNet does not restrict the content of the tag in a network description,
the Configuration Manager only supports 4 ASCII characters as a tag.

Edit: Network

You must select the Edit: Network radio button to define the network parameters.

Network Driver

You must choose SLIP from the pull down list to attach the KwikNet SLIP Network Driver
to your SLIP network.

Startup Hook

This parameter provides the name of an application function which will be called when
the network driver is being initialized. This function can modify the network's
configuration parameters and IP address information before the network has been fully
initialized. If your application does not require a startup hook for this network, leave this
field empty. The SLIP network driver startup hook is described in Appendix A.1 of the
KwikNet Device Driver Technical Reference Manual.

Modem Connection

The SLIP network driver supports remote connections using the KwikNet Modem Driver.
Check this box to attach the Modem Driver to this network. Otherwise, leave this box
unchecked. The KwikNet Modem Driver is described in Chapter 1.7 of the KwikNet Device
Driver Technical Reference Manual.

Note that the network still requires a device driver even if the Modem Driver is used.

Modem Options

If you have attached the Modem Driver to this network, then click the Modem Options...
button to open the Modem Options Dialog. Within this dialog you can configure the
modem to meet your requirements.

66 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Configuration

Network Device Driver Definition
You must define the device driver attached to each network which your application
supports. A separate device driver definition is required for each network. Each network
device driver is defined using the Networks property page. The layout of the window is
shown below.

KwikNet System Configuration KADAK Copyright © 1997-2000 KADAK Products Ltd. 67

Network Device Driver Definition (continued)

Tag

Each device driver inherits the unique 4-character network tag assigned to the network to
which the device driver is attached. This parameter defines that tag.

Edit: Device

You must select the Edit: Device radio button to define the network's device driver
parameters.

Device Driver

To use any of the KwikNet device drivers which are available from KADAK, select its
name from the pull down list.

If you are using your own custom KwikNet device driver or one only recently available
from KADAK, you must edit the text region of the list to identify the driver. Replace the
text in the list box with the name of the device driver's Device Preparation Function
dddd_prep. The string dddd in the function name is the mnemonic used to uniquely
identify the particular device driver.

The selected device driver must match its network driver. Device drivers for Ethernet
interface devices can only be used with the Ethernet Network Driver. Device drivers for
UART interface devices can only be used with the SLIP or PPP Network Driver. The
Configuration Manager is not able to perform this consistency check.

Startup Hook

This parameter provides the name of an application function which will be called when
the device driver is being initialized. This function can modify the device's configuration
parameters before the device has been fully initialized. If your application does not
require a startup hook for this device, leave this field empty. The device driver startup
hook is described in Appendix A.2 of the KwikNet Device Driver Technical Reference
Manual.

Parameter #1 through #5

There are five optional parameters which can be used to configure the device driver.
Each parameter can provide a 32-bit value. Unused parameters can be left empty. The
use and meaning of each parameter is completely defined by the device driver.

If you are using one of the KwikNet device drivers which are available from KADAK,
refer to its manual for its definition of these fields. Otherwise, refer to the data sheets
which you created for your custom KwikNet device driver.

68 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Configuration

Network IP Address Definition
You must provide a network IP address for each network which your application
supports. Each network IP address is defined using the Networks property page. The
layout of the window is shown below.

You can specify a network's IP address using this property page. Alternatively, you can
assign the IP address in your network startup hook, if one is provided. Of course, IP
addresses can also be assigned dynamically using DHCP.

If you intend to assign the network IP address at runtime, then you can enter 0.0.0.0 for
all of the address fields on this page.

KwikNet System Configuration KADAK Copyright © 1997-2000 KADAK Products Ltd. 69

Network Device Driver Definition (continued)

Edit: IP Address

You must select the Edit: IP Address radio button to define the network's IP address and
related parameters.

IP Address

Enter the IP address of the network interface. This must be a unique, valid IP address
which can be used to identify the host computer attached to this network interface.

Subnet Mask

Enter the subnet mask of the network. The subnet mask defines the manner in which IP
addresses on this network are decoded to distinguish between the physical net address
and host identifiers. Enter 0.0.0.0 if subnet addressing is not used on this network.

Default Gateway

Enter the IP address of the default gateway to be used in the absence of specific routing
information. This value must be a valid host IP address or 0.0.0.0. When sending data,
all packets that cannot be sent to a node on the local network will be sent to the default
gateway. If the default gateway field is 0.0.0.0, then there is no gateway defined for this
network.

DHCP Override

If this box is checked, the network will use the Dynamic Host Configuration Protocol to
derive an IP address, subnet mask and gateway definition for the network. To use this
option, there must be a DHCP server located on this network. If dynamic IP address
assignment is not required, leave this box unchecked.

If you check this box, be sure to configure your KwikNet IP Library to include the KwikNet
DHCP client. To do so, edit your KwikNet Library Parameter File and check the box
labeled Include DHCP Client on the IP property page. Failure to do so will result in a
compilation error when you attempt to compile your KwikNet Network Configuration
Module. The error will inform you that your library does not include the DHCP client.

70 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Configuration

Modem Options
If a KwikNet network requires modem support, you must define the modem parameters
which govern its use. These modem parameters are edited using the Modem Dialog Box
entered via the Modem Options... button on the Networks definition property page. The
layout of the dialog box is shown below.

Startup Hook

This parameter provides the name of an application function which will be called when
the KwikNet Modem Driver is being initialized. This function can modify the modem's
configuration parameters before the modem has been fully initialized. If your application
does not require a startup hook for this modem, leave this field empty. The modem
driver startup hook is described in Appendix A.3 of the KwikNet Device Driver Technical
Reference Manual.

Initialization String

The modem initialization string is sent to the modem before each dialing attempt. The
command resets the modem and prepares it for dialing. This string should include the
Hayes standard "AT" command prefix. Some common initialization strings are "AT&F"
and "ATZ". For more information, consult your modem's reference manual.

KwikNet System Configuration KADAK rev 6 71

Modem Options (continued)

Telephone Number

Enter the telephone number of the remote system to which the modem driver will
connect. This string may contain special characters that are used to modify the modem's
dialing operation. Do not include the Hayes standard "ATDx" prefix in this string.

Some common dialing commands are listed below. Be sure to consult your modem's
reference manual for the actual commands that it supports.

0 through 9 Dial this number
() - space Brackets, minus and space characters are ignored
comma Timed wait
W Timed wait for a dial tone
@ Timed wait for remote pickup
S Dial a number stored in the modem's internal memory

Dialing Method

From the pull down list, choose the dialing method to use with the attached telephone
system. Most telephone systems support tone dialing but some older systems may only
support pulse dialing.

Number of Dial Attempts

Enter the number of times that the modem driver will attempt to connect to the remote
system before declaring a connection error.

Connection Timeout

This field defines the maximum number of seconds that the modem driver will wait for a
modem response after it has started a connection attempt. If the modem does not respond
within this time, the dialing attempt will be aborted.

Delay Between Redials

This field defines the number of seconds that the modem driver will wait after a
connection attempt has failed before it attempts to redial.

Connect During Network Startup

Check this box if you want to connect to the remote system when the KwikNet stack is
started. If you leave this box unchecked, KwikNet will not connect to the remote system
until your application tries to send data over this network or calls kn_inet_ifstate() to
start up this network.

72 rev 6 KADAK KwikNet System Configuration

Modem Options (continued)

Disconnect When Idle

If you want to automatically disconnect from the remote system when the connection has
not been used recently, check this box and enter the number of seconds that the line must
remain idle before disconnecting. If you leave this box unchecked, the line will remain
active until the remote system terminates the connection, your application calls
kn_inet_ifstate() to shut down the network being used or KwikNet is shut down.

Auto-answer

If you want the modem driver to automatically answer incoming calls, check this box and
enter the number of rings to wait before answering the call. If you leave this box
unchecked, the modem driver will not answer incoming calls.

Bypass Modem Hardware

The KwikNet modem driver is required if you need to support remote or local login scripts.
Check this box if you wish to use the modem driver to support login scripts but do not
actually require a modem to communicate. If this box is checked, all other modem
parameters on this screen, except the startup hook, will be ignored by KwikNet.

Note that if you intend to use a login script, the modem scripting feature must be enabled
in your KwikNet Library Parameter File. The scripting feature is enabled on the Modem
property page.

KwikNet System Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 73

3. KwikNet System Construction

3.1 Building an Application
If you are using KwikNet with AMX or have ported KwikNet to your operating
environment, you are now ready to construct the KwikNet Libraries and build an actual
KwikNet application. The sample program(s) provided with KwikNet and its optional
components are working examples which you can use either for guidance or as a starting
point for your own application.

To build a KwikNet application you must perform the following steps.

1. Using the KwikNet Configuration Builder, create and/or edit a Library Parameter File
to select the KwikNet features which your application requires. On the Debug property
page, enable some or all of KwikNet's debug features to assist you during initial
testing. Use the builder to generate your KwikNet Library Make File. Using that file,
create your KwikNet Libraries following the procedure to be described in Chapter 3.2.

2. If none of the available KwikNet device drivers meet your needs, create a custom
device driver as described in the KwikNet Device Driver Technical Reference Manual.

3. If necessary, adapt the KwikNet board driver KN_BOARD.C to accommodate your target
processor, device interfaces and interrupt management scheme. The board driver is
also described in the KwikNet Device Driver Technical Reference Manual.

4. Using the KwikNet Configuration Builder, create and/or edit a Network Parameter File
to describe your network interfaces and their associated device drivers. Use the
builder to generate a KwikNet Network Configuration Module, a C file describing your
networks.

5. Finally, create a make file which your make utility can use to build your application.
It must compile your application modules, your KwikNet device drivers, your KwikNet
board driver and your KwikNet Network Configuration Module. It can then link the
resulting object modules with your KwikNet libraries, your RT/OS libraries and your C
run-time library to create an executable load module. Follow the compilation and
linking recommendations presented in Chapters 3.3, 3.4 and 3.5.

6. Use your software debugger and/or in-circuit emulator tools to transfer your load
module to your target hardware. When testing, you should execute your application
with a breakpoint on KwikNet procedure kn_bphit() so that you can readily detect
fatal configuration or programming errors or unusual operation of the KwikNet TCP/IP
Stack. Follow the testing guidelines presented in Chapter 1.9.

74 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Construction

3.2 Making the KwikNet Libraries
To build the KwikNet Libraries, you will need a make utility capable of running your C
compiler and object librarian (archiver). The library construction process is illustrated in
Figure 3.2-1. If you have ported KwikNet to your operating environment, the shaded
blocks indicate modules which you have already modified to adapt the make process to
accommodate your software development tools. If you are using KwikNet with AMX,
these modules are ready for use without modification.

Your custom KwikNet Libraries are created from the KwikNet Library Parameter File, a text
file describing the TCP/IP features and options which your application requires. This file
is created and edited using the KwikNet Configuration Builder as described in Chapter 2.

The KwikNet Configuration Builder uses the information in your Library Parameter File to
generate a Network Library Make File. This make file is suitable for use with either
Borland's MAKE or Microsoft's NMAKE utility. The make file purposely avoids constructs
and directives that tend to vary among make utilities. Hence, you should have little
difficulty using this make file with your own make utility if you so choose.

The make utility uses your C compiler and object librarian to generate the KwikNet
Libraries from the KwikNet source modules and the OS Interface Module.

All KwikNet C files include a KwikNet compiler configuration header file KNZZZCC.H. This
file identifies the characteristics of your C compiler. This file is also used to optimize
code sequences within KwikNet modules by taking advantage of compiler specific features
such as in-line code, assembly language functions and C library macros or functions. A
number of variants of this module are provided with KwikNet ready for use with popular
compilers on a variety of target processors.

The OS Interface Module KN_OSIF.C is the module which connects KwikNet to your
RT/OS (see Figure 1.2-1 in Chapter 1). This module is merged into the KwikNet IP
Library. The make process automatically includes the OS Interface Make File
KN_OSIF.INC to determine the make dependencies and rules which control the
compilation of the OS Interface source file KN_OSIF.C.

As you would probably expect, the make file does not know how to run your C compiler
and object librarian. This information is provided in a file called KNZZZCC.INC which the
make process automatically includes. This file, called a tailoring file, is used to tailor the
library construction process to accommodate your make utility's syntax for implicit rules.
It also provides the command sequences necessary to invoke your C compiler and object
librarian. KwikNet is shipped with a number of tailoring files ready for use with many
popular compilers using either Borland's MAKE or Microsoft's NMAKE utility.

Note

When KwikNet is used with AMX, the compiler
configuration header file KNZZZCC.H, the OS Interface
Make File KN_OSIF.INC and the tailoring file KNZZZCC.INC
provided with KwikNet are ready for use without
modification as described in Chapter 3.7.3.

KwikNet System Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 75

KwikNet
Configuration

Builder

Compiler
Header

KNZZZCC.H

Tailoring
File

KNZZZCC.INC

OS Interface
Module

KN_OSIF.C
KN_OSIF.H

OS Interface
Make File

KN_OSIF.INC

Network
Library

Make File

MAKE
Utility

KwikNet
Source
Code

Library
Parameter

File

C Compiler
Object Librarian

KwikNet
Libraries

Figure 3.2-1 KwikNet Library Construction

76 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Construction

KwikNet Directories and Files

The make process depends upon the structure of the KwikNet installation directory
KNTnnn. When KwikNet is installed, the following subdirectories are created within
directory KNTnnn.

INET IP, UDP and related protocols; DHCP client; DNS client
Ethernet and SLIP Network Drivers; Modem Driver
Ethernet and Serial Loopback Drivers
Universal File System Interface; Administration Interface

TCP TCP protocol
MAKE KwikNet make directory
CFGBLDW KwikNet Configuration Builder; template files
ERR Construction error summary
TOOLXXX Toolset specific files
TOOLXXX\LIB Toolset specific libraries will be built here
TOOLXXX\DRIVERS KwikNet device drivers

Other subdirectories such as PPP, FTP, HTTP or SNMP will also be present if you have
purchased the corresponding optional KwikNet components.

Other directories containing sample programs will also be present but are not involved in
the library construction process.

One or more toolset specific directories TOOLXXX will be present. There will be one such
directory for each of the software development toolsets which KADAK supports. Each
toolset vendor is identified by a unique two or three character mnemonic, XXX. The
mnemonic UU identifies the toolset vendor used with the KwikNet Porting Kit.

Within directory TOOLXXX you will find a collection of files of the form B_tttXXX.vvv
and M_tttXXX.vvv. These files, called tailoring files, are used to tailor the library
construction process for either Borland (B_tttXXX.vvv) or Microsoft (M_tttXXX.vvv)
make utilities. The mnemonic ttt identifies the target processor. The extension vvv
identifies the first version of the compiler for toolset XXX with which the tailoring file was
tested. The tailoring file can be used with subsequent versions of the tools until some
change in their method of operation requires a tailoring file update. For example, file
B_PPCMW.361 was first used to create the PowerPC KwikNet Libraries using Borland's
MAKE and the MetaWare v3.61 C compiler.

Getting Ready

Before creating the KwikNet Libraries, you must pick your make utility, C compiler and
object module librarian (archiver). Be aware that KADAK has observed that not all
compilers operate correctly with every version of the Microsoft or Borland make utilities.
If the make process inexplicably fails, it will most frequently be because of
incompatibilities between these tools.

Pick the tailoring file which matches your choice of make utility, toolset and compiler
version. Copy that file into the toolset directory but with name KNZZZCC.INC. You may
have to overwrite the default copy created in that directory when KwikNet was installed.

KwikNet System Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 77

Network Library Make File

The KwikNet Configuration Builder is used to create and edit your Library Parameter File,
say NETLIB.UP. It is this file which describes the KwikNet options and features which
your application requires. From this parameter file, the Configuration Builder generates
the Network Library Make File, say NETLIB.MAK.

The Network Library Make File NETLIB.MAK is a make file which can be used to create
the KwikNet Libraries tailored to your specifications. This make file is suitable for use
with either Borland's MAKE or Microsoft's NMAKE utility.

Gathering Files

The block diagram in Figure 3.2-1 summarizes the components which are required to
build the KwikNet Libraries. All of these files must be present in the appropriate KwikNet
installation directories prior to making the KwikNet Libraries. Each of the following
source files must be present in the indicated destination directory.

Source Destination File Purpose
File Directory

NETLIB.UP MAKE KwikNet Library Parameter File
NETLIB.MAK MAKE KwikNet Library Make File

KN_OSIF.C INET OS Interface Module
KN_OSIF.H INET OS Interface Header File

KN_OSIF.INC TOOLXXX OS Interface Make Specification
KNZZZCC.INC TOOLXXX Tailoring File (for use with make utility)
KNZZZCC.H TOOLXXX Compiler Configuration Header File

KNnnnIP.LBM TOOLXXX\LIB KwikNet IP Library Specification File
KNnnnTCP.LBM TOOLXXX\LIB KwikNet TCP Library Specification File
KNnnn*.LBM TOOLXXX\LIB Library Specification Files

(for optional KwikNet Libraries)

78 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Construction

Creating the KwikNet Libraries

The KwikNet Libraries must be constructed from within directory MAKE in the KwikNet
installation directory. Your Library Parameter File, say NETLIB.UP, and your Network
Library Make File, say NETLIB.MAK, must be present in the KwikNet MAKE directory.

All of the compilers and librarians used at KADAK were tested under Windows® NT.
Many actually require Windows 9x or NT to operate.

To create the KwikNet Libraries, proceed as follows. From the Windows NT Start menu,
choose the MS-DOS Command Prompt from the Programs folder. From the Windows 9x
Start menu, choose the MS-DOS Prompt from the Programs folder. Make the KwikNet
installation MAKE directory the current directory.

To use Microsoft's NMAKE utility, issue the following command.

NMAKE -fNETLIB.MAK "TOOLSET=XXX" "OSPATH=yourospath" "KPF=NETLIB.UP"

To use Borland's MAKE utility, issue the following command.

MAKE -fNETLIB.MAK -DTOOLSET=XXX -DOSPATH=yourospath -DKPF=NETLIB.UP

In each case, the make symbol TOOLSET is defined to be the toolset mnemonic XXX. The
symbol OSPATH is defined to be the string yourospath, the full path (or the path relative
to directory INET) to the directory containing your RT/OS components (header files,
libraries and/or object modules). When using AMX, string yourospath is the path to
your AMX installation directory.

The make symbol KPF is defined to identify the name of the Library Parameter File
NETLIB.UP from which the Network Library Make File NETLIB.MAK was generated.
Both of these files must be present in the KwikNet MAKE directory.

By default, the KwikNet Libraries will be created in toolset dependent directory
TOOLXXX\LIB. You can force the libraries to be created elsewhere by defining symbol
NETLIB=libpath on the make command line. The string libpath is the full path (or the
path relative to directory INET) to the directory in which you wish the libraries to be
created. You must copy all library specification files (*.LBM) from toolset XXX directory
TOOLXXX\LIB to your alternate library directory libpath.

KwikNet System Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 79

Generated KwikNet Library Modules

All KwikNet source files will be compiled and the resulting object modules will be placed
in directory TOOLXXX\LIB. The following KwikNet Libraries will be created from these
object files and placed in directory TOOLXXX\LIB. Only those libraries needed to meet
your library requirements will be created. Note that the library file extension will be .A
or .LIB or some other extension as dictated by the toolset which you are using.

KNnnnIP.A KwikNet IP Library
KNnnnTCP.A KwikNet TCP Library
KNnnnOPT.A KwikNet Library for optional KwikNet component OPT

For example, OPT may be one of PPP, FTP, WEB or SNM.

In addition to the library modules and the object modules used to create them, the
following files will also be created in directory TOOLXXX\LIB.

KN_LIB.UP KwikNet Library Parameter File
KN_LIB.MAK KwikNet Network Library Make File
KN_LIB.H KwikNet Library Configuration Module

File KN_LIB.UP is a copy of the Library Parameter File NETLIB.UP which you identified
on your make command line. It is copied to the LIB directory so that you have a record
of the parameters used to produce the libraries present in the directory.

File KN_LIB.MAK is a KwikNet Network Library Make File which can be used to reproduce
the libraries. It is generated in the LIB directory so that you have a record of the make
file used to produce the libraries present in the directory. This file is derived from the
KwikNet Library Make Template file KNnnnLIB.MT and the parameters in Library
Parameter File KN_LIB.UP. It should match the make file NETLIB.MAK which you passed
to your make utility to start the make process.

File KN_LIB.H is the KwikNet Library Configuration Module, a C header file generated by
the make process. This file is derived from the KwikNet Library Configuration Template
file KNnnnLIB.HT and the parameters in Library Parameter File KN_LIB.UP.

A copy of header file KN_LIB.H will also be found in the INET directory. The make
process copies the file there so that it is available for inclusion in the compilation of all C
files in the libraries.

A copy of the toolset dependent header file TOOLXXX\KNZZZCC.H will also be found in the
INET directory. The make process copies the file there so that it is also available for
inclusion in the compilation of all C files in the libraries.

Note

If your library specification requires KwikNet components
which you have not purchased and installed, the make
process will terminate because of the missing source files.

80 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Construction

3.3 Compiling the Network Configuration Module
Each of the physical network connections in your target hardware must be described in
the KwikNet Network Configuration Module.

The KwikNet Configuration Builder is used to create and edit your Network Parameter
File, say NETCFG.UP (see Chapter 2.4). It is this file which describes each network and its
associated device driver. From this parameter file, the Configuration Builder generates
the Network Configuration Module. This process has been described in Chapter 2.1.

The Network Configuration Module is a C source file which must be compiled to
produce an object module which is then linked as part of your application.

In order to compile the Network Configuration Module, say NETCFG.C, the following
KwikNet header files must be present in the same directory as file NETCFG.C.
Alternatively, you may choose to define the path to these header files using compiler
switches or environment variables.

KN_LIB .H KwikNet Library Configuration Module
KN_API .H KwikNet Application Interface definitions
KN_COMN .H KwikNet Common Interface definitions
KN_OSIF .H KwikNet OS Interface definitions
KNZZZCC .H KwikNet compiler specific definitions

Header file KN_LIB.H is a copy of your KwikNet Library Configuration Module from your
KwikNet library directory. This file is created as a byproduct of the KwikNet Library
construction process described in Chapter 3.2.

Header files KN_API.H, KN_COMN.H and KN_OSIF.H are the KwikNet files with which all
application modules must be compiled. These files will be found in KwikNet installation
directory INET.

Header file KNZZZCC.H is the compiler specific file which will be found in KwikNet
installation directory TOOLXXX, where XXX is KADAK's three character mnemonic for a
particular vendor's C tools.

The KwikNet Network Configuration Module is compiled using exactly the same C
command line switches as are used for compiling the C modules in the KwikNet libraries.
These command line switches are defined in the tailoring file KNZZZCC.INC which you
used to create your KwikNet libraries with your particular C compiler (see Chapter 3.2).

Note

The make files for the sample programs provided with
KwikNet and its optional components automatically create
and compile the sample's Network Configuration Module
from the sample Network Parameter File.

KwikNet System Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 81

3.4 Compiling Application Modules

In order to compile an application C source file, say MYFILE.C, which makes use of
KwikNet services, the following KwikNet header files must be present in the same directory
as file MYFILE.C. Alternatively, you may choose to define the path to these header files
using compiler switches or environment variables.

KN_LIB .H KwikNet Library Configuration Module
KN_API .H KwikNet Application Interface definitions
KN_COMN .H KwikNet Common Interface definitions
KN_OSIF .H KwikNet OS Interface definitions
KNZZZCC .H KwikNet compiler specific definitions
KN_SOCK .H KwikNet Socket Interface definitions

Header file KN_LIB.H is a copy of your KwikNet Library Configuration Module from your
KwikNet library directory. This file is created as a byproduct of the KwikNet Library
construction process described in Chapter 3.2.

Header files KN_API.H, KN_COMN.H and KN_OSIF.H are the KwikNet files with which all
application modules must be compiled. Any module which includes KN_LIB.H will
automatically include these header files as well. These files will be found in KwikNet
installation directory INET.

Header file KNZZZCC.H is the compiler specific file which will be found in KwikNet
installation directory TOOLXXX, where XXX is KADAK's three character mnemonic for a
particular vendor's C tools.

Header file KN_SOCK.H must be included by all applications which use TCP or UDP
socket services. This file will be found in KwikNet installation directory TCP.

If source file MYFILE.C makes calls to RT/OS service procedures, you must also have
access to all of the required RT/OS header files.

You must also have access to your C library header files so that KwikNet header files can
reference them.

With these header files in place, your application module MYFILE.C is ready to be
compiled. If you are using KwikNet with AMX, the procedure is exactly as described in
the toolset specific chapter of the AMX Tool Guide. If you have ported KwikNet using
your own software development tools, the procedure will be the same as you used to
compile the sample program source files.

Note

The make files for the sample programs provided with
KwikNet and its optional components compile all of the
modules which make up the sample program.

82 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Construction

3.5 Linking the Application
To add KwikNet to your application, the following KwikNet object modules and libraries
must be added to your link specification. It is recommended that these modules be
included in the order listed.

NETCFG .O KwikNet Network Configuration Module
KNnnnOPT.A KwikNet Library for optional KwikNet component OPT

For example, OPT may be one of PPP, FTP, WEB or SNM.
KNnnnTCP.A KwikNet TCP Library
KNnnnIP .A KwikNet IP Library

Note that object file extensions may be .O or .OBJ and library file extensions may be .A
or .LIB. Either may be some other extension as dictated by the toolset which you are
using.

The Network Configuration Module NETCFG.O is the module created and compiled as
described in Chapter 3.3. When using AMX, this module should precede your AMX
System Configuration Module in the link sequence.

The KwikNet IP Library must always be included in the link. The TCP Library is only
required if your application uses the sockets API or if another optional protocol is used
which depends on TCP. The KwikNet Libraries should precede the AMX or RT/OS
libraries in the link sequence.

Although every effort has been made to ensure that each module in a KwikNet Library
contains only forward references to other modules in the same library, the goal has
proved impossible to attain. Hence, some library modules do include backward
references. This characteristic requires that the libraries be searched recursively until all
resolvable references have been satisfied. Most linkers will meet this requirement. If
yours does not, you will be forced to include some of the KwikNet libraries more than
once in your link specification.

If you are using KwikNet with AMX, there is little difference in linking an AMX
application with or without KwikNet. Instructions for linking an AMX system are
provided in the toolset specific chapters of the AMX Tool Guide.

Warning

The KwikNet Libraries must be linked in the order specified.
The TCP Library must precede the IP Library. Although
the libraries for optional KwikNet components must precede
the TCP Library, the specific order of each is not critical.

KwikNet System Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 83

3.6 Making the TCP/IP Sample Program
The KwikNet TCP/IP Stack includes a sample program, a working application that you can
use to confirm the operation of KwikNet. Other sample programs are provided with
optional KwikNet components such as the FTP Option and the Web Server.

The KwikNet Application Block Diagram (see Figure 1.2-1 in Chapter 1) summarizes the
components which are fundamental to any KwikNet application. All of these components
must be present in the appropriate KwikNet installation directories prior to making any of
the KwikNet sample programs.

TCP/IP Sample Program Directories

When KwikNet is installed, the following subdirectories on which the TCP/IP Sample
Program construction process depends are created within directory KNTnnn.

INET IP, UDP and related protocols
Ethernet Network Driver
Ethernet and Serial Loopback Drivers

TCP TCP protocol
CFGBLDW KwikNet Configuration Builder; template files
ERR Construction error summary
TOOLXXX Toolset specific files
TOOLXXX\DRIVERS KwikNet device drivers and board driver
TOOLXXX\LIB Toolset specific libraries will be built here
TOOLXXX\SAM_MAKE Sample program make directory
TOOLXXX\SAM_TCP KwikNet TCP/IP Sample Program directory
TOOLXXX\SAM_COMN Common sample program source files

One or more toolset specific directories TOOLXXX will be present. There will be one such
directory for each of the software development toolsets which KADAK supports. Each
toolset vendor is identified by a unique two or three character mnemonic, XXX. The
mnemonic UU identifies the toolset vendor used with the KwikNet Porting Kit.

Other subdirectories such as TOOLXXX\SAM_FTP or TOOLXXX\SAM_WEB will also be present
if you have purchased the corresponding optional KwikNet components.

84 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Construction

TCP/IP Sample Program Files

To build the KwikNet TCP/IP Sample Program using make file KNSAMPLE.MAK, each of the
following source files must be present in the indicated destination directory.

Source Destination File Purpose
File Directory

. CFGBLDW KwikNet Configuration Builder; template files

KwikNet INET and TCP directories containing:
KN_API.H INET KwikNet Application Interface definitions
KN_COMN.H INET KwikNet Common definitions
KN_OSIF.H INET KwikNet OS Interface definitions
KN_SOCK.H TCP KwikNet Socket Interface definitions

Toolset root directory containing:
KN_OSIF.INC TOOLXXX OS Interface Make Specification
KNZZZCC.INC TOOLXXX Tailoring File (for use with make utility)
KNZZZCC.H TOOLXXX Compiler Configuration Header File

KwikNet TCP/IP Sample Program directory containing:
KNSAMPLE.MAK TOOLXXX\SAM_TCP TCP/IP Sample Program make file
KNSAMPLE.C TOOLXXX\SAM_TCP TCP/IP Sample Program
KNZZZAPP.H TOOLXXX\SAM_TCP TCP/IP Sample Program Application Header
KNSAMLIB.UP TOOLXXX\SAM_TCP Library Parameter File
KNSAMNCF.UP TOOLXXX\SAM_TCP Network Parameter File
KNSAMPLE.LKS TOOLXXX\SAM_TCP Link Specification File (toolset dependent)

Other toolset dependent files may be present.
KNSAMSCF.UP TOOLXXX\SAM_TCP User Parameter File (for use with AMX)
KNSAMTCF.UP TOOLXXX\SAM_TCP Target Parameter File (for use with AMX)

Common sample program source files:
KNSAMOS.C TOOLXXX\SAM_COMN Application OS Interface
KNSAMOS.H TOOLXXX\SAM_COMN Application OS Interface header file
KNRECORD.C TOOLXXX\SAM_COMN Message recording services
KNCONSOL.C TOOLXXX\SAM_COMN Console driver
KNCONSOL.H TOOLXXX\SAM_COMN Console driver header

Console driver serial I/O support:
KN8250S.C TOOLXXX\SAM_COMN INS8250 (NS16550) UART driver

 KN_BOARD.C TOOLXXX\DRIVERS Board driver for target hardware
 KN_DVCIO.H TOOLXXX\DRIVERS Common device I/O definitions

KwikNet System Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 85

TCP/IP Sample Program Parameter Files

Two KwikNet parameter files are provided with the KwikNet TCP/IP Sample Program.

The Library Parameter File KNSAMLIB.UP describes the KwikNet options and features
illustrated by the sample program. This file is used to construct the KwikNet Libraries for
the TCP/IP Sample Program.

The Network Parameter File KNSAMNCF.UP describes the network interfaces and the
associated device drivers which the sample program needs to operate. This file is used to
construct the KwikNet Network Configuration Module for the TCP/IP Sample Program.

TCP/IP Sample Program KwikNet Libraries

Before you can construct the KwikNet TCP/IP Sample Program, you must first build the
associated KwikNet Libraries.

Use the KwikNet Configuration Builder to edit the sample program Library Parameter File
KNSAMLIB.UP. Use the Configuration Builder to generate the Network Library Make File
KNSAMLIB.MAK.

Look for any KwikNet Library Configuration Module KN_LIB.H in your toolset library
directory TOOLXXX\LIB. If the file exists, delete it to ensure that the KwikNet Libraries are
rebuilt to match the needs of the TCP/IP Sample Program.

Then copy files KNSAMLIB.UP and KNSAMLIB.MAK into the MAKE directory in the KwikNet
installation directory KNTnnn. Use either the Borland or Microsoft make utility and your
C compiler and librarian to generate the KwikNet TCP and IP Libraries. Follow the
guidelines presented in Chapter 3.2.

Note

The KwikNet Libraries must be built before the TCP/IP
Sample Program can be made. If file KN_LIB.H exists in
your toolset library directory TOOLXXX\LIB, delete it to
force the make process to rebuild the KwikNet Libraries.

86 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Construction

The TCP/IP Sample Program Make Process

Each KwikNet sample program must be constructed from within the sample program
directory in the KwikNet toolset directory. For example, the KwikNet TCP/IP Sample
Program must be built in directory TOOLXXX\SAM_TCP.

All of the compilers and librarians used at KADAK were tested under Windows® NT.
Many actually require Windows 9x or NT to operate.

To create the KwikNet TCP/IP Sample Program, proceed as follows. From the Windows
NT Start menu, choose the MS-DOS Command Prompt from the Programs folder. From the
Windows 9x Start menu, choose the MS-DOS Prompt from the Programs folder. Make the
KwikNet toolset TOOLXXX\SAM_TCP directory the current directory.

To use Microsoft's NMAKE utility, issue the following command.

NMAKE -fKNSAMPLE.MAK "TOOLSET=XXX" "OSPATH=yourospath" "TPATH=toolpath"

To use Borland's MAKE utility, issue the following command.

MAKE -fKNSAMPLE.MAK -DTOOLSET=XXX -DOSPATH=yourospath -DTPATH=toolpath

In each case, the make symbol TOOLSET is defined to be the toolset mnemonic XXX. The
symbol OSPATH is defined to be the string yourospath, the full path (or the path relative
to directory TOOLXXX\SAM_TCP) to the directory containing your RT/OS components
(header files, libraries and/or object modules). When using AMX, string yourospath is
the path to your AMX installation directory.

The symbol TPATH is defined to be the string toolpath, the full path to the directory in
which your software development tools have been installed.

The make process uses the sample program Network Parameter File KNSAMNCF.UP to
create Network Configuration Module KNSAMNCF.C from the template file KNnnnCFG.CT
in directory CFGBLDW. The file is left in the sample program directory TOOLXXX\SAM_TCP.

The KwikNet TCP/IP Sample Program load module KNSAMPLE.xxx is created in toolset
directory TOOLXXX\SAM_TCP. The file extension of the load module will be dictated by
the toolset you are using. The extension, such as OMF, ABS, EXE, EXP or HEX, will match
the definition of macro XEXT in the tailoring file.

The final step is to use your debugger to load and execute the KwikNet TCP/IP Sample
Program load module KNSAMPLE.xxx.

KwikNet System Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 87

3.7 Using KwikNet with AMX

3.7.1 AMX System Configuration
KwikNet includes its own interface to the underlying operating system. The KwikNet OS
Interface for AMX is ready for use without modification or customization.

KwikNet makes few demands for AMX resources. Consequently, there are few changes to
your AMX System Configuration Module required to accommodate KwikNet.

KwikNet Task

A single KwikNet Task drives the KwikNet TCP/IP Stack. You must add this task to your
list of predefined tasks in your AMX System Configuration Module. You can use the
AMX Configuration Builder to do so. The task's definition is as follows:

Tag KNET

Procedure name kn_task

Priority Above all tasks which use KwikNet
Task stack size AMX minimum plus 1024
Queue 0 0
Queue 1 0
Queue 2 0
Queue 3 0

With AMX 86 and some toolsets, you may have to add a leading or trailing underscore
(_) character to the task procedure name. Note that the KwikNet Task must execute at a
priority above all tasks which use KwikNet services.

The task stack size requirement will vary with the particular version of AMX you are
using. As a good rule of thumb, choose a stack size which is approximately 1024 bytes
more than the minimum stack size required for an AMX task. Add more stack if any of
the following conditions exist.

Target is a RISC processor with increased stack demands
KwikNet options are used which make use of file system services
KwikNet debugging aids are enabled in your KwikNet Libraries

For all versions of AMX, the KwikNet Task is a simple task with no AMX message
queues. KwikNet uses private messaging blocks for internal communication with the
KwikNet Task. The total number of available messaging blocks is defined by you on the
Target property page when you create your KwikNet Library Parameter File. You may
have to grow the number of messaging blocks if any of the following conditions exist.

You have many tasks using network services
You service several networks concurrently
You expect high levels of network packet activity

88 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Construction

AMX Interrupt Stack

You may have to grow the size of your AMX Interrupt Stack, the stack used by all
Interrupt Service Procedures. The stack must be large enough to meet the needs of each
of the KwikNet device drivers which service your physical network connections. As a
good rule of thumb, choose a stack size which is approximately 500 bytes more than the
minimum required AMX Interrupt Stack size.

KwikNet Semaphores

KwikNet requires one semaphore for its operation. This semaphore will be created
dynamically by KwikNet during its initialization phase. You must include the AMX
Semaphore Manager in your AMX System Configuration Module by declaring a
requirement for at least one (1) semaphore. If you configure KwikNet to use standard C
for memory allocation with memory locking enabled, an additional semaphore will be
needed. If you use a file system other than AMX/FS and require file access locking,
allocate one more semaphore.

KwikNet Memory Pool

If you configure KwikNet to use AMX memory management services, one AMX memory
pool will be required. The memory pool will be created dynamically by KwikNet during
its initialization phase. You must include the AMX Memory Manager in your AMX
System Configuration Module by declaring a requirement for at least one memory pool.
The memory for the pool must be allocated by you. Use the KwikNet Configuration
Builder to edit your Network Parameter File and select one of the memory assignment
techniques specified on the OS property page.

KwikNet Timer

KwikNet requires one AMX timer for its operation. This timer will be created
dynamically by KwikNet during its initialization phase. You must include the AMX Timer
Manager in your AMX System Configuration Module by declaring a requirement for at
least one timer. Of course, to support timing you must also include an AMX Clock
Handler as part of your application.

The KwikNet timer operates at the network clock frequency defined by you in your
KwikNet Library Parameter File. The period of the network clock must correspond to an
integer multiple of AMX system ticks. For example, you may have a hardware clock
interrupt frequency of 1KHz with an AMX tick frequency of 100 Hz and a KwikNet
network frequency of 10 Hz. In this case, the KwikNet timer will operate at 100 ms
intervals measured with 10 ms resolution.

KwikNet System Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 89

KwikNet Restart and Exit Procedures
You must include KwikNet Restart Procedure kn_osready first (or near first) in your list
of Restart Procedures in your AMX System Configuration Module.

KwikNet includes a startup procedure kn_enter and a shutdown procedure kn_exit. You
can include the KwikNet startup procedure kn_enter in your list of Restart Procedures in
your AMX System Configuration Module. It is this procedure which starts the KwikNet
Task to initialize the KwikNet TCP/IP Stack. Alternatively, one of your own Restart
Procedures can call kn_enter(). The position of this procedure in the list of Restart
Procedures is not critical since no KwikNet services can be used by tasks until the KwikNet
Task has executed. Another approach is to have a task call kn_enter() to start KwikNet.
Be certain that no other task tries to use KwikNet services until KwikNet is started.

If your AMX application allows an orderly shutdown and exit from AMX, you can add
the KwikNet shutdown procedure kn_exit to your list of Exit Procedures in your AMX
System Configuration Module. Alternatively, one of your own Exit Procedures can call
kn_exit(). Insert this procedure into the list at the point in the exit sequence at which
the KwikNet TCP/IP Stack is no longer required. You must ensure that all tasks have
stopped using KwikNet services before you allow KwikNet to shut down. You can use
KwikNet service procedure kn_state() for this purpose.

AMX 86 and AMX 386/EP PC Supervisor
Both AMX 86 and AMX 386/EP include a component called the PC Supervisor which
permits these versions of AMX to be used with DOS on PC platforms. Special care must
be taken when using the PC Supervisor with AMX and KwikNet.

The PC Supervisor's Clock Tick Task and Keyboard Task must be of higher priority than
the KwikNet Task to ensure that they operate without interference from network activity.

All tasks which use KwikNet services must be of lower priority than the KwikNet Task.
The PC Supervisor Task must be of lower priority than all application tasks which use
KwikNet so that it does not interfere with their use of the network.

These task prioritization rules work provided that tasks which use KwikNet services never
go compute bound. For example, if a task continuously polls KwikNet to test for the
completion of some network operation, then any higher priority task which attempts to
use DOS services will appear to hang because the low priority PC Supervisor Task is
unable to execute to service the DOS request. In such cases, you will have no choice but
to raise the priority of the PC Supervisor Task and accept the fact that DOS operations
can temporarily block tasks of lower priority.

If you examine the KwikNet Sample Program provided with AMX 86 or AMX 386/EP,
you will observe that the PC Supervisor Task has actually been placed at a priority above
the KwikNet Task. This violation of the priority rules was done intentionally for the
following reason. The Sample Program can operate without any physical network
interfaces. Consequently, the application tasks can execute in a compute bound fashion
because they never have to wait for real devices to respond. This scenario prevents the
PC Supervisor Task from servicing any request by the Sample Program's Print Task to
present messages on the PC display screen. By raising the priority of the PC Supervisor
Task above that of the KwikNet Task, all messages appear on the PC display screen as
soon as they are generated, making it easier for you to observe the actual sequence of
operations.

90 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Construction

3.7.2 AMX Target Configuration
Each KwikNet device driver for AMX includes an Interrupt Service Procedure consisting
of two (sometimes three) parts. All drivers require an ISP root and an Interrupt Handler.
Some versions of AMX also require the driver to provide an ISP stem.

An ISP root is required for each device interrupt source which the KwikNet board driver
module KN_BOARD.C is configured to support. Unless modified by you, the board driver
supports four ISP roots with names of the form kn_isprootX() (X is A, B, C or D).
KwikNet dynamically assigns each network device to one of these ISP roots when the
network is initialized.

32-Bit AMX Systems

Each ISP root is serviced by a common Interrupt Handler kn_isphandler() located in
the KwikNet board driver module KN_BOARD.C. The handler is called with a single pointer
parameter which identifies the network device which generated the interrupt. Four
parameters with names of the form kn_ispparamX (X is A, B, C or D) are provided in the
board driver module, one for each of the four ISP roots with like names.

An ISP stem kn_ispstem() in the KwikNet board driver module KN_BOARD.C is provided
when required by AMX. The ISP stem also receives the device specific parameter
kn_ispparamX from the ISP root.

For all 32-bit implementations of AMX, the ISP must be described in the AMX Target
Configuration Module. With older 32-bit versions of AMX, this was done by editing a
Target Parameter File to include a ...ISPC directive. Newer versions of AMX include
an updated AMX Configuration Builder, a Windows® utility which allows the Target
Parameter File to be easily edited to add ISP definitions.

There must be one ISP definition for each of the device interrupt sources which the
KwikNet board driver module KN_BOARD.C is configured to support. Each ISP definition
identifies the names of the ISP root, the ISP Handler and the ISP stem if applicable. Each
ISP definition also provides the appropriate pointer parameter kn_ispparamX. No
interrupt vector is included in the definition since each KwikNet device driver
automatically installs the pointer to its ISP root into the AMX Vector Table when KwikNet
is initialized by the KwikNet Task.

See the KwikNet TCP/IP Sample Program Target Parameter File KNSAMTCF.UP for an
example of the definition of the four ISPs supported by the KwikNet board driver module
KN_BOARD.C.

16-Bit AMX 86 Systems

AMX 86 does not utilize a Target Configuration Module. The KwikNet board driver
provided with AMX 86 creates an ISP root named kn_isprootX() (X is A, B, C or D) for
each of the device interrupt sources which it is configured to support. Each ISP root
kn_isprootX() calls its Interrupt Handler kn_ispsrcX() which in turn calls procedure
kn_isphandler() with the device specific kn_ispparamX parameter. All of these
procedures are located in the board driver module KN_BOARD.C. Each KwikNet device
driver for AMX 86 automatically installs the pointer to one of these ISP roots into the
AMX Vector Table when KwikNet is initialized by the KwikNet Task.

KwikNet System Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 91

3.7.3 Toolset Considerations

Tailoring Files

The KwikNet Libraries are constructed using your make utility, C compiler and object
module librarian. A file which KADAK calls a tailoring file is used to tailor the library
construction process for a particular C compiler and object librarian. Separate tailoring
files are available for each toolset combination which KADAK supports. These tailoring
files are provided ready for use with either Borland's MAKE or Microsoft's NMAKE utility.

KADAK uses a 2 or 3 character toolset mnemonic to identify each supported toolset
combination. The tailoring files for toolset XXX are located in directory TOOLXXX in the
KwikNet installation directory KNTnnn. Use tailoring files B_tttXXX.vvv with Borland's
MAKE and M_tttXXX.vvv with Microsoft's NMAKE. The mnemonic ttt identifies the target
processor. The extension vvv identifies the first version of the compiler for toolset XXX
with which the tailoring file was tested. The tailoring file can be used with subsequent
versions of the tools until some change in their method of operation requires a tailoring
file update. For example, file M_PPCDA.42 was first used to create the PowerPC KwikNet
Libraries using Microsoft's NMAKE and the Diab Data (toolset DA) v4.2 (42) C compiler.

Note

Pick the tailoring file which matches your choice of make
utility, toolset and compiler version. Copy that file into
toolset directory TOOLXXX but with name KNZZZCC.INC.
You may have to overwrite the default copy created when
KwikNet was installed.

Compiler Configuration Header File

All KwikNet C files include a KwikNet compiler configuration header file KNZZZCC.H. This
file identifies the characteristics of your C compiler. When KwikNet is used with AMX,
the compiler configuration header file KNZZZCC.H installed in KwikNet directory TOOLXXX
is ready for use with the C compiler for toolset XXX without modification.

OS Interface Make File

The OS Interface Module KN_OSIF.C is the module which connects KwikNet to AMX (see
Figure 1.2-1 in Chapter 1). This module is merged into the KwikNet IP Library. The
make process automatically includes the OS Interface Make File KN_OSIF.INC to
determine the make dependencies and rules which control the compilation of the OS
Interface source file KN_OSIF.C. When KwikNet is used with AMX, the OS Interface
Make File KN_OSIF.INC installed in KwikNet directory TOOLXXX is ready for use with
toolset XXX without modification.

92 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet System Construction

3.7.4 AMX Application Construction Summary
Construction of any KwikNet application for use with AMX will closely follow the steps
needed to build the KwikNet TCP/IP Sample Program. These steps are summarized
below. Note that the make file provided with KwikNet sample programs actually does
steps 2, 6, 7, 8 and 9.

1. Using the KwikNet Configuration Builder, open the Sample Program's Library
Parameter File KNSAMLIB.UP (see Chapter 2.3). Use the builder to generate your
KwikNet Library Make File KNSAMLIB.MAK. Use this file, either the Borland or
Microsoft make utility, and your C compiler and librarian to generate the KwikNet
TCP and IP Libraries (see Chapter 3.2).

2. Using the KwikNet Configuration Builder, open the Sample Program's Network
Parameter File KNSAMNCF.UP (see Chapter 2.4). Use the builder to generate your
KwikNet Network Configuration Module KNSAMNCF.C. Use your C compiler to
compile the Network Configuration Module (see Chapter 3.3).

3. If you wish to use your own clock driver, do step 4. If you wish to use your own
serial driver for logging messages to a terminal, do step 5. Otherwise, go to step 6.

4. If you wish to use your own working AMX Clock Driver instead of the simulated
clock provided by the sample program, edit the Sample Program User Parameter File
and Target Parameter File (not required for AMX 86) to accommodate your clock
driver. Edit the KwikNet Sample Program Link Specification File KNSAMPLE.LKS to
include your clock driver object module.

5. If you ported the AMX Sample Program serial I/O driver to your hardware and wish
to use it to log messages to a terminal, edit the sample program Application Header
file KNZZZAPP.H and define symbol KN_CS_DEVTYPE to be KN_CS_DEVAMX. Edit the
KwikNet Sample Program Link Specification File KNSAMPLE.LKS to include your
serial driver object module.

6. Using the AMX Configuration Builder, open the Sample Program's User Parameter
File KNSAMSCF.UP. Use the builder to generate the AMX System Configuration
Module KNSAMSCF.C. Compile the module as described in the AMX Tool Guide for
the toolset which you are using.

7. If you are using AMX 86, go to step 8. Otherwise, using the AMX Configuration
Builder, open the Sample Program's Target Parameter File. Use the builder to
generate the AMX Target Configuration Module. Assemble the module as described
in the AMX Tool Guide for the toolset which you are using.

8. Compile the KwikNet TCP/IP Sample Program application modules listed in Chapter
3.6. Compile these modules with full debug information to improve your view when
running the sample with your debugger.

9. Link the modules listed in the KwikNet Sample Program Link Specification File
KNSAMPLE.LKS together with your C Library to create your KwikNet application load
module (see Chapter 3.5).

10. Use your debugger to load and execute the KwikNet Sample Program.

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 93

4. KwikNet IP/UDP Services

4.1 The UDP Programming Interface
Applications which are memory constrained or which have no need to use TCP can
exclude the TCP stack and use only the KwikNet IP stack and its UDP application
programming interface (API). Be careful not to confuse this low level UDP API with the
UDP sockets interface available through the TCP sockets API described in Chapter 5.

The low level UDP API will only be present in your load module if your application
makes calls to it. Of course, it will also be present if you enable features such as the
DHCP client or DNS client which depend on it.

UDP is a connectionless protocol which uses only the unreliable IP layer for UDP
datagram delivery. The KwikNet UDP implementation can be configured to checksum
UDP datagrams. It is recommended that you enable UDP checksums when you create
your KwikNet Libraries so that messages which you send using UDP can be validated.
Received UDP datagrams which include a UDP checksum are always validated by
KwikNet. Note that even if you enable UDP checksums, you may still receive an incorrect
datagram from a host which does not generate UDP checksums.

The UDP Channel

KwikNet defines an abstraction called a UDP channel which it uses to control the sending
and receiving of UDP datagrams on the network. UDP datagrams cannot be sent without
first acquiring a UDP channel. Received UDP datagrams are rejected if an associated
UDP channel does not exist.

To send or receive UDP datagrams, you must first call KwikNet procedure kn_udpopen()
to open a UDP channel. In the call you must provide the IP address of the foreign host
with whom you wish to correspond. An IP address of 0.0.0.0 is used to indicate that you
will accept UDP datagrams from any foreign host. If you will only accept UDP
datagrams from a specific foreign host, you must also provide the protocol port number
for the foreign host. A foreign port number of 0 can be used to indicate that you will
accept a UDP datagram from any port at that foreign host. Also required is the local
protocol port number by which you wish your UDP channel to be identified. This latter
parameter will be used by the foreign host to direct its response back to you.

The KwikNet procedure kn_udpopen() returns a handle which uniquely identifies the
UDP channel allocated by KwikNet for your use. This handle can be used in calls to
kn_udpsend() to send data through the UDP channel to any foreign host. However, you
will only be able to receive UDP datagrams from the foreign host identified when the
UDP channel was opened.

A foreign host requires your local host IP address to send it a UDP datagram. You can
use KwikNet procedure kn_udpbind() to bind your UDP channel to a specific local IP
address. Having done so, you can receive UDP datagrams on your UDP channel without
first having to send a UDP datagram to the foreign host to identify your IP address.

Once your application is finished conversing with the foreign host, it must call KwikNet
procedure kn_udpclose to close the UDP channel. The handle used to access the UDP
channel becomes invalid once the channel is closed.

94 KADAK KwikNet IP/UDP Services

Receiving UDP Datagrams

If you expect to receive a UDP datagram from a foreign host, your open request must
provide a pointer to an application callback (upcall) function which KwikNet can call upon
receipt of such a UDP datagram. The callback function is prototyped as follows:

int user_udprecv(struct knx_udpmsg *msgp, void *userp);

Parameter userp is an application pointer provided by you in your request to open the
channel on which this UDP datagram was received. It is a copy of the parameter found at
msgp->xudpm_user.

Parameter msgp is a pointer to a KwikNet UDP message descriptor. Structure knx_udpmsg
is defined in KwikNet header file KN_API.H as follows:

struct knx_udpmsg {
struct in_addr xudpm_src; /* IP address of source */
struct in_addr xudpm_dest; /* IP address of destination */
int xudpm_fport; /* Foreign port (source) */
int xudpm_lport; /* Local port (destination) */
char *xudpm_datap; /* Pointer to UDP data */
int xudpm_length; /* Length of UDP data */
int xudpm_rsv1; /* Reserved for alignment */
void *xudpm_user; /* User parameter */
struct knx_ip *xudpm_ip; /* IP header pointer */
struct knx_udp *xudpm_udp; /* UDP header pointer */
void *xudpm_pkt; /* Packet pointer (reserved) */
};

The UDP message structure describes the received UDP datagram. Fields xudpm_src,
xudpm_dest, xudpm_fport, and xudpm_lport are extracted from the received packet and
presented to your application in an easy to use form. The source and destination IP
addresses are presented in net endian form in field s_addr of structure in_addr. The
foreign and local ports are provided as integers in host endian form.

The data within the UDP datagram is located in the packet at the memory address
specified by field xudpm_datap. The length of the data region is specified by field
xudpm_length. Both of these fields are in host endian form.

If necessary, you can access the IP header and UDP header in the packet using the
pointers provided. The packet pointer is reserved for the private use of KwikNet.

Your UDP callback function must return 0 if it accepts the UDP message descriptor. In
this case, once your application has finished processing the UDP datagram, it must call
KwikNet procedure kn_udpfree to release the UDP message descriptor and free the
associated data packet for reuse by KwikNet.

Your UDP callback function must return -1 if it cannot accept the message descriptor. In
this case, KwikNet will release the UDP message descriptor and free the associated data
packet. It is important to note that KwikNet will not send an ICMP destination
unreachable message to the originator of the rejected UDP datagram.

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 95

Processing Received UDP Datagrams

Your UDP callback function executes in the context of the KwikNet Task. Your function
must not initiate any operation which would force the KwikNet Task to be blocked waiting
for some event.

In most multitasking applications, it is recommended that your UDP callback function
pass the UDP message descriptor to some other application task for processing. Often
that task will be the same task that opened the UDP channel and initiated the
conversation in the first place.

Even in single threaded systems, your UDP callback function should pass the UDP
message descriptor to your App-Task for processing.

Note that your task has access to the copy of your application parameter located in field
xudpm_user in the UDP message descriptor.

When your task finishes processing the UDP datagram, it must call KwikNet procedure
kn_udpfree to release the UDP message descriptor and free the associated data packet
for reuse by KwikNet.

Broadcast UDP Datagrams

A broadcast UDP datagram is a message directed to IP address 255.255.255.255. You
can send and receive broadcast UDP datagrams on a UDP channel. When a broadcast
UDP datagram is received, it is delivered to the first UDP channel which KwikNet can find
with a matching local port number. If you have multiple UDP channels bound to
different IP addresses but using the same local port number, a broadcast UDP datagram
directed to that port will be delivered to the UDP channel which was opened first.

UDP Echo Requests

A UDP datagram directed to well known port 7 is called a UDP Echo Request. If KwikNet
has been configured to support the UDP echo feature, KwikNet will act as a UDP Echo
Server and echo the UDP datagram back to the sender's port.

Your application can handle UDP echo requests by opening a UDP channel on port 7.
Any UDP datagram received for port 7 will be passed to your UDP callback function.

UDP Sockets

KwikNet supports the use of the UDP protocol with the same sockets interface used with
the TCP/IP protocol (see Chapter 5). When a socket of type SOCK_DGRAM is created,
KwikNet attaches a UDP channel to the socket and then uses that channel for all
transactions which reference the socket. Standard KwikNet sockets calls can then be used
by your application to communicate with a foreign host using the UDP socket.

96 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

4.2 The DHCP (BOOTP) Client
KwikNet includes support for the Dynamic Host Configuration Protocol (DHCP) which
permits a network's IP address to be dynamically assigned when the network is first
started. This feature is enabled by a configuration parameter in the KwikNet Library
Parameter File used in the construction of the KwikNet Libraries as described in
Chapter 2.3. When you define your KwikNet configuration, simply check the option box
labeled "Include DHCP Client" on the DNS/DHCP property page.

Once you have enabled DHCP support, KwikNet allows each network interface to be
individually DHCP enabled. To do so, check the DHCP Override option in the network's
IP address definition in your Network Parameter File as described in Chapter 2.4.

The KwikNet DHCP client uses a DHCP message to discover its IP address. DHCP is the
refined version of the early BOOT Protocol (BOOTP) which is now rarely used. When a
DHCP query is used, it still operates correctly even if the only servers available are
BOOTP servers. The format of the DHCP query is acceptable to a BOOTP server and
the KwikNet DHCP client is able to distinguish the BOOTP reply from that of a DHCP
server.

DHCP Operation

When KwikNet begins operation, it automatically starts its DHCP client to service each
DHCP enabled network. The DHCP client automatically requests an IP address for each
Ethernet network. For a SLIP or PPP network, the request for an IP address is deferred
until the network is first used and a connection has been established.

The DHCP client uses UDP datagrams for the transmission of DHCP messages.
Responses are expected to be in UDP datagrams.

The DHCP client broadcasts a DHCP query to all DHCP servers. If the network has been
configured with an IP address other than 0.0.0.0, the IP address is sent in the DHCP
options as a request to use that particular network IP address. Note that the broadcast
DHCP query looks like a valid BOOTP query to any server which only supports the older
BOOTP format.

Once an IP address offer is received from a DHCP server, the DHCP client responds with
a request to unconditionally accept the offer. If the DHCP server acknowledges the
acceptance of the offer, the DHCP client adopts the IP address thereby making the
network ready for use by the application.

If a BOOTP server responds to the initial DHCP query, the DHCP client simply adopts
the IP address provided by the BOOTP server thereby making the network ready for use
by the application. There is no need for the acceptance and acknowledgment handshake.

The KwikNet DHCP client does not make use of the server host name or boot file name, if
any, provided in the DHCP or BOOTP server response.

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 97

DHCP Timeout

If no response is received from any DHCP or BOOTP server within the timeout interval
(initially four seconds), the DHCP client resends its broadcast query and increases its
timeout interval by a factor of 2n where n is the number of failed attempts thus far. This
process continues forever if an IP address cannot be acquired. The retry timeout value is
not allowed to exceed an upper limit of 64 seconds.

DHCP Leases

When a DHCP server provides an IP address, it grants the network interface a lease to
use that address for a specific interval. The DHCP client always requests a permanent
lease but can live with a limited lease interval if that is all that is granted by the DHCP
server. Note that the lease granted by a BOOTP response is considered to be permanent.

The DHCP client always tries to renew a limited time lease by negotiating with the
DHCP server which granted the lease. If the lease interval is L seconds, the DHCP client
begins a lease renewal negotiation after L/2 seconds. Negotiation requests are repeated
at intervals until 7L/8 seconds into the lease. Each interval is half the period from the
time of the last request to the 7L/8 seconds mark, but never less than 60 seconds.

If a new lease is not granted, the DHCP server will attempt to negotiate the same IP
address from another DHCP server on the same network. Failing that, the DHCP client
will initiate a query for a new IP address from any DHCP server.

DNS Server Support

When a DHCP server responds to an IP address query, it can also provide a list of IP
addresses for known Domain Name System (DNS) servers. If your KwikNet configuration
includes the DNS client, the DHCP client can accept these IP addresses from the DHCP
server and pass them to the DNS client for inclusion in its list of DNS servers.

To enable this feature, your KwikNet configuration must specify the maximum number of
DNS server IP addresses which the DHCP client can accept. Additional DNS server IP
addresses provided by the DHCP server will be ignored.

DHCP Option Request

The KwikNet DHCP client can include an option request list in its DHCP query. The
option list indicates specific DHCP options which may be used at the discretion of the
DHCP server. By sending the DHCP option request list, your DHCP client identifies the
DHCP options which it is equipped to handle.

The KwikNet DHCP client option list indicates that subnet masks, gateways and DNS
servers can be accepted from the DHCP server. The DNS server option will only be
presented in the option list if your KwikNet configuration includes the DNS client.

98 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

4.3 The DNS Client
KwikNet includes support for the Domain Name System (DNS) which permits a network's
IP address to be derived from a name string. For example, the IP address for KADAK's
Internet website can be derived by doing a DNS query for the name string
www.kadak.com using function kn_gethostbyname().

This feature is enabled by setting the DNS configuration parameters in the KwikNet
Library Parameter File used in the construction of the KwikNet Libraries as described in
Chapter 2.3. The component within KwikNet which provides this service is call the DNS
client. The DNS client executes in response to queries from your application and then
relies upon the KwikNet Task to resolve the query, if necessary.

DNS Server List

The KwikNet DNS client maintains a list of the IP addresses of the DNS servers which it
can query to resolve a domain name. Your application can add and remove DNS servers
from this list using functions kn_dns_srvadd() and kn_dns_srvdel(). The KwikNet
DHCP client uses these services to add DNS servers identified during DHCP negotiations
and to remove them upon lease expiry. The PPP network driver also uses these services
to add DNS servers identified during PPP negotiations and to remove them when a PPP
network is closed.

When configuring your KwikNet Libraries, you can provide the name of a function which
the KwikNet DNS client will call at startup to acquire an initial list of DNS servers which
it can interrogate to translate names to IP addresses. Use of such a function is optional.

The function must return a pointer to an array of server IP addresses. The following
example illustrates the requirement. Note that the IP addresses in the array must be
stored in net endian form and that the list is terminated by an IP address of 0.0.0.0. If you
use this feature, the name of your function, say myDNSservers, must be entered on the
DNS/DHCP property page when you configure your KwikNet Libraries.

struct { /* IP address structure */
unsigned char xIPaddr[4];
} DNSservers[] = /* Declare an array of them */

{
{192, 168, 0, 1}, /* List server IP addresses */
{192, 48, 132, 12},
{192, 74, 3, 1},
{192, 212, 66, 10},
{0, 0, 0, 0} /* Terminate the list */
};

void *myDNSservers(void) /* Fetch list of DNS servers*/
{

return ((void *)DNSservers);
}

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 99

DNS Queries

The results of each DNS query are kept in a name cache maintained by the DNS client.
Each cached entry includes one or more IP addresses provided by the DNS server which
resolved the name. The total number of cached names and the maximum number of IP
addresses per name are determined by you when you configure your KwikNet Libraries.

Once the KwikNet TCP/IP Stack has been initialized, your application can call KwikNet
procedure kn_dns_query() to make DNS name queries. In a multitasking system, any
task making such a query must be of lower priority than the KwikNet Task. If the name is
already in the DNS client's name cache, you will be given the first available IP address
immediately. If there is no room in the name cache, the oldest cached name will be
purged so that your request can be granted. The KwikNet DNS client will then initiate the
query and return with an indication that your query is underway.

When making the query, you can provide a callback function which the KwikNet DNS
client will call once an IP address has been acquired. Each query can return one or more
IP addresses. The callback function is prototyped as follows:

void UserDNS_callback(struct in_addr *answer, int status,
void *userp);

If parameter status is 0, a list of IP addresses will be presented in the array of in_addr
structures referenced by parameter answer. Each IP address will be presented in net
endian form in field s_addr of the structure in_addr. The array will be terminated by an
entry containing an IP address of 0. Your callback function must save the content of
answer array before returning to the DNS client.

If parameter status is not 0, the IP address is unknown. In this case, the content of
structure in_addr referenced by parameter answer will be undefined.

Parameter userp is a copy of the application pointer which you provided in your call to
kn_dns_query() when you initiated the DNS query.

Your DNS callback function executes in the context of the KwikNet Task. Your function
must not initiate any operation which would force the KwikNet Task to be blocked waiting
for some event.

In most multitasking applications, it is recommended that your DNS callback function
pass the IP address, or list of IP addresses, to some other application task for processing.
Often that task will be the same task that initiated the DNS query in the first place.

Even in single threaded systems, your DNS callback function should pass the IP address,
or list of IP addresses, to your App-Task for processing.

DNS Name Lookup

If your application wishes to determine if the IP address for a particular DNS name is
already in the DNS client's cache without initiating a query, it can do so by calling
KwikNet procedure kn_dns_lookup(). This procedure can also be used to poll for the
result of a query if you chose not to provide a DNS callback function when you initiated
the query. In a multitasking system, any task doing such a lookup must be of lower
priority than the KwikNet Task.

100 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

Get Host By Name

For compatibility with other networking systems, KwikNet provides the function
gethostbyname() which finds the IP address for a host with a specific domain name.
Since this function is inherently non-reentrant, KwikNet provides an alternate, reentrant
equivalent kn_gethostbyname() better suited for use in multitasking systems. These
functions are only present in the KwikNet IP Library if the gethostbyname() API is enabled
on the DNS/DHCP property page when you configured your KwikNet Libraries.

Once the KwikNet TCP/IP Stack has been initialized, your application can call KwikNet
procedure gethostbyname() to make DNS name queries. In a multitasking system, any
task making such a query must be of lower priority than the KwikNet Task. If the name is
already in the DNS client's name cache, you will be given a list of the available IP
addresses.

If there is no room in the name cache, the oldest cached name will purged so that your
request can be granted. The KwikNet DNS client will then initiate the DNS query.

Once the query is underway, KwikNet will poll at 200 ms. intervals for the results of the
query. In a multitasking system, the task initiating the request will be blocked between
polls. In a single threaded system, your App-Task will be blocked between polls. Polling
will continue for some maximum interval or until the DNS query is resolved.

Applications which call procedure kn_gethostbyname() to make a DNS name query can
specify the maximum interval to wait for a response to the query. If procedure
gethostbyname() is used, the maximum wait interval is the value specified on the
DNS/DHCP property page when you configured your KwikNet Libraries.

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 101

Interpreting DNS Results

Function gethostbyname() returns the results of a DNS name query in a static hostent
structure maintained by KwikNet. Applications which call function kn_gethostbyname()
must provide a hostent structure which has been initialized using procedure
kn_gethostprep() prior to first use.

Structure hostent is defined in KwikNet header file KN_API.H as follows:

struct hostent {
const char *h_name; /* Official name of host */
char **h_aliases; /* Alias list */
int h_addrtype; /* Host address type */
int h_length; /* Length of address */
char **h_addr_list; /* List of IP address pointers */
};

Upon return from a successful DNS name query, the hostent structure will be filled as
follows. Member h_name will reference the domain name string used in the DNS query.
Since KwikNet does not support DNS aliases, member h_aliases will reference a NULL
pointer. Member h_addrtype will be set to 2 (AF_INET), the IP address family type.
Member h_length will be set to sizeof(struct in_addr), the length of an IP address.

Member h_addr_list will reference an array of pointers to in_addr structures
containing the IP addresses. Each IP address will be presented in net endian form in field
s_addr of the in_addr structure. The pointer array will be terminated by a NULL pointer.
The number of IP addresses in the list will never exceed KN_DNSMAXADDRS, the maximum
number of IP addresses which your DNS client has been configured to accept from a
DNS server.

The specification of function gethostbyname() allows it to return an array of pointers to
network addresses of any type and length. For this reason, member h_addr_list is
declared to be char **. Hence, a cast of the following form must be used to fetch each
IP address.

((struct in_addr *)(hentp->h_addr_list[i]))->s_addr

Note

An example is provided in the description of function
kn_gethostbyname() in Chapter 4.6. The example uses
kn_gethostprep() to initialize a hostent structure and
then interprets the results of the DNS query.

102 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

4.4 ICMP Protocol
KwikNet includes support for the subset of Internet Control Message Protocol (ICMP)
services needed for proper network operation.

KwikNet always replies to an ICMP echo request (a PING) with an ICMP echo reply.
Your application can make use of this facility as described later in this chapter.

Unless you have configured your KwikNet IP Library to include Full ICMP support, only
ICMP echo requests and replies are supported. All other received ICMP datagrams are
ignored; no other ICMP datagrams are transmitted.

When full ICMP is enabled, KwikNet supports timestamp requests. When KwikNet
receives a timestamp request, it responds with a timestamp reply in which the time of
receipt and time of reply are both set to -1L, indicating that timestamps are not available.

When full ICMP is enabled, KwikNet supports ICMP destination unreachable datagrams.
KwikNet accepts such an ICMP datagram and makes it accessible to an application hook
function. If KwikNet discards an IP datagram because it cannot be handled properly, an
ICMP destination unreachable message is sent to the host from which the rejected IP
datagram was received.

KwikNet maintains counts of the various ICMP datagrams which it sends and receives.
These ICMP statistics are included in the network statistics log which you can enable by
checking Enable network statistics in your KwikNet IP Library configuration.

ICMP Destination Unreachable Hook

KwikNet permits an application hook function to peek at each ICMP destination
unreachable datagram received on any of your network interfaces. To use this feature,
you must configure your KwikNet IP Library to include Full ICMP support.

The ICMP destination unreachable hook function is prototyped as follows:

void icmpduhook(const unsigned char *datap);

Parameter datap is a pointer to the ICMP destination unreachable message in the
received IP datagram. Hence, datap is a pointer to the ICMP message header and data.
Your application can examine but not modify the ICMP message content. Interpretation
of the ICMP message content per RFC-792 is left to your application.

To enable your hook, your application must install a pointer to the hook function into the
KwikNet public variable kn_icmpdu_hook which is declared in KwikNet header file
KN_API.H. Your hook must be installed after KwikNet has been successfully started.

Your hook function executes in the context of the KwikNet Task. Your function must not
initiate any operation which would force the KwikNet Task to be blocked waiting for some
event. It is recommended that your hook function copy the relevant information from the
ICMP message for processing by some other application task or by your App-Task.

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 103

Using PING

KwikNet includes support for the Packet InterNet Groper (PING), a process by which your
application can determine if a particular destination is reachable. The term pinging is
used to describe the process by which a ping, an ICMP echo request datagram, is sent to a
destination address. The destination host, if it exists, is expected to generate a ping reply,
an ICMP echo response datagram.

This feature is always available in the KwikNet IP Library. KwikNet will always respond to
a ping request received on any of its network interfaces by sending a valid ICMP echo
response datagram.

Note that your application memory image (load module) will not include the additional
PING support needed to generate a ping and handle a ping response unless your
application actually initiates a ping.

Initiating a Ping

To initiate a ping, your application must call KwikNet procedure kn_pingsend(). In a
multitasking system, any task making such a query must be of lower priority than the
KwikNet Task.

When you make your ping request, you must provide the IP address of the destination
which you wish to ping. You can also identify a specific data block which you wish to
send as part of the ping message. In the absence of such a data block, KwikNet will send a
data string which identifies KwikNet as the source of the ping.

When you issue a ping, you can also include a sequence number. The sequence number
is sent to the destination but is ignored in the response.

Warning!

In a multitasking system, only one task at a time can issue a
ping. It is your responsibility to ensure that two tasks do
not attempt to concurrently use KwikNet's ping services.

104 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

Handling a Ping Reply

By default, KwikNet simply discards the ping response when it is received. If your
application wants to examine the ping response, you must build the KwikNet IP Library
accordingly. Check the option box labeled "Application handles PING replies" in the IP
configuration parameters in the KwikNet Library Parameter File used in the construction
of the KwikNet Libraries as described in Chapter 2.3.

When configured to allow your application to handle ping replies, KwikNet will pass the
ping response to your ping callback function. To use this feature, you must call KwikNet
procedure kn_pinguserfn() to identify your ping callback function before you call
kn_pingsend() to issue the ping. When you initiate the ping, you can specify the
maximum interval that you are prepared to wait for a ping reply to be delivered to your
callback function.

The ping callback function is prototyped as follows:

void UserPING_callback(char *datap, int length);

Parameter datap is a pointer to the data block in the datagram received from the pinged
destination. Parameter length specifies the number of bytes in that data block. The data
block is expected to be a copy of the data block sent in the initial ping message.

If parameter length is 0, then one of two conditions exist. Either no ping reply was
received within the timeout interval or a ping response was received with no data.

Your callback function remains active until such time as you cancel it. You can cancel a
callback function by calling KwikNet procedure kn_pinguserfn() with a NULL callback
procedure pointer.

Note that your callback procedure gets to view every ping response received on each of
the network interfaces managed by KwikNet. It is therefore adviseable to cancel your
procedure as soon as it receives the ping response of interest.

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 105

4.5 KwikNet State Management

Network States

When KwikNet starts, it initializes each of the network drivers (Ethernet, SLIP or PPP)
needed to support your network interfaces.

The Ethernet network driver, once started, remains operational until KwikNet is shut
down, if ever.

The SLIP and/or PPP serial network drivers, once initialized for use, normally remain
idle until first needed to support data transfer requests by your application. At that time
the network is automatically brought up and made ready for use. This method of
operation is termed an autostart. However, KwikNet provides a network state management
service which permits these networks to be made operational prior to first use. The
service also allows these networks to be shut down when no longer required.

KwikNet procedure kn_inet_ifstate() implements this network state management
service. Using this procedure you can start and stop any SLIP or PPP network and
determine the current operational state of any network.

By default, PPP and SLIP networks autostart as soon as your application tries to use the
network. The autostart feature works well for serial network interfaces which are directly
connected to their peer. However, the autostart feature can introduce difficulties when
used with networks that are regularly brought up and shut down, such as those connected
by modem. Therefore, a network's autostart ability is permanently disabled whenever
procedure kn_inet_ifstate() is used to alter the network's state. Hence, after shutting
down a PPP or SLIP network, you must explicitly bring that network up again before it
will be available for use.

106 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

KwikNet States

Most applications start KwikNet with a call to kn_enter() and allow KwikNet to run
forever. Some use kn_exit() to stop KwikNet in preparation for a termination of the
entire application. Others find it necessary to start and stop KwikNet as required to adapt
to changing network conditions or to recover from serious network faults. The ability to
start and stop KwikNet on demand is also useful when testing your network application.

KwikNet is started with a call to kn_enter(). Procedure kn_state() can then be used to
detect when KwikNet is fully operational.

Before KwikNet can be stopped, your application must cease using all KwikNet services.
You must ensure that all KwikNet resources such as UDP channels and TCP or UDP
sockets have been relinquished. Furthermore, all hooks such as your ICMP hook or
PING callback must be removed or otherwise rendered inoperative. Do not forget that all
dedicated KwikNet clients and servers (such as those for FTP, HTTP, TELNET and
SNMP) must have been stopped in an orderly fashion as specified in their documentation.
The private KwikNet DHCP and DNS clients will be stopped by KwikNet.

KwikNet is stopped in two steps. The first step is to wait long enough for all unfinished
network transactions to complete. KwikNet procedure kn_godown() provides this service.
Your application can call kn_godown() to start the shutdown process and wait, up to
some maximum interval, for the process to complete.

The second step is to force KwikNet to shut down all networks and their device drivers and
release all memory and operating system resources. This process is initiated with a call
to kn_exit(). Procedure kn_exit() does not return to the caller until KwikNet has fully
stopped. Then, and only then, can KwikNet be restarted.

If your application does not call kn_godown() to shut down KwikNet before calling
kn_exit(), KwikNet will automatically attempt a shutdown, waiting up to two minutes for
the process to complete before finally stopping. In this case, if the shutdown fails,
KwikNet will initiate a fatal exit.

In a multitasking system, procedures kn_godown() and kn_exit() can only be called
from an application task executing at lower priority than the KwikNet Task. In a single
threaded system, the functions must be called from your App-Task.

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 107

4.6 KwikNet IP and UDP Library Services
The KwikNet Libraries provide a full set of network services from which the real-time
system designer can choose. Many of the services are optional and, if not used or
configured into your KwikNet Libraries, will not even be present in your final KwikNet
system.

The following list summarizes the KwikNet IP and UDP service procedures which are
accessible to the user. These procedures are all present in the KwikNet IP Library. They
are grouped functionally for easy reference.

kn_enter Launch the KwikNet TCP/IP Stack
kn_exit Terminate the KwikNet TCP/IP Stack
kn_godown Initiate a shutdown of the KwikNet TCP/IP Stack
kn_state Sense the operating state of the KwikNet TCP/IP Stack
kn_panic Generate a KwikNet fatal error
kn_yield Yield to the KwikNet Task (single threaded use only)
kn_addserver Install (add) a server function (single threaded use only)

kn_fmt Format a text string
kn_dprintf Format and log a text message
kn_logbuffree Free a KwikNet log buffer
kn_netstats Log KwikNet network statistics

kn_inet_addr Convert a dotted decimal IP address to numeric form
kn_inet_ntoa Convert a numeric IP address to dotted decimal string form
kn_inet_ifindex Find the index number for a specific network interface
kn_inet_ifstate Query and/or modify the state of a network interface
kn_inet_local Get the IP address of a local network interface
kn_cksum Compute an IP checksum

kn_udpopen Open a UDP channel to send/receive UDP datagrams on a network
kn_udpclose Close a UDP channel
kn_udpbind Bind a local IP address to a UDP channel
kn_udpsend Send a UDP datagram on a network
kn_udpfree Free a received UDP message packet

kn_dns_query Make a DNS query for a particular domain name
kn_dns_lookup Query the local DNS name cache for a particular domain name
kn_dns_srvadd Add a DNS server to the DNS client's server list
kn_dns_srvdel Delete a DNS server from the DNS client's server list

kn_gethostbyname Get the IP address of a host with a specific domain name
kn_gethostprep Prepare a hostent structure for first use

kn_pingsend Ping a foreign host on a network
kn_pinguserfn Register a ping callback function to process ping replies

...more

108 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

The following BSD-like services are also available in the KwikNet IP Library.

gethostbyname Get the IP address of a host with a specific domain name

netlong = htonl(hostlong) Convert long from host to network endian form
netshort = htons(hostshort) Convert short from host to network endian form
hostlong = ntohl(netlong) Convert long from network to host endian form
hostshort = ntohs(netshort) Convert short from network to host endian form

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 109

KwikNet Procedure Descriptions

A description of all KwikNet IP and UDP service procedures is provided in this chapter.
The descriptions are ordered alphabetically for easy reference. All of the KwikNet
procedures are described using the C programming language.

Italics are used to distinguish programming examples. Procedure names and variable
names which appear in narrative text are also displayed in italics. Occasionally a lower
case procedure name or variable name may appear capitalized if it occurs as the first
word in a sentence.

Vertical ellipses are used in program examples to indicate that a portion of the program
code is missing. Most frequently this will occur in examples where fragments of
application dependent code are missing.

:
: /* Continue processing */
:

Capitals are used for all defined KwikNet filenames, constants and error codes. All
KwikNet procedure, structure and constant names can be readily identified according to
the nomenclature introduced in Chapter 1.3.

A consistent style has been adopted for the description of the KwikNet procedures
presented in Chapters 4.6 and 5.4. The procedure name is presented at the extreme top
right and left as in a dictionary. This method of presentation has been chosen to make it
easy to find procedures since they are ordered alphabetically.

Purpose A one-line statement of purpose is always provided.

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

This block is used to indicate which application procedures can call the
KwikNet procedure. A filled in box indicates that the procedure is allowed
to call the KwikNet procedure. In the above example, only tasks would be
allowed to call the procedure.

For AMX users, this block is used to indicate which of your AMX
application procedures can call the KwikNet procedure. You are reminded
that the term ISP refers to the Interrupt Handler of a conforming ISP.

...more

110 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

KwikNet Procedure Descriptions (continued)

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

For other multitasking systems, a task is any application task executing at
a priority below that of the KwikNet Task. A Timer procedure is a function
executed by a task of higher priority than the KwikNet Task. An ISP is a
KwikNet device driver interrupt handler called from an RTOS compatible
interrupt service routine. The other procedures do not exist.

For a single threaded system, your App-Task (see glossary in Appendix A)
is the only task. An ISP is a KwikNet device driver interrupt handler called
from an interrupt service routine. The other procedures do not exist.

Setup The prototype of the KwikNet procedure is shown.
The KwikNet header file in which the prototype is located is identified.
Include KwikNet header file KN_LIB.H or KN_SOCK.H for compilation.

File KN_LIB.H is the KwikNet include file which corresponds to the KwikNet
Libraries which your application uses. This file is created for you by the
KwikNet Configuration Builder when you create your KwikNet Libraries.
File KN_LIB.H automatically includes the correct subset of the KwikNet
header files for a particular target processor.

File KN_SOCK.H is the KwikNet include file which you must include if your
application uses the TCP/IP sockets API. This file is located in KwikNet
installation directory TCP. File KN_SOCK.H automatically includes file
KN_LIB.H if it has not already been included.

Description Defines all input parameters to the procedure and expands upon the
purpose or method if required.

Returns The outputs, if any, produced by the procedure are always defined. Most
KwikNet procedures return an integer error status. Additional TCP/IP
socket error information is also available via KwikNet procedure
kn_errno().

Restrictions If any restrictions on the use of the procedure exist, they are described.

Note Special notes, suggestions or warnings are offered where necessary. The
following paragraph is an example of such a note.

All KwikNet procedures assume that an integer or unsigned integer is a
16 or 32-bit value dependent only upon the basic register width of the
target processor.

Example In many cases, a simple example is provided. The examples are kept
simple and are intended only to illustrate the correct calling sequence.

See Also A cross reference to other related KwikNet procedures is always provided if
applicable.

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 111

gethostbyname gethostbyname

Purpose Get the IP Address of a Host with a Specific Domain Name

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
struct hostent *gethostbyname(const char *name);

Description Name is a pointer to a string which specifies the domain name for which an
IP address is required. Domain names are usually recognized as strings
of the form "www.kadak.com". This function will also accept a dotted
decimal name of the form "192.168.0.3" and return the equivalent IP
address.

Returns If successful, a pointer to a private KwikNet hostent structure is returned.
The structure is defined in KwikNet header file KN_API.H as follows:

struct hostent {
const char *h_name; /* Official name of host */
char **h_aliases; /* Alias list */
int h_addrtype; /* Host address type */
int h_length; /* Length of address */
char **h_addr_list; /* List of IP address pntrs */
};

If hostp is the pointer to structure hostent, *hostp is filled as follows:
hostp->h_name = name; Domain name string used in the query
*hostp->h_aliases = NULL; Aliases are not supported
hostp->h_addrtype = 2; IP address family type (AF_INET)

Length of an IP address
hostp->h_length = sizeof(struct in_addr);
hostp->h_addr_list = Pointer to a list of IP address pointers

Hostp->h_addr_list references an array of pointers to in_addr
structures containing the IP addresses. Each IP address is presented in net
endian form in field s_addr of the in_addr structure. The pointer array is
terminated by a NULL pointer. The number of IP addresses in the list will
never exceed KN_DNSMAXADDRS, the maximum number of IP addresses
which your DNS client has been configured to accept from a DNS server.

If the domain name cannot be resolved within the timeout interval
specified by your DNS client configuration or because of an error
condition, a NULL pointer is returned.

Example The example in the description of kn_gethostbyname() illustrates the
proper interpretation of the results returned in structure hostent.

See Also kn_gethostbyname()

112 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

hton– hton–
ntoh– ntoh–

Purpose Convert Between Host and Network Endian Forms

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup The macro definitions are in file KN_API.H.
C dependent, in-line assembly language expansions are in file KNZZZCC.H.
#include "KN_LIB.H"

Convert 32-bit values Convert 16-bit values
netlong = htonl(hostlong) netshort = htons(hostshort)
hostlong = ntohl(netlong) hostshort = ntohs(netshort)

Description Hostlong is any 32-bit value in host endian form.
Netlong is any 32-bit value in net endian form.
Hostshort is any 16-bit value in host endian form.
Netshort is any 16-bit value in net endian form.

If the KwikNet Library has been configured for big endian operation, these
macros do nothing since the input values require no conversion.

If the KwikNet Library has been configured for little endian operation, these
macros may expand to a function call, an in-line function expansion or a
series of C statements, depending upon which C compiler is being used.

The goal is always to ensure the fastest possible execution of these
frequently encountered macros. When possible, these macros have been
implemented using in-line assembly language statements generated by the
C compiler. In some cases, the macros generate calls to assembly
language functions of a form supported by the C compiler. As a last
resort, the macros expand to a series of in-line C statements.

Returns The input value converted to opposite endian form.

Restriction These macros can introduce side effects. Therefore, the macro parameters
must not use expressions which include operators such as -- or ++ since
they always produce side effects. You must also avoid using expressions
which include function calls to fetch parameters if the functions can
introduce side effects.

Example See examples in the descriptions of kn_cksum(), kn_dprintf() and
kn_fmt().

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 113

kn_addserver kn_addserver

Purpose Install (Add) a Server Function

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_addserver(struct knx_svblock *servercbp,

unsigned long period,
int (*serverfnp)(void *), void *param);

Description Servercbp is a pointer to a KwikNet server control block which KwikNet
can use to control the periodic execution of this server function. Each
server function requires its own unique server control block.

You can create a server control block by declaring it as a unique
structure variable or by including it as a knx_svblock structure within
some other structure variable. The variable must reside outside all
functions in the source module. The call to kn_addserver() must
provide a pointer to the instance of the structure.

Parameter period specifies the interval at which the server function is to
be executed by the KwikNet Task. The interval, measured in
milliseconds, is converted to a non-zero, integral multiple of KwikNet
ticks. The server function is therefore executed at the resulting period,
measured in equivalent KwikNet ticks.

If parameter period is 0, the server function will be executed by the
KwikNet Task whenever a KwikNet clock tick or significant event is
serviced. Hence, at a minimum, the server function will execute at the
KwikNet clock frequency. However, it will also execute if, at the time
your App-Task yields to the KwikNet Task, other stack related services
are pending.

Parameter serverfnp is a pointer to the server function to be executed by
the KwikNet Task. The function is called with a single parameter, a
copy of parameter param presented in the call to kn_addserver().

The server function must return the value 0 in order to remain on the
active server list, ready to be executed at its specified period. If the
server function returns a non-zero value, the server will be removed
from the KwikNet server list.

Returns Nothing

Restriction This function must only be used in a single threaded system. It can be
called while executing in either the user or KwikNet domain.

See Also kn_yield()

114 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

kn_cksum kn_cksum

Purpose Compute an IP Checksum

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
unsigned short kn_cksum(void *p, unsigned int n);

Description P is a pointer to a 16-bit aligned region of memory containing an array of
16-bit unsigned short integers to be checksummed.

N is the number of 16-bit unsigned short integers in the memory array
referenced by pointer p.

Returns The complement of the 16-bit, unsigned IP checksum of the n unsigned
short integers in the memory array referenced by pointer p.

Each 16-bit, unsigned short integer is added to the 16-bit checksum using
twos complement arithmetic. Any overflow (carry) from the 16-bit
checksum is repetitively added to the checksum until no further overflow
occurs.

The algorithms used by KwikNet to implement this procedure are both
processor and compiler dependent. The procedure has been coded for
fastest possible execution. If the C compiler supports the use of assembly
language within C, the procedure is coded in C using assembly language
statements of the form supported by the C compiler. Otherwise, the
function is coded reasonably efficiently using only C language statements.

Note The checksum algorithm is impervious to the processor's endianness.
Hence the 16-bit IP checksum can be stored into and read from the IP
packet header without conversion between net and host endianness as
illustrated in the example.

Example #include "kn_lib.h"

unsigned short cksum; /* Computed checksum */
unsigned short pktsum; /* Packet checksum */
struct knx_ip *p; /* IP header pointer */

pktsum = p->xip_cksum; /* Save IP header checksum */
p->xip_cksum = 0; /* Checksum = 0 in packet */

/* Compute IP header checksum*/
cksum = ~kn_cksum(p, sizeof(*p) >> 1);

if (cksum != pktsum) {
kn_dprintf(0, "Received packet has checksum error.\n");
kn_dprintf(0, "Received %4X; expected %4X.\n",

ntohs(pktsum), ntohs(cksum));
}

KwikNet IP/UDP Services KADAK rev 6 115

kn_dns_lookup kn_dns_lookup

Purpose Query the Local DNS Name Cache for a Particular Domain Name

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
int kn_dns_lookup(const char *namep, struct in_addr *inadrp);

Description Namep pointer is a pointer to a domain name string. The domain name
must consist of a sequence of dot separated labels of the form
"www.kadak.com". The string must be terminated by a '\0' character.

Inadrp is a pointer to storage for the IP address which corresponds to the
domain name given by namep. The BSD structure in_addr is defined
in file KN_API.H as follows:

struct in_addr {
unsigned long s_addr; /* IP address (net endian) */
};

Returns If the domain name matches an entry in the local DNS name cache, a
value of 0 is returned and the corresponding IP address will be stored, in
net endian form, at ipaddr->s_addr.

If the domain name does not match any of the entries in the local DNS
name cache, a value of -1 is returned and the IP address at
ipaddr->s_addr will be undefined.

See Also kn_dns_query()

...more

116 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

...continued

Example Also see the example in the description of kn_dns_query().

#include "kn_lib.h"

/* Application task which polls after domain name query */

void myPolltask(void)
{

char *namep; /* Domain name pointer */
struct in_addr ipaddr; /* IP address of interest */
int status;
int delay;

namep = "www.kadak.com";
status = kn_dns_query(namep, &ipaddr, NULL, NULL);

delay = 0;
while ((status > 0) && (delay++ < 60))

{
/* Delay 1 sec */
cjtkwaitm(cjtmconvert(1000L));

if (kn_dns_lookup(namep, &ipaddr) == 0)
break;

}

if (status == 0)
kn_dprintf(0, "Got an instant response.\n");

else if (status < 0)
kn_dprintf(0, "Cannot initiate a DNS query.\n");

else if (delay < 60)
kn_dprintf(0, "Got a delayed DNS response.\n");

else kn_dprintf(0, "Did not get a DNS response.\n");
}

KwikNet IP/UDP Services KADAK rev 6 117

kn_dns_query kn_dns_query

Purpose Make a DNS Query for a Particular Domain Name

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
int kn_dns_query(const char *namep, struct in_addr *inadrp,

void (*userfn)(struct in_addr *answer,
int status, void *userp),

void *userp);

Description Namep pointer is a pointer to a domain name string. The domain name
must consist of a sequence of dot separated labels of the form
"www.kadak.com". The string must be terminated by a '\0' character.

Inadrp is a pointer to storage for the IP address which corresponds to the
domain name given by namep. The BSD structure in_addr is defined
in file KN_API.H as follows:

struct in_addr {
unsigned long s_addr; /* IP address (net endian) */
};

Userfn is a pointer to your DNS callback function which will be called by
KwikNet when the DNS query response is received. This function must
be coded as described in Chapter 4.3. Note that the third parameter
which it receives, userp, is a copy of the pointer variable userp
presented as a parameter in this kn_dns_query() procedure call. If
you do not wish to provide such a function, set this parameter to NULL.

Userp is any pointer variable which your userfn() function might
require. NULL is an acceptable value.

Returns If successful, a value of 0 is returned and the IP address will be stored, in
net endian form, at ipaddr->s_addr.

If a DNS query is initiated to determine the IP address, a value of 1 is
returned and the IP address at ipaddr->s_addr will be undefined. Your
DNS callback function will be called when the name becomes available.
If you did not provide a callback function, you can poll using
kn_dns_lookup() until the IP address becomes available.

If the call fails, a value of -1 is returned and the IP address at
ipaddr->s_addr will be undefined.

See Also kn_dns_lookup()

...more

118 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

...continued

Example Also see the example in the description of kn_dns_lookup().

#include "kn_lib.h"

CJ_ID dnstaskid; /* DNS Task id */
struct in_addr ipaddr; /* IP address of interest */
volatile int dnsresult; /* Result passed to task */

/* Application DNS callback function */

void myDNSfn(struct in_addr *answer, int status,
void *userp)

{
if ((long)userp != 0xDEADDEAFL)

return; /* Not my DNS query */

if (status == 0)
ipaddr.s_addr = answer->s_addr;

else ipaddr.s_addr = 0;
dnsresult = 0; /* Timeout or got reply */
cjtkwake(dnstaskid); /* Let DNS Task resume */

}

/* Application task which issues the domain name query */

void myDNStask(void)
{

int status;

dnstaskid = cjtkid(); /* Provide my task id */

dnsresult = -1;
status = kn_dns_query("www.kadak.com", &ipaddr,

myDNSfn, (void *)0xDEADDEAFL);

if (status == 0)
kn_dprintf(0, "Got an instant response.\n");

else if (status > 0)
{
if (dnsresult == -1) /* Reply may be here already */

cjtkwait(); /* Wait for reply */
if (ipaddr.s_addr != 0)

kn_dprintf(0, "Got a reply to a DNS query.\n");
else

kn_dprintf(0, "Bad datagram or no reply.\n");
}

else kn_dprintf(0, "Cannot initiate DNS query.\n");
}

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 119

kn_dns_srvadd kn_dns_srvadd

Purpose Add a DNS Server to the DNS Client's Server List

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
int kn_dns_srvadd(struct in_addr *inadrp, unsigned long id);

Description Inadrp is a pointer to a structure containing the DNS server IP address in
net endian form. The BSD structure in_addr is defined in file
KN_API.H as follows:

struct in_addr {
unsigned long s_addr; /* IP address (net endian) */
};

Id is an arbitrary value provided by the caller to uniquely identify the
particular DNS server being added to the DNS server list. This
identifier will be required to remove the DNS server from the list.

Returns If successful, the value 0 is returned.

If the DNS server list is full or if the memory needed to add another DNS
server is not available, the error status -1 is returned.

See Also kn_dns_srvdel()

120 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

kn_dns_srvdel kn_dns_srvdel

Purpose Remove (Delete) a DNS Server from the DNS Client's Server List

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
int kn_dns_srvdel(struct in_addr *inadrp, unsigned long id);

Description Inadrp is a pointer to a structure containing the DNS server IP address in
net endian form. The BSD structure in_addr is defined in file
KN_API.H as follows:

struct in_addr {
unsigned long s_addr; /* IP address (net endian) */
};

Id is the unique identifier assigned to the DNS server of interest when that
server was added to the DNS server list.

Returns If successful, the value 0 is returned.

If a DNS server with the specified IP address and matching identifier is
not present in the DNS client's server list, the error status -1 is returned.

See Also kn_dns_srvadd()

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 121

kn_dprintf kn_dprintf

Purpose Format and Log a Text Message

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_dprintf(int attrib, const char *fmtp, ...);

Description Attrib is a parameter which defines the message attributes. Applications
should use the value of 0 for attrib. Valid attributes are described in
Chapter 1.6

Fmtp is a pointer to a format specification string similar to that expected
by the C library procedure printf(). Allowable format specifications
are summarized in the description of procedure kn_fmt().

The format string is followed by zero or more parameters of types
specified by the format string.

Returns Nothing

Example #include "kn_lib.h"

char *bufp; /* Input buffer pointer */
struct in_addr ipaddr; /* IP address (numeric) */
char ipstring[40]; /* IP addr (dotted decimal) */

bufp = "192. 168. 5"; /* An unusual input string */

if (kn_inet_addr(bufp, &ipaddr) != 1)
kn_dprintf(0, "Conversion of '%s' to 0xC0A80500" \

"(192.168.5.0) failed.\n", bufp);

else if (kn_inet_ntoa(&ipaddr, ipstring) !=
strlen("192.168.5.0"))

kn_dprintf(0, "Conversion to '192.168.5.0' failed.\n");

else {
kn_dprintf(0, "Converted '%s' to 0x%08lx to '%s'.\n",

bufp, ntohl(ipaddr.s_addr), ipstring);

/* The previous message should read: */
/* "Converted '192. 168. 5' to 0xc0a80500 */
/* to '192.168.5.0'." */
}

See Also kn_fmt(), kn_netstats()

122 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

kn_enter kn_enter
kn_exit kn_exit

Purpose Launch or Terminate the KwikNet TCP/IP Stack

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_enter(void);
void kn_exit(void);

Description Procedure kn_enter() must be called to launch (start) the KwikNet TCP/IP
Stack.

Procedure kn_exit() must be called to terminate (stop) the KwikNet
TCP/IP Stack.

In a multitasking system, procedure kn_enter() must be called before
any task can use KwikNet services. Procedure kn_exit() must not be
called until all tasks, including KwikNet client and server tasks, have
stopped using KwikNet services.

In a single threaded system, procedure kn_enter() must be called by the
App-Task. Procedure kn_exit() must not be called until the App-Task
and all active clients and servers, including KwikNet clients and servers,
have stopped using KwikNet services.

Returns Nothing

AMX Note Procedure kn_enter() can be treated as if it is an AMX Restart
Procedure. Alternatively, it can be called from a Restart Procedure or
from an application task.

Procedure kn_exit() can be treated as if it is an AMX Exit Procedure.
Alternatively, it can be called from an Exit Procedure or from an
application task which is executing on behalf of an AMX Exit Procedure.

See Also kn_godown(), kn_panic()

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 123

kn_fmt kn_fmt

Purpose Format a Text String

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
int kn_fmt(char *bufp, const char *fmtp, ...);

Description Bufp is a pointer to storage for the formatted string.

Fmtp is a pointer to a format specification string similar to that expected
by the C library procedure printf(). Allowable format specifications
are summarized on the next page.

The format string is followed by zero or more parameters of types
specified by the format string.

Returns The formatted string is stored at *bufp and the length of that string is
returned. The length is a positive value. The string is terminated with a
'\0' character.

Example Other examples are provided in the descriptions of kn_cksum() and
kn_dprintf().

#include "kn_lib.h"

struct in_addr ipaddr; /* IP address (numeric) */
char buf[80]; /* String buffer */

/* IP address = 192.168.5.21 */
ipaddr.s_addr = htonl(0xC0A80516);

if (kn_fmt(buf, "IP address 0x%08lX is '%03a'.\n",
ntohl(ipaddr.s_addr), ipaddr.s_addr) <= 0)

kn_dprintf(0, "Cannot convert IP address to string.\n");

else {
kn_dprintf(0, "%s", buf);

/* The previous message should read: */
/* "IP address 0xC0A80516 is '192.168.005.016'." */
}

See Also kn_dprintf()

...more

124 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

Formats ...continued

Allowable format specification strings must be of the form "...%-0##z?..."

where:
% = format specification leadin character; use %% for % in output string
- = left justify in field
0 = zero fill
= field width as decimal value

z = l if variable is long (? is one of d, u, x, X)
z = h if variable is short int (? is one of d, u, x, X)
z = h for an IP address in hex format (? is one of a, A)

? = one of following field variable specifications
c = character value
d = decimal integer value
u = unsigned decimal integer value
x = unsigned hex integer value (use a .. f)
X = unsigned hex integer value (use A .. F)
f = fill with next char to field width
p = pointer value
s = string value

a = internet IP address as "1.26.3.127"

"%03a" yields "001.026.003.127"

ha = internet IP address as "01.1a.03.ff"

"%hA" yields "01.1A.03.FF"

"%0##a" yields "001.002.003.004"

for any non-zero value "0##".
"%0##ha" yields "0a.0b.0c.0d"

for any non-zero value "0##".

S = copy characters from format string into the output field
until '`' is encountered

"%20Sabc`" right justifies "abc" in a 20 character field.
"%-20Sabc`" left justifies "abc" in a 20 character field.

Numeric fields that overflow the field width are formatted as xxxxx to the
full width of the field.

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 125

kn_gethostbyname kn_gethostbyname

Purpose Get the IP Address of a Host with a Specific Domain Name

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
int kn_gethostbyname(const char *name,

struct hostent *hostp, int timeout);

Description Name is a pointer to a string which specifies the domain name for which an
IP address is required. Domain names are usually recognized as strings
of the form "www.kadak.com". This function will also accept a dotted
decimal name of the form "192.168.0.3" and return the equivalent IP
address.

Hostp is a pointer to a hostent structure initialized by a previous call to
function kn_gethostprep(). Structure hostent is defined in KwikNet
header file KN_API.H as follows:

struct hostent {
const char *h_name; /* Official name of host */
char **h_aliases; /* Alias list */
int h_addrtype; /* Host address type */
int h_length; /* Length of address */
char **h_addr_list; /* List of IP address pntrs */
};

Timeout is the maximum interval, measured in seconds, which the caller
is willing to wait for the DNS client to resolve the domain name.

Returns If successful, a value of 0 is returned and the hostent structure at *hostp
is filled with:
hostp->h_name = name; Domain name string used in the query
*hostp->h_aliases = NULL; Aliases are not supported
hostp->h_addrtype = 2; IP address family type (AF_INET)

Length of an IP address
hostp->h_length = sizeof(struct in_addr);
hostp->h_addr_list = Pointer to a list of IP address pointers

Hostp->h_addr_list references an array of pointers to in_addr
structures containing the IP addresses. Each IP address is presented in net
endian form in field s_addr of the in_addr structure. The pointer array is
terminated by a NULL pointer. The number of IP addresses in the list will
never exceed KN_DNSMAXADDRS, the maximum number of IP addresses
which your DNS client has been configured to accept from a DNS server.

...more

126 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

Returns ...continued

If the domain name cannot be resolved because of an error condition other
than a timeout, the error status -1 is returned.

If the domain name cannot be resolved within timeout seconds, the
warning value 1 is returned.

Example #include "kn_lib.h"
#define NADDR_MAX 4 /* Max number of IP addresses*/

int getkadakIP(struct in_addr *ipaddr)
{

struct in_addr *ipp; /* IP address pointer */
struct hostent hent; /* Query structure */

/* Result buffer */
char resbuf[KN_DNS_HOSTBUF_SIZE(NADDR_MAX)];
int i, error;

/* Prepare for query */
kn_gethostprep(&hent, resbuf, NADDR_MAX);

/* Wait up to two minutes (120 seconds) for results */
error = kn_gethostbyname("www.kadak.com", &hent, 120);

if (error)
return (error);

/* Pass first available IP address to caller */
ipp = (struct in_addr *)(hent.h_addr_list[0]);
*ipaddr = *ipp;

/* Show results and all IP addresses */
kn_dprintf(0, "Name: %s (type %d, length %d)\n",

hent.h_name, hent.h_addrtype, hent.h_length);

for (i = 0; i < NADDR_MAX; i++) {
ipp = (struct in_addr *)(hent.h_addr_list[i]);
if (!ipp)

break;

kn_dprintf(0, "IP address %d is '%03a'.\n",
i + 1, ipp->s_addr);

}

return (0);
}

See Also gethostbyname(), kn_gethostprep()

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 127

kn_gethostprep kn_gethostprep

Purpose Prepare a Hostent Structure Prior to First Use

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_gethostprep(struct hostent *hostp,

void *buf, int naddrs);

Description Hostp is a pointer to a hostent structure which must be initialized by this
function before it can be used in calls to kn_gethostbyname().

Buf is a pointer to storage for the results of subsequent domain name
queries made with calls to kn_gethostbyname(). The storage buffer
must be large enough to hold the number of IP addresses you are
willing to accept in your query. If you will accept only n IP addresses,
then you must provide at least NB bytes of storage where NB is
computed using the macro KN_DNS_HOSTBUF_SIZE(n) from KwikNet
header file KN_API.H .

Naddrs is the maximum number of IP addresses that you will accept in
response to a subsequent domain name query. If your storage buffer of
NB bytes will hold n IP addresses, naddrs must be <= n. The
maximum number of IP addresses which can be returned from any
domain name query is KN_DNSMAXADDRS, the limit specified by your
definition of the DNS client in your KwikNet IP Library configuration.

Returns Nothing

See Also kn_gethostbyname()

128 rev 6 KADAK KwikNet IP/UDP Services

kn_godown kn_godown

Purpose Initiate a Shutdown of the KwikNet TCP/IP Stack

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
int kn_godown(int timeout);

Description Timeout is the maximum interval, measured in seconds, which the caller
is willing to wait for the KwikNet shutdown to complete. If timeout is
0, the caller will wait forever or until an error condition is detected.

In a multitasking system, procedure kn_godown() must not be called until
all tasks, including KwikNet client and server tasks, have stopped using
KwikNet services.

In a single threaded system, procedure kn_godown() must be called by the
App-Task. Procedure kn_godown() must not be called until the App-Task
and all active clients and servers, including KwikNet clients and servers,
have stopped using KwikNet services.

Returns If successful, a value of 0 is returned.
On failure, the error status 1 is returned.
If a shutdown has already been initiated, a value of -1 is returned.

Restriction Procedure kn_godown() must be called to shut down the KwikNet TCP/IP
Stack prior to calling kn_exit() to terminate operation of the stack. If
this restriction is not met, KwikNet will automatically call this function with
a 2 minute (120 second) timeout interval when kn_exit() is called.

AMX Note Procedure kn_godown() can be called from an Exit Procedure or from an
application task which is executing on behalf of an AMX Exit Procedure.

See Also kn_enter(), kn_exit(), kn_panic()

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 129

kn_inet_addr kn_inet_addr

Purpose Convert a Dotted Decimal IP Address to Numeric Form

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
int kn_inet_addr(const char *sp, struct in_addr *inadrp);

Description Sp is a pointer to a string containing an IP address in dotted decimal form.
The string does not have to be terminated by '\0'. Leading whitespace
before the numbers in the IP address will be ignored. The separating
dot must be the first character after each number.

Hence, "254. 76.2. 1abc" is an acceptable input string.

Inadrp is a pointer to a structure into which the numeric IP address in net
endian form will be stored. The BSD structure in_addr is defined in
file KN_API.H as follows:

struct in_addr {
unsigned long s_addr; /* IP address (net endian) */
};

Returns 0 if the string contained a full IP address such as "75.4. 34.12abc".

1, 2 or 3 if the string contained a partial IP address such as "75.4.34",
"75.4" or "75" respectively. In each case, the missing fields are assumed
to be 0. For example "75.4" is assumed to be "75.4.0.0".

The resulting IP address in numeric, net endian form is stored in the IP
address structure at inadrp->s_addr.

Limited error checking is performed. Parsing stops at the first character
which is not acceptable within an IP address or as soon as four dot
separated values are found.

A value greater than 3 is returned if no numeric values are present. The
value -1 is returned if any of the decimal values encountered are outside
the range 0 to 255.

Note Unlike its BSD counterpart inet_addr(), this KwikNet procedure uses
structure in_addr to hold the IP address so that future changes in IP
address definition can be accommodated without affecting your
application.

Example See example in the description of kn_dprintf().

See Also kn_inet_ntoa()

130 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

kn_inet_ifindex kn_inet_ifindex

Purpose Find the Index Number for a Specific Network Interface

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
int kn_inet_ifindex(const char *nettag);

Description Nettag is a pointer to a string which specifies the 4-character network tag
of the network interface of interest.

Returns If successful, the network interface index number N is returned.
N is an integer in the range 0 to numnet-1 where numnet is the
total number network interfaces.

If a network with the specified network tag does not exist,
the value -1 is returned.

Example #include "kn_lib.h"

int get_net_pnet(void)
{

int n;

n = kn_inet_ifindex("PNET");
if (n < 0)

kn_panic("get_net_pnet: Network PNET is lost");

return (n);
}

See Also kn_inet_ifstate()

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 131

kn_inet_ifstate kn_inet_ifstate

Purpose Query and/or Modify the State of a Network Interface

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
int kn_inet_ifstate(int n, int newstate, int *prevstate);

Description N is a network index number used to identify the network interface of
interest. N must be in the range 0 to numnet-1 where numnet is the
total number network interfaces.

If you wish to change the state of the network, parameter newstate
identifies the required state. Newstate must be one of the following
values:
KN_NIFS_DOWN Shut down the network.
KN_NIFS_UP Start up the network.
0 Leave the state of the network unchanged.

Parameter prevstate is a pointer to storage for the state of the network at
the time this procedure was called. If prevstate is NULL, the
parameter will be ignored by KwikNet.

Returns If successful, a value of 0 is returned.

If the requested network state change has been initiated, but is not yet
complete, the following status code is returned:
KN_WRPENDING The requested operation is now in progress.

On failure, one of the following error status codes is returned:
KN_ERIFACE The network index does not refer to a valid network.
KN_ERPARAM The state specified by parameter newstate is invalid

or the requested state change cannot be granted.

If parameter prevstate is not NULL, then upon return *prevstate will be
set to one of the following values:
KN_NIFS_DOWN The network was idle.
KN_NIFS_TRANSIT The network was in the process of going up or down.
KN_NIFS_UP The network was operational.

Restrictions You cannot change the state of an Ethernet network.
You cannot start a network that is in the process of shutting down.
You cannot stop a network that is in the process of starting up.
In these cases, the error status KN_ERPARAM will be returned to the caller.

See Also kn_inet_ifindex(), kn_netstats(), kn_state()

132 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

kn_inet_local kn_inet_local

Purpose Get the IP Address of a Local Network Interface

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
int kn_inet_local(int n, struct in_addr *inadrp);

Description N is a network index number used to identify the network interface of
interest. Set n to 0 to indicate the first network interface defined in the
KwikNet Network Configuration Module. Increment n by one to
reference the next sequential network interface. N must be in the range
0 to numnet-1 where numnet is the total number network interfaces.

Inadrp is a pointer to a structure into which the IP address of the local
network interface will be stored in net endian form. The BSD structure
in_addr is defined in file KN_API.H as follows:

struct in_addr {
unsigned long s_addr; /* IP address (net endian) */
};

Returns The value n+1 is returned if the network interface exists. The network IP
address in net endian form is stored in the IP address structure at
inadrp->s_addr.

The value -1 is returned if there is no network interface corresponding to
network index n.

Example #include "kn_lib.h"

/* Return the interface number (1 to numnets) of the */
/* first net for which a valid IP address can be found. */
/* The IP address is stored at inadrp->s_addr. */
/* Return -1 if no nets have a valid IP address. */

int get_local_IP(struct in_addr *inadrp)
{

int n = 0;

while ((n = kn_inet_local(n, inadrp)) != -1) {
if (inadrp->s_addr != INADDR_ANY)

break;
}

return (n);
}

See Also kn_inet_ifindex()

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 133

kn_inet_ntoa kn_inet_ntoa

Purpose Convert a Numeric IP Address to Dotted Decimal String Form

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
int kn_inet_ntoa(struct in_addr *inadrp, char *sp);

Description Inadrp is a pointer to a structure containing an IP address in net endian
form. The BSD structure in_addr is defined in file KN_API.H as
follows:

struct in_addr {
unsigned long s_addr; /* IP address (net endian) */
};

Sp is a pointer to storage for the string showing the IP address in dotted
decimal form.

Returns The formatted string is stored at *sp and the length of that string is
returned. The length is a positive value. The string is terminated with a
'\0' character.

The IP address 0x7F000017 will produce the string "127.0.0.23".

Note Unlike its BSD counterpart inet_ntoa(), this KwikNet procedure is
reentrant. It also uses structure in_addr to hold the IP address so that
future changes in IP address definition can be accommodated without
affecting your application.

Example See example in the description of kn_dprintf().

See Also kn_inet_addr()

134 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

kn_logbuffree kn_logbuffree

Purpose Free a KwikNet Log Buffer

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_logbuffree(char *bufp);

Description Bufp is a pointer to the KwikNet log buffer which is to be freed. This is a
buffer allocated by KwikNet from its private pool of log buffers in
response to a request to log a message.

Your application log function must call kn_logbuffree() to free each
log buffer that it accepts.

Returns Nothing

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 135

kn_netstats kn_netstats

Purpose Log KwikNet Network Statistics

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_netstats(unsigned long statmask);

Description Statmask is a bit mask identifying the subset of network statistics
maintained by KwikNet which you wish to log. Statmask can be
created by ORing one or more of the bit mask constants KN_NS_xxxx to
select the particular statistics to be logged. The constants KN_NS_xxxx
are defined in file KN_API.H. To log all statistics, set statmask to
KN_NS_ALL.

KwikNet will log network statistics which it has been gathering. The
information is formatted into log buffers and presented a line at a time
to your data logging function (see Chapter 1.6).

Returns Nothing

See Also kn_dprintf(), kn_inet_ifstate()

136 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

kn_panic kn_panic

Purpose Generate a KwikNet Fatal Error

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_panic(const char *msgp);

Description Msgp is a pointer to a message string to be logged by KwikNet before it
initiates a shutdown of the underlying RT/OS.

Returns Never

See Also kn_exit()

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 137

kn_pingsend kn_pingsend

Purpose Ping a Foreign Host on a Network

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
int kn_pingsend(struct in_addr *inadrp,

const char *datap, int ndata,
int sequence, int timeout);

Description Inadrp is a pointer to a structure containing the IP address, in net endian
form, of the specific foreign host which you wish to ping. The BSD
structure in_addr is defined in file KN_API.H as follows:

struct in_addr {
unsigned long s_addr; /* IP address (net endian) */
};

Datap is a pointer to a data block which you wish to send within the ping
message. If you do not wish to define the ping data, set this parameter
to NULL.

Ndata is the total number of bytes which will be sent in the data region of
the ping message. If you provide a non NULL data pointer, then the ping
message will include ndata bytes of ping from the data block
referenced by datap.

If your data pointer datap is NULL, KwikNet will try to use a private data
string identifying KwikNet as the source of the ping. If ndata is greater
than the length of the string, the data string will be included in the ping
message. Otherwise, it will not. If necessary, the data block will be
padded to ndata bytes with an incrementing binary pattern.

Sequence is a sequence number which is sent to the foreign host in the
ping message. Although the sequence number is echoed in the ping
response, it is ignored by KwikNet.

Timeout is the number of seconds which you are prepared to allow for the
foreign host to respond to the ping message. This parameter will be
ignored by KwikNet if you have not called procedure kn_pinguserfn()
to provide a ping callback function.

Returns If successful, a value of 0 is returned.
On failure, the error status -1 is returned.

Example See example in the description of kn_pinguserfn().

See Also kn_pinguserfn()

138 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

kn_pinguserfn kn_pinguserfn

Purpose Register a Ping Callback Function to Process Ping Replies

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_pinguserfn(void (*userfn)(char *, int));

Description Userfn is a pointer to your ping callback function which will be called by
KwikNet whenever a ping reply is received. This function must be
coded as described in Chapter 4.4.

To cancel the use of your callback function, call kn_pinguserfn()
with parameter userfn set to NULL.

Returns Nothing

Restriction This procedure will not be present in the KwikNet IP Library unless your
KwikNet Library Parameter File indicates that the application intends to
handle ping replies. In this case, procedure kn_pinguserfn() will be
unresolved when you link your application. To enable this feature, use the
KwikNet Configuration Builder to edit your KwikNet Library Parameter File
and check the required option box on the IP property page. Then rebuild
your KwikNet Libraries.

Note Once installed, your ping callback will be called to process every ping
reply received by KwikNet, including spurious replies, if any, received from
interconnected networks. It will continue to be called until you cancel it.

See Also kn_pingsend()

...more

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 139

...continued

Example #include "kn_lib.h"

CJ_ID pingtaskid; /* Ping Task id */
char *infop; /* Ping info */
volatile int pingresult; /* Result passed to task */

/* Application ping callback function */

void mypingfn(char *datap, int length)
{

if (length == strlen(infop) + 1)
{
if (strcmp(datap, infop) == 0)

pingresult = length;
else pingresult--;
}

else pingresult = 0; /* Timeout or bad reply */
cjtkwake(pingtaskid); /* Let Ping Task resume */
kn_pinguserfn(NULL); /* Cancel my ping function */

}

/* Application task which issues the ping request */

void myPINGtask(void)
{

struct in_addr ipaddr; /* IP address */

pingtaskid = cjtkid(); /* Provide my task id */

kn_inet_addr("192.168.5.12", &ipaddr);
infop = "This is my test ping data.";

kn_pinguserfn(mypingfn); /* Install my ping function */
pingresult = -1;

/* Ping host 192.168.5.12 with my message. */
/* The message must include the '\0' string terminator. */
/* Use sequence number 1. */
/* Timeout after 30 seconds. */

if (kn_pingsend(&ipaddr, infop,
strlen(infop) + 1, 1, 30) == 0)

{
if (pingresult == -1) /* Reply may be here already */

cjtkwait(); /* Wait for reply */
if (pingresult > 0)

kn_dprintf(0, "Got expected ping reply.\n");
else if (pingresult < 0)

kn_dprintf(0, "Got an invalid reply.\n");
else

kn_dprintf(0, "Bad datagram or no reply.\n");
}

}

140 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

kn_state kn_state

Purpose Sense the Operating State of the KwikNet TCP/IP Stack

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
unsigned int kn_state(unsigned int wstate, unsigned long mswait);

Description This function can be used to determine the current operating state of
KwikNet or to wait until KwikNet reaches a particular state.

Parameter wstate identifies the particular KwikNet state or states of
interest. If wstate is 0, the current KwikNet state will be returned to the
caller without delay. In this case, parameter mswait will be ignored.

If parameter wstate is not 0, the caller will be blocked until the KwikNet
operating state matches one or more of the specified state masks.

Wstate must be the logical OR of one or more of following masks:
KN_TS_IDLE KwikNet is idle (not in use at all).
KN_TS_START KwikNet is starting up.
KN_TS_RUN KwikNet is fully operational.
KN_TS_GODOWN KwikNet shutdown is in progress.
KN_TS_EXIT KwikNet exit is in progress.
KN_TS_STOPPED KwikNet has stopped. This state is fleeting.

KwikNet will immediately enter the idle state.

Mswait is the number of milliseconds which the caller is prepared to wait
for KwikNet to reach any of the specified states. A value of 0 indicates
that the caller will wait forever.

Returns If wstate is 0, the current KwikNet state is returned.
The value will be the logical OR of one or more of the above state masks.

If wstate is not 0, the KwikNet state at the time of the match is returned.
If a timeout occurs or the caller cannot be blocked, the value 0 is returned.

Note States KN_TS_IDLE, KN_TS_START, KN_TS_RUN and KN_TS_STOPPED are
mutually exclusive. State masks KN_TS_GODOWN and KN_TS_EXIT can be
set in conjunction with other state masks.

To detect that KwikNet has fully stopped and is no longer in use, you must
wait with state mask wstate = KN_TS_IDLE.

Restrictions This function will not alter the state of KwikNet. This procedure must not
be called by any function executing in the context of the KwikNet Task.

See Also kn_inet_ifstate()

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 141

kn_udpbind kn_udpbind

Purpose Bind a Local IP Address to a UDP Channel

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
int kn_udpbind(unsigned long udphandle,

struct in_addr *inadrp);

Description Udphandle is a UDP handle acquired with a previous call to
kn_udpopen().

Inadrp is a pointer to a structure containing the IP address, in net endian
form, of the local network interface which you wish to bind to the UDP
channel. All UDP datagrams sent on the UDP channel will be
transmitted on that network interface.

Use IP address 0.0.0.0 to remove the binding, thereby restoring the
UDP channel to the state which existed when the channel was opened.

The BSD structure in_addr is defined in file KN_API.H as follows:

struct in_addr {
unsigned long s_addr; /* IP address (net endian) */
};

Returns If successful, a value of 0 is returned.

If a local network with the specified IP address does not exist, the error
status -1 is returned.

See Also kn_udpopen()

142 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

kn_udpclose kn_udpclose

Purpose Close a UDP Channel

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
int kn_udpclose(unsigned long udphandle);

Description Udphandle is a UDP handle acquired with a previous call to
kn_udpopen(). This handle must not be used after the UDP channel
which it represents has been closed.

Returns If successful, a value of 0 is returned.
On failure, the error status -1 is returned.

Example See example in the description of kn_udpopen().

See Also kn_udpopen()

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 143

kn_udpfree kn_udpfree

Purpose Free a Received UDP Message Packet

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_udpfree(struct knx_udpmsg *msgp);

Description Msgp is a pointer to the UDP message descriptor given to your
application's UDP callback function upon receipt of a UDP datagram.

Returns Nothing

Example See example in the description of kn_udpopen().

See Also kn_udpopen()

144 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

kn_udpopen kn_udpopen

Purpose Open a UDP Channel to Send/Receive UDP Datagrams on a Network

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
unsigned long kn_udpopen(struct in_addr *inadrp,

int fport, int lport,
int (*udprcv)(struct knx_udpmsg *msgp, void *userp),
void *userp);

Description Inadrp is a pointer to a structure containing the IP address, in net endian
form, of the foreign host with whom you wish to communicate using
UDP datagrams. Use IP address 0.0.0.0 to identify any host. The BSD
structure in_addr is defined in file KN_API.H as follows:

struct in_addr {
unsigned long s_addr; /* IP address (net endian) */
};

Fport is the foreign port number for the host with whom you intend to
communicate. If fport is 0, then any UDP datagram from the foreign
host will be accepted on the UDP channel.

Lport is the local port number to be used for communication.

Udprcv is the name of your application callback function which will be
called to process received UDP datagrams. Your function will receive
parameter msgp, a pointer to a UDP message descriptor. The second
parameter, userp, is a copy of the pointer variable userp received as a
parameter in this kn_udpopen() procedure call.

Your UDP callback function must be coded as described in Chapter
4.1. It must return 0 if it accepts the UDP message descriptor. In this
case, the function must free the UDP message descriptor by calling
procedure kn_udpfree() when it has finished processing the datagram.
The callback function must return -1 if it cannot accept the message
descriptor.

Userp is any pointer variable which your udprcv() function might
require. NULL is an acceptable value.

Returns If successful, a non-zero UDP handle is returned.
On failure, a UDP handle of 0L is returned.

Note This procedure uses structure in_addr to hold the IP address so that future
changes in IP address definition can be accommodated without affecting
your application.

...more

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 145

...continued

Example #include "kn_lib.h"

CJ_ID udptaskid; /* UDP Task id */
volatile int udpresult; /* Result passed to task */
struct knx_udpmsg *udpmsgp; /* Saved UDP message pointer */

/* Application UDP callback function */

int myUDPfn(struct knx_udpmsg *msgp, void *userp)
{

if ((long)userp != 0xFEEDFACEL)
return (-1); /* Not my UDP packet */

udpmsgp = msgp; /* Save the message pointer */
udpresult = 0; /* Got a response */
cjtkwake(udptaskid); /* Let UDP Task resume */
return (0); /* Accept the message */

}

/* Application task which sends and receives UDP datagrams*/

void myUDPtask(void)
{

struct in_addr ipaddr; /* IP address */
unsigned long handle; /* UDP channel handle */
char *dp; /* Data pointer */

udptaskid = cjtkid(); /* Provide my task id */
kn_inet_addr("192.168.5.12", &ipaddr); /* Destination */
if ((handle = kn_udpopen(&ipaddr,

45, /* Foreign port */
43, /* Local port */
myUDPfn, (void *)0xFEEDFACEL)) == 0)

return; /* Cannot open UDP channel */

udpresult = -1;
dp = "KwikNet is asking for a UDP response.\n";
if (kn_udpsend(handle, &ipaddr, 45, dp, strlen(dp)) == 0)

{
/* Wait 60 seconds for response */
if (udpresult == -1) /* Reply may be here already */

cjtkwaitm(cjtmconvert(60000L));
if (udpresult == 0)

{
kn_dprintf(0, "Got UDP reply: %s.\n",

udpmsgp->xudpm->datap;);
kn_udpfree(udpmsgp); /* Free the message */
}

}
kn_udpclose(handle); /* Close the UDP channel */

}

See Also kn_udpclose(), kn_udpfree()

146 rev 6 KADAK KwikNet IP/UDP Services

kn_udpsend kn_udpsend

Purpose Send a UDP Datagram on a Network

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
int kn_udpsend(unsigned long udpchannel,

struct in_addr *inadrp, int fport,
char *bufp, int length);

Description Udpchannel is a UDP handle acquired with a previous call to
kn_udpopen().

Inadrp is a pointer to a structure containing the IP address, in net endian
form, of the foreign host to whom you wish to send a UDP datagram.
The BSD structure in_addr is defined in file KN_API.H as follows:

struct in_addr {
unsigned long s_addr; /* IP address (net endian) */
};

Fport is the foreign port number to which you are sending the UDP
datagram.

Bufp is a pointer to a character buffer containing the data bytes which you
wish to send in the UDP datagram.

Length is the number of bytes in the character buffer referenced by bufp.

Returns If successful, a value of 0 is returned.
On failure, the error status -1 is returned.

The most likely reasons for failure are:
Invalid channel id
Destination is not accessible via any local network interface
No packet buffers are available
Length exceeds the maximum supported UDP/IP data segment size.

Note This procedure uses structure in_addr to hold the IP address so that future
changes in IP address definition can be accommodated without affecting
your application.

Example See example in the description of kn_udpopen().

See Also kn_udpopen()

KwikNet IP/UDP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 147

kn_yield kn_yield

Purpose Yield to the KwikNet Task

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
int kn_yield(void);

Description Your single threaded application must regularly yield to the KwikNet Task.
Failure to yield at least at the defined KwikNet clock frequency may result
in poor performance of the TCP/IP stack.

Returns Error status is returned.

The value 1 is returned if the KwikNet Task executes successfully.
The value 0 is returned if the request to execute the KwikNet Task fails.

The return value of 0 indicates that the KwikNet Task cannot be executed
for some reason. For example, if an application ping callback function
calls kn_yield() when it is executed by the KwikNet Task, the call will
fail because the KwikNet Task cannot execute recursively.

Restriction Must only be called in a single threaded system by the App-Task while
executing in the user domain.

See Also kn_addserver()

148 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet IP/UDP Services

ntoh– ntoh–
hton– hton–

Purpose Convert Between Network and Host Endian Forms

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup The macro definitions are in file KN_API.H.
C dependent, in-line assembly language expansions are in file KNZZZCC.H.
#include "KN_LIB.H"

Convert 32-bit values Convert 16-bit values
netlong = htonl(hostlong) netshort = htons(hostshort)
hostlong = ntohl(netlong) hostshort = ntohs(netshort)

Description Hostlong is any 32-bit value in host endian form.
Netlong is any 32-bit value in net endian form.
Hostshort is any 16-bit value in host endian form.
Netshort is any 16-bit value in net endian form.

If the KwikNet Library has been configured for big endian operation, these
macros do nothing since the input values require no conversion.

If the KwikNet Library has been configured for little endian operation, these
macros may expand to a function call, an in-line function expansion or a
series of C statements, depending upon which C compiler is being used.

The goal is always to ensure the fastest possible execution of these
frequently encountered macros. When possible, these macros have been
implemented using in-line assembly language statements generated by the
C compiler. In some cases, the macros generate calls to assembly
language functions of a form supported by the C compiler. As a last
resort, the macros expand to a series of in-line C statements.

Returns The input value converted to opposite endian form.

Restriction These macros can introduce side effects. Therefore, the macro parameters
must not use expressions which include operators such as -- or ++ since
they always produce side effects. You must also avoid using expressions
which include function calls to fetch parameters if the functions can
introduce side effects.

Example See examples in the descriptions of kn_cksum(), kn_dprintf() and
kn_fmt().

KwikNet TCP/IP Sockets KADAK Copyright © 1997-2000 KADAK Products Ltd. 149

5 KwikNet TCP/IP Sockets

5.1 Introduction to KwikNet Sockets
Sockets is an application programming interface (API) which was developed for UNIX
during the early 1980s at University of California, Berkeley. It is primarily used today
for TCP programming. Dozens of books and tutorials are available for sockets
programming, one of the compelling arguments for the use of sockets.

Programmers new to sockets may observe that the sockets API seems unnecessarily
complex. The reasons are historical. Sockets were initially developed to allow
interprocess communication via streaming devices in UNIX environments. One process
would write to a connection socket and another process would read from a socket at the
other end of the connection. Sockets were meant to be a general solution for all types of
data transfer. On many UNIX systems you can actually pass a socket to the file read()
and write() calls in place of a file descriptor.

When the Berkeley researchers wanted to extend the endpoints of the socket beyond the
host system so that processes on two separate systems could talk, they implemented TCP
(as well as other protocols) under the sockets API. The sockets API had to be extended
to indicate the type of service to be provided by the socket. The PF_INET (as opposed to
PF_UNIX) parameter in the socket() call is a vestige of this legacy.

This use of TCP as a carrier for sockets was TCP’s first major popular application outside
of the DARPA projects where it was developed. So in a very real sense, TCP owes its
widespread popularity today to Berkeley UNIX and sockets.

Over the years, many simpler, cleaner TCP APIs have been proposed. However, by the
time TCP became popular on non-UNIX platforms, it was too late. Programmers had
become accustomed to the API and sockets had become the de-facto standard for TCP
programming.

KwikNet Procedure Descriptions

Each procedure in the KwikNet TCP/IP sockets API is described in Chapter 5.4. The
format of each description is identical to that presented in Chapter 4.6 and used to
describe procedures in the KwikNet IP Library.

However, since the KwikNet Sample Program provides a complete working illustration of
how to use each of the KwikNet TCP/IP procedures, examples are not repeated in the
TCP/IP sockets API descriptions presented in Chapter 5.4.

150 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet TCP/IP Sockets

KwikNet Sockets API

The KwikNet TCP sockets API is a subset of that available on UNIX systems. Examples
of networking code from other sockets-based systems can be expected to port easily.
Furthermore, most of the reference material in books and tutorials will also apply to the
KwikNet API.

The KwikNet API has been designed for best use in embedded systems where execution
speed, code size and ease of use are of paramount importance. For these reasons, the
KwikNet sockets API differs from the Berkely sockets API. However, a standard sockets
API is provided with KwikNet and can be used if code compatibility is of utmost concern.

The API differences are minor. All of the procedure names in the KwikNet TCP/IP Stack
are of the form kn_xxxxx(). For example, Berkeley procedure socket() is KwikNet
procedure kn_socket(). This naming convention has been adopted by KADAK to avoid
any conflicts with symbols in your application or your C run-time libraries.

The standard sockets API uses the procedure close() to close a socket. A KwikNet
procedure with this name would conflict with procedure close() in the standard C
library. Consequently, the KwikNet procedure kn_close() must be used to close a socket,
even when using the KwikNet standard sockets API.

To use the KwikNet standard sockets API, include the following statement in your source
modules:

#include "KN_SOCK.H"

To use the Berkeley standard sockets API, include the following statements in your
source modules:

#define KN_BSD_SOCKAPI
#include "KN_SOCK.H"

Socket Addresses

The endpoint of a socket connection is identified using a socket address. The
specification of a socket address is dependent upon the protocol used for communication.
The sockets API uses a generalized sockaddr structure to specify a socket address.
When using the TCP or UDP protocols, it is convenient to cast each sockaddr pointer to
reference the following Internet specific socket address structure:

struct sockaddr_in {
unsigned short sin_family; /* Address family = AF_INET */
unsigned short sin_port; /* TCP: protocol port */
struct in_addr sin_addr; /* TCP: IP address */
char sin_zero[8]; /* TCP: unused (0) */
};

Member sin_family always specifies the Internet Protocol address family (AF_INET),
stored in host endian form. The protocol port number is stored in member sin_port in
net endian form. The protocol IP address is stored in member sin_addr->s_addr in net
endian form. The array sin_zero[] is unused and is ignored by KwikNet.

KwikNet TCP/IP Sockets KADAK rev 6 151

Non-Blocking Sockets

When operations are performed using a socket, the caller requesting the action is usually
forced to wait until the operation completes. The socket is said to be in blocking mode.

KwikNet offers an alternative mode of operation in which the socket action is allowed to
proceed without blocking the caller. In this case, the socket is said to be in non-blocking
mode.

When a socket is created it is placed in blocking mode. Thereafter, your application can
call the sockets procedure kn_setsockopt() to alter the operating mode of the socket.
KwikNet socket option SO_NONBLOCK can be used to place the socket in non-blocking
mode. The same option can be used to restore the socket to blocking mode. Since
SO_NONBLOCK is a unique KwikNet option, it is flagged as non-standard in the summary of
sockets options presented in Chapter 5.3.

KwikNet Error Codes

KwikNet socket procedures return a positive value or 0 if the call is successful or -1 if the
call fails. Procedures which return a socket descriptor return a positive non-zero value if
the call is successful.

Standard sockets procedures also return additional error information in the UNIX global
variable errno. This is the same variable which many standard C libraries use to save
error results. However, KwikNet must coexist with these libraries. Furthermore, since
KwikNet must operate in multitasking environments, it cannot use errno since the results
of operations by different tasks would be indeterminate.

For these reasons, global variable errno is not altered by KwikNet. Instead, the
completion status of each socket operation is recorded within the socket descriptor upon
completion of the operation. This error status is then made available to the caller through
the kn_errno() procedure. Procedure kn_errno() must be used to retrieve KwikNet
error results, even when using the KwikNet standard sockets API.

Unfortunately, procedures kn_socket() and kn_select() have no socket descriptor in
which to save the error code. Hence, you cannot use kn_errno() to retrieve error
information after calls to these procedures.

Error codes returned by kn_errno() are integer values which are a subset of the standard
Berkeley error codes. These error codes are summarized in Appendix B.

152 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet TCP/IP Sockets

5.2 Socket Types

Procedure kn_socket() is used to create a socket. The KwikNet TCP/IP Stack only
supports sockets for use in the communication domain which uses the protocol family
known as the ARPA Internet Protocol, identified as PF_INET .

Two socket types are supported: type SOCK_STREAM for use with the TCP protocol and
type SOCK_DGRAM for use with the UDP protocol.

Stream Socket (for TCP)

A socket of type SOCK_STREAM provides a sequenced, reliable, full duplex connection
between two end points. The local end point is identified using a kn_bind() call. A
stream socket must be in a connected state before any data can be sent or received using
it. A connection is created with a kn_connect() call which identifies the remote end of
the connection. Once connected, data may be transferred using procedures kn_send()
and kn_recv(). Out-of-band data can be transferred using the MSG_OOB option in either
of these calls. Finally, when a session has been completed and the local socket is no
longer required, procedure kn_close() can be used to delete the socket.

The communications protocols used to implement a SOCK_STREAM ensure that data is not
lost or duplicated. If a piece of data accepted by the protocol stack cannot be
successfully delivered within a reasonable length of time, then the connection is
considered broken. The kn_send() or kn_recv() procedures will fail and the socket
will report an error code when subsequently interrogated with a kn_errno() call. Some
protocols include options to keep sockets warm by forcing transmissions roughly every
minute in the absence of other activity. An error is then indicated if no response can be
elicited on an otherwise idle connection for an extended period of time.

Functions kn_sendto(), kn_sendmsg(), kn_recvfrom() and kn_recvmsg() can also be
used to send and receive data once a connection has been established. Since the end
points of a connected socket are known, there is no need to provide the destination
address or storage for the source address when using these functions.

Datagram Socket (for UDP)

A socket of type SOCK_DGRAM provides a connectionless, unreliable method for delivering
messages of a fixed, usually small, maximum length. The messages are called
datagrams. Although the local end point can be identified using a kn_bind() call, it is
not necessary to bind the socket before using it. A SOCK_DGRAM socket allows a datagram
to be sent to a correspondent named in the kn_sendto() call. Datagrams are received
using the kn_recvfrom() procedure which identifies the address from which the data is
received. Finally, when a session has been completed and the local socket is no longer
required, procedure kn_close() can be used to delete the socket.

Although a socket of type SOCK_DGRAM is connectionless, the kn_connect() procedure
can still be used to identify the specific peer with whom a conversation is to be held. The
connection defines the address to which datagrams are to be sent and the only address
from which datagrams are to be received. Furthermore, kn_connect() can be called at
any time to change the connection address. You can also disconnect by calling
kn_connect() with a null (all zeroes) address.

KwikNet TCP/IP Sockets KADAK rev 6 153

Functions kn_sendmsg() and kn_recvmsg() can also be used to send and receive data as
long as your message structure provides the destination address or storage for the source
address. If you have provided a destination address with a kn_connect() call, you can
use function kn_send() to send data to that destination. And you can always use
function kn_recv() to receive data, as long as you do not need to identify the source.

The maximum size of a UDP datagram that KwikNet can send or receive, excluding the
UDP and IP headers, is 1472 bytes. When sending, data is not buffered in the socket. All
of the data presented to the socket for transmission is sent in one UDP datagram. KwikNet
will buffer received UDP datagrams but restricts the total received data to the specified
maximum. When receiving, your application must accept the maximum sized datagram
or risk loss of data.

Using UDP Sockets

Special care must be taken when using a socket of type SOCK_DGRAM with a
connectionless protocol such as UDP. When a UDP socket is created, it is considered
bound to local IP address 0 and port 0. The newly created socket is idle, unable to
receive data from any foreign host.

The UDP socket remains idle, bound to local IP address 0 and port 0, until you explicitly
bind it otherwise using kn_bind() or until you send data. When data is sent using a UDP
socket whose local port is still 0, a unique non-zero port number is automatically bound
to the socket to identify the source of the datagram. The local non-zero port number
identifies the source in all subsequent transmissions. Once the port number is known, the
socket can receive datagrams directed to that port.

Reception is governed by the local IP address and port to which the UDP socket is bound.
As long as the socket is bound to IP address 0, the socket can receive datagrams arriving
on any of the local interfaces. Once bound to a specific IP address, the socket can only
receive datagrams directed to that address. In either case, the datagrams will not be
delivered to the socket unless they are destined for the port to which the socket is bound.

Transmission is governed by the destination to which the UDP socket is connected. A
socket can be connected to a particular foreign address and port using function
kn_connect(). Once connected, any of the socket send functions, including kn_send(),
can be used to send a datagram to the connected host without having to explicitly identify
the destination. However, a socket does not have to be connected prior to sending a
datagram. Whether connected or not, functions kn_sendto() and kn_sendmsg() can
always be used to send a datagram to a specific foreign host.

The UDP socket connection also restricts the datagrams which the socket can receive.
Once the socket has been connected to a specific foreign host, the socket will only
receive datagrams directed to it from that foreign host. The socket can be disconnected
by "connecting" it to foreign IP address 0 and port 0.

Unless you specifically bind a UDP socket to a particular port, a unique port number will
be automatically assigned to the socket the first time the socket is connected or a
datagram is sent via the socket. Normally, KwikNet will not allow you to bind a socket to
a particular port number if that port number is already used by another UDP channel. To
overcome this restriction, you can set the socket SO_REUSEADDR option to allow the port
number to be reused.

154 KADAK KwikNet TCP/IP Sockets

UDP Sockets Examples

The following examples illustrate how a UDP socket can be used in a variety of
circumstances for different purposes.

Example 1

To use a UDP socket to communicate on a specific network with one and only one
foreign host, proceed as follows. Create a UDP socket and use kn_bind() to bind it to a
specific local IP address and port. Then call kn_connect() to establish a logical
connection with the foreign host's IP address and port. Use kn_recv() and kn_send() to
communicate using the socket.

Example 2

A variation of Example 1 will illustrate how logical connections can be manipulated.
Until a connection is established, function kn_send() cannot be used to send a datagram.
However, either kn_sendto() or kn_sendmsg() can be used at any time to send a
datagram to any foreign host without affecting the logical connection. It should also be
noted that function kn_connect() can also be called to change the connection. The
connected foreign host is always used as the destination if a foreign address is not
explicitly provided in a request to send a datagram.

Example 3

To accept datagrams from only the foreign hosts to whom you send a datagram, proceed
as follows. Create a UDP socket and send a datagram to a foreign host using
kn_sendto() or kn_sendmsg(). The socket is immediately given a unique port number
which will be known only to the foreign hosts with which you communicate. Your
socket will receive datagrams from any local network interface provided they are directed
to your particular port. Note that you cannot use function kn_send() to send datagrams
on this socket since the socket is not logically connected.

Note

It is recommended that you use the low level UDP interface
described in Chapter 4.1 to avoid the memory and
execution overhead introduced by the use of sockets.
However, if the TCP protocol and sockets interface is also
required by your application, there is no compelling reason
not to use UDP sockets.

KwikNet TCP/IP Sockets KADAK rev 6 155

5.3 Socket Options
The operation of sockets is controlled by socket level options. Options are always
present at the socket level identified as SOL_SOCKET. KwikNet also supports TCP options
at protocol level IPPROTO_TCP. There are no UDP protocol options. The options are
defined in the file KN_SOCK.H. Procedures kn_getsockopt() and kn_setsockopt() are
used to access and modify these options.

The following options are recognized by KwikNet. Options marked R can be read using
kn_getsockopt(). Options marked W can be modified using kn_setsockopt().
Unmarked options will return an error indication if referenced. The options marked with
> are non-standard extensions offered only by KwikNet.

Option type UDP TCP Purpose
SO_REUSEADDR bool RW RW Local address reuse
SO_ACCEPTCONN bool R Check if socket is a listening socket
SO_KEEPALIVE bool RW Keep connections alive
SO_DONTROUTE bool Routing bypass for outgoing messages
SO_BROADCAST bool RW Permission to transmit broadcast messages
SO_OOBINLINE bool RW Allow out-of-band data in band
SO_LINGER struct RW Linger on close if data present
SO_SNDBUF int RW Buffer size for send
SO_RCVBUF int RW Buffer size for receive
SO_SNDLOWAT int R Buffer low limit for send
SO_RCVLOWAT int R Buffer low limit for receive
SO_SNDTIMEO struct R Timeout limit for send
SO_RCVTIMEO struct R Timeout limit for receive
SO_TYPE int R R Get type of socket
SO_ERROR int R R Get and clear error on a socket
SO_NONBLOCK bool RW RW > Socket operates in non-blocking mode
SO_RXDATA int R > Get received byte count
SO_TXDATA int R > Get untransmitted byte count
SO_MAXMSG int R R > Get maximum message segment size

TCP_NODELAY bool RW Do not delay data send to coalesce data
TCP_NOOPT bool RW Do not send TCP options
TCP_MAXSEG int R Get maximum segment size (MSS)

Option SO_REUSEADDR indicates that the rules used in validating addresses supplied in a
kn_bind() call should allow reuse of local addresses.

Option SO_ACCEPTCONN can be used to determine if a socket is a listening socket, a socket
which accepts requests for connection.

Option SO_KEEPALIVE enables the periodic transmission of messages on a connected
socket. Should the connected party fail to respond to these messages, the connection is
considered broken. A process attempting to read from or write to the socket receives an
error indication.

Option SO_DONTROUTE indicates that outgoing messages should bypass the standard
routing facilities. KwikNet does not support this option.

156 rev 6 KADAK KwikNet TCP/IP Sockets

Option SO_BROADCAST requests permission to send broadcast datagrams on the socket.

Option SO_OOBINLINE, used with protocols that support out-of-band data, requests that
out-of-band data be placed in the normal data queue as it is encountered. The data will
then be accessible with the kn_recv() call without the need to specify the MSG_OOB flag.

Option SO_LINGER controls the action taken when unsent messages remain queued on a
socket at the time a kn_close() request to delete the socket is made. If the socket
promises reliable delivery of data and SO_LINGER is set, KwikNet will block the caller on
the kn_close() attempt until it is able to successfully transmit the data or until it decides
it is unable to do so. A timeout period, termed the linger interval, is specified in the
kn_setsockopt() call at the time option SO_LINGER is enabled. If SO_LINGER is
disabled at the time that a kn_close() request is issued, KwikNet will process the close in
a manner that allows the caller to resume as quickly as possible.

Options SO_SNDBUF and SO_RCVBUF are used to adjust the normal buffer sizes allocated
for send and receive buffers respectively. The buffer size may be increased for high
volume connections or may be decreased to limit the possible backlog of incoming data.
These values reflect the total amount of data which can be buffered at the socket. The
receive buffer size determines the largest TCP window size which the socket will
advertise. The send buffer size determines the maximum number of bytes which can be
held in the socket pending acknowledgment of receipt by the peer. When a socket is
created, KwikNet sets both buffering limits to 8 Kbytes. KwikNet places an absolute limit
of 16 Kbytes on these values.

Options SO_SNDLOWAT and SO_RCVLOWAT set the minimum data count for send and
receive operations respectively. KwikNet sets each of these values to 1. The values can be
read if required.

Options SO_SNDTIMEO and SO_RCVTIMEO set a timeout value for send and receive
operations respectively. Since KwikNet does not support timeouts for send or receive, it
reports a timeout value of 0 when either value is read.

Option SO_TYPE can be used to determine the type of the socket: SOCK_STREAM or
SOCK_DGRAM. This option is useful for servers that inherit sockets created by other
processes.

Option SO_ERROR can be used to fetch the most recent error code recorded in the socket.
The socket's error code is then reset (cleared). This option is useful for checking for
asynchronously occurring socket errors.

KwikNet TCP/IP Sockets KADAK rev 6 157

Non-Standard Socket Options

The non-standard option SO_NONBLOCK can be used to set a socket into non-blocking
mode so that the socket user will not be forced to wait if a requested operation cannot be
completed at the time of the request. It can also be used to restore a socket to blocking
mode so that the socket user will be forced to wait until the requested operation
completes. This option's integer parameter is non-zero for non-blocking mode or zero for
blocking mode.

Non-standard option SO_RXDATA can be used to determine the number of bytes present in
the socket's receive buffer, ready to be read.

Non-standard option SO_TXDATA can be used to determine the number of bytes still in the
socket's transmit buffer, waiting to be sent when conditions permit. Note that bytes
which have been sent to the peer but not yet acknowledged are not included in this count.

Non-standard option SO_MAXMSG can be used to determine the maximum segment size
(MSS) in bytes, excluding protocol headers, which can be sent via the network using the
socket. When a TCP or UDP socket is created, the MSS is set according to the largest
possible datagram that can be sent on any of the locally available networks.

Once a TCP connection is initiated, the MSS is downwards adjusted to match the largest
datagram which can be sent using the connection's local network interface. The MSS is
further adjusted downwards if necessary to prevent exceeding the peer's MSS.

The MSS of a UDP socket can be read but cannot be adjusted. If a maximum size UDP
datagram must be sent out a local network interface which has a smaller maximum
datagram size (smaller MTU), the datagram will be fragmented at the IP layer. If IP
fragmentation is not enabled, the UDP datagram will be lost, with no error indication.

TCP Protocol Options

Option TCP_NODELAY can be used to adjust the way the TCP protocol sends data.
Normally, data is allowed to collect in the socket until a reasonable packet of data can be
delivered to the peer. The data threshold is determined by the receive window size
announced by the peer. This throttling mechanism assures reasonable delivery times
without large numbers of small packets. The TCP_NODELAY option can be used to
override this mechanism and force data to be sent whenever it is available.

Option TCP_NOOPT can be used to prevent the TCP protocol from sending TCP options
when a connection is established. If TCP options are inhibited using this option, the local
maximum segment size (MSS) will not be announced to the peer.

Option TCP_MAXSEG can be used to determine the socket's maximum segment size (MSS)
for transmission. This option is the TCP protocol equivalent of the non-standard
SO_MAXMSG option which is available at the socket level.

158 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet TCP/IP Sockets

This page left blank intentionally.

KwikNet TCP/IP Sockets KADAK Copyright © 1997-2000 KADAK Products Ltd. 159

5.4 KwikNet Socket Services

KwikNet Socket Service Summary

The following list summarizes all of the KwikNet sockets procedures which are accessible
to the user. They are grouped functionally for easy reference.

kn_socket Create a socket (an endpoint for communication)
kn_bind Bind a local address to a socket
kn_connect Connect a socket to a specific address
kn_listen Request a socket to listen for connection requests
kn_accept Accept a connection request and establish a new socket
kn_close Close a socket

kn_recv Receive data from a connected socket
kn_recvfrom Receive data from a socket (gets sender's address)
kn_recvmsg Receive scattered data from a socket (gets sender's address)

kn_send Send data to a socket
kn_sendto Send data to a socket (with destination address)
kn_sendmsg Send scattered data to a socket (with destination address)

kn_errno Fetch most recent status result (error) recorded for a socket
kn_shutdown Shutdown all or part of a full duplex socket connection
kn_select Select sockets ready to receive or send data

kn_getpeername Get the address of the remote end of a connected socket
kn_getsockname Get the local address of a socket
kn_getsockopt Get a particular socket option
kn_setsockopt Set a particular socket option

The following BSD-like services, available from the KwikNet IP Library, are also of use
when programming applications which use TCP as their protocol.

netlong = htonl(hostlong) Convert long from host to network endian form
netshort = htons(hostshort) Convert short from host to network endian form
hostlong = ntohl(netlong) Convert long from network to host endian form
hostshort = ntohs(netshort) Convert short from network to host endian form

160 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet TCP/IP Sockets

This page left blank intentionally.

KwikNet TCP/IP Sockets KADAK Copyright © 1997-2000 KADAK Products Ltd. 161

kn_accept kn_accept

Purpose Accept a Connection Request

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SOCK.H.
#include "KN_SOCK.H"
int kn_accept(int s, struct sockaddr *addr, int *addrlen);

Description S is a socket descriptor identifying the socket on which to wait. The
socket s must have been created with a call to kn_socket(), bound to
an address with a call to kn_bind() and then made ready to receive
connection requests with a call to kn_listen().

Addr is a pointer to storage for the address of the client making the request
for connection. The format of the IP address in structure sockaddr is
defined in header file KN_SOCK.H.

Addrlen is a pointer to storage for the length of the client address. On
entry, the integer at *addrlen must define the maximum storage
available within the structure referenced by addr.

If a request for connection is pending at socket s, kn_accept() creates
a new socket with the same properties as socket s and returns the
socket descriptor of the new socket to the caller. The new socket must
be used for data transfers to or from the client to which the new socket
is connected. The new socket cannot be used to accept more
connections.

In most cases, the kn_accept() caller will be forced to wait for a
connection request if none is pending at the time of the call. However,
if the socket s was marked as non-blocking, kn_accept() will return
immediately to the caller with an error indication if an outstanding
connection request is not present. Socket s remains open listening for
connection requests.

Returns If successful, a positive, non-zero socket descriptor is returned.
The structure at *addr contains the client's address.
The length of the address (in bytes) is stored at *addrlen.

...more

162 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet TCP/IP Sockets

Returns ...continued

On failure, the error status -1 is returned. The storage at *addr and
*addrlen is unaltered.

The error indicator for socket s is set to define the reason for failure. Use
kn_errno() to retrieve the error code.

EBADF The socket descriptor s is invalid.
EINVAL The socket is no longer accepting connections or

parameter *addrlen specifies a length that is less
than that required to accommodate a valid address.

ECONNABORTED The connection was aborted.
EOPNOTSUPP The referenced socket is not of type SOCK_STREAM.
EWOULDBLOCK The socket is marked non-blocking and no requests

for connection are present to be accepted.
ENOMEM Memory needed to service the request is unavailable.

See Also kn_bind(), kn_listen(), kn_socket()

KwikNet TCP/IP Sockets KADAK Copyright © 1997-2000 KADAK Products Ltd. 163

kn_bind kn_bind

Purpose Bind a Local Address to a Socket

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SOCK.H.
#include "KN_SOCK.H"
int kn_bind(int s, struct sockaddr *localaddr, int addrlen);

Description S is a socket descriptor identifying the socket to be bound.

Localaddr is a pointer to a structure containing the local address to which
the socket must be bound. The format of the IP address in structure
sockaddr is defined in header file KN_SOCK.H.

If localaddr is NULL, a null (all zeroes) address in the AF_INET
address family will be used and parameter addrlen will be ignored.

Addrlen is the length of the address at *localaddr, measured in bytes.

Returns If successful, a value of 0 is returned.
On failure, the error status -1 is returned.

The error indicator for socket s is set to define the reason for failure. Use
kn_errno() to retrieve the error code.

EBADF The socket descriptor s is invalid.
EADDRNOTAVAIL The specified address is not available from the

local machine.
EADDRINUSE The specified address is already in use.
EINVAL The socket is already bound to an address or

parameter addrlen is invalid.
ENOMEM Memory needed to service the request is unavailable.

Note When a socket of type SOCK_DGRAM is bound to the address identified by
localaddr, the socket is immediately primed to receive datagrams
directed to that address from any foreign source.

See Also kn_accept(), kn_getsockname(), kn_listen(), kn_socket()

164 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet TCP/IP Sockets

kn_close kn_close

Purpose Close a Socket

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SOCK.H.
#include "KN_SOCK.H"
int kn_close(int s);

Description S is a socket descriptor identifying the socket to be closed.

When a socket is closed, associated naming information and queued
data are discarded.

Returns If successful, a value of 0 is returned.

On failure, the error status -1 is returned.

The error indicator for socket s is set to define the reason for failure. Use
kn_errno() to retrieve the error code.

EBADF The socket descriptor s is invalid.

See Also kn_socket()

KwikNet TCP/IP Sockets KADAK Copyright © 1997-2000 KADAK Products Ltd. 165

kn_connect kn_connect

Purpose Connect a Socket to a Specific Address

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SOCK.H.
#include "KN_SOCK.H"
int kn_connect(int s, struct sockaddr *destaddr, int addrlen);

Description S is a socket descriptor identifying the socket to which the specified
address is to be bound.

Destsddr is a pointer to a structure containing the specific address to
which the socket must be bound. The format of the IP address in
structure sockaddr is defined in header file KN_SOCK.H.

Addrlen is the length of the address at *destaddr, measured in bytes.

If socket s is of type SOCK_STREAM, then an attempt will be made to
establish a connection with the address specified in the call. Stream
sockets may successfully connect only once.

If socket s is of type SOCK_DGRAM, then *destaddr specifies the
address of the peer with which the socket is to be associated. This is
the address to which datagrams are to be sent and is the only address
from which datagrams are to be received. For datagram sockets, you
can call kn_connect() at any time to change the connection address.
To disconnect a datagram socket, call kn_connect() passing it a null
(all zeroes) address.

Returns If successful, a value of 0 is returned.
On failure, the error status -1 is returned.

...more

166 rev 6 KADAK KwikNet TCP/IP Sockets

Returns ...continued

The error indicator for socket s is set to define the reason for failure. Use
kn_errno() to retrieve the error code.

EBADF The socket descriptor s is invalid.
EADDRNOTAVAIL The specified address is not available from the

local machine or a broadcast address is not allowed
as a destination for this socket.

EADDRINUSE The specified address is already in use.
EAFNOSUPPORT Addresses in the address family specified by

*destaddr cannot be used with this socket.
EINVAL The socket is already bound to an address or

parameter addrlen is invalid.
EISCONN The socket is already connected.
ETIMEDOUT Timed out before connection could be established.
ECONNREFUSED The attempt to connect was forcefully rejected.
EINPROGRESS The socket is non-blocking and the connection cannot

be established immediately.
EALREADY The socket is non-blocking and a previous connection

attempt is in progress but is not yet complete.
EOPNOTSUPP The operation is not supported by this socket.
ENOMEM Memory needed to service the request is unavailable.

See Also kn_bind(), kn_getsockname(), kn_select(), kn_socket()

KwikNet TCP/IP Sockets KADAK Copyright © 1997-2000 KADAK Products Ltd. 167

kn_errno kn_errno

Purpose Get Error Code from Recent Socket Operation

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SOCK.H.
#include "KN_SOCK.H"
int kn_errno(int s);

Description S is a socket descriptor identifying the socket from which error
information is to be retrieved.

Returns If successful, a positive error code is returned. These error codes are
summarized in Appendix B. The error code identifies the reason for the
failure, if any, of the most recent operation attempted using socket s.

An error status of EBADF is returned if the socket descriptor s is invalid,
precluding the interrogation of the socket.

 Usually the error code retrieved from socket s corresponds to the result of
the most recent sockets call made by your application. However, since
KwikNet always records any relevant socket error which it detects, your call
to kn_errno() may actually retrieve an error code recorded by KwikNet at
some time after your socket operation. You can use this feature to
advantage to interrogate the status of a listening socket while it continues
to operate.

The following error codes, if observed, indicate that the corresponding
error was detected by KwikNet asynchronously to your application.

EPIPE Cannot send any more data.
ESHUTDOWN The connection has been shutdown.
EHAVEOOB Have received out-of-band data.
ECONNRESET The connection has been reset.

Note The error code associated with socket s remains unaltered. To read the
error code and reset the error code to 0, call kn_getsockopt() with
option SO_ERROR.

See Also kn_getsockopt()

168 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet TCP/IP Sockets

kn_getpeername kn_getpeername

Purpose Get the Address (Name) of the Remote End of a Connected Socket

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SOCK.H.
#include "KN_SOCK.H"
int kn_getpeername(int s, struct sockaddr *destaddr,

int *addrlen);

Description S is a socket descriptor identifying the socket for which the remote end
(peer) address is desired.

Destaddr is a pointer to storage for the address of the remote end of the
current connection on socket s. The format of the IP address in
structure sockaddr is defined in header file KN_SOCK.H.

Addrlen is a pointer to storage for the length of the remote address. On
entry, the integer at *addrlen must define the maximum storage
available within the structure referenced by destaddr.

Returns If successful, a value of 0 is returned.
The structure at *destaddr contains the remote end address.
The length of the address (in bytes) is stored at *addrlen.

On failure, the error status -1 is returned. The storage at *destaddr and
*addrlen is unaltered.

The error indicator for socket s is set to define the reason for failure. Use
kn_errno() to retrieve the error code.

EBADF The socket descriptor s is invalid.
ENOMEM Memory needed to service the request is unavailable.
ENOTCONN The socket is not connected.
EINVAL Parameter *addrlen specifies a length that is less

than that required to accommodate a valid address.

See Also kn_connect(), kn_getsockname(), kn_socket()

KwikNet TCP/IP Sockets KADAK Copyright © 1997-2000 KADAK Products Ltd. 169

kn_getsockname kn_getsockname

Purpose Get the Local Address (Name) of a Socket

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SOCK.H.
#include "KN_SOCK.H"
int kn_getsockname(int s, struct sockaddr *localaddr,

int *addrlen);

Description S is a socket descriptor identifying the socket for which the local address
is desired.

Localaddr is a pointer to storage for the local address assigned to
socket s. The format of the IP address in structure sockaddr is defined
in header file KN_SOCK.H.

Addrlen is a pointer to storage for the length of the local address. On
entry, the integer at *addrlen must define the maximum storage
available within the structure referenced by localaddr.

Returns If successful, a value of 0 is returned.
The structure at *localaddr contains the local address.
The length of the address (in bytes) is stored at *addrlen.

On failure, the error status -1 is returned. The storage at *localaddr and
*addrlen is unaltered.

The error indicator for socket s is set to define the reason for failure. Use
kn_errno() to retrieve the error code.

EBADF The socket descriptor s is invalid.
ENOMEM Memory needed to service the request is unavailable.
EINVAL Parameter *addrlen specifies a length that is less

than that required to accommodate a valid address.

See Also kn_bind(), kn_getpeername(), kn_socket()

170 rev 6 KADAK KwikNet TCP/IP Sockets

kn_getsockopt kn_getsockopt

Purpose Get a Particular Socket Option

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SOCK.H.
#include "KN_SOCK.H"
int kn_getsockopt(int s, int level, int optionid,

void *optionval, int *optionlen);

Description S is a socket descriptor identifying the socket for which the particular
socket information is desired.

Level is an identifier indicating the socket or protocol level for which
information is required. Use SOL_SOCKET for the highest, socket level
information. Use IPPROTO_TCP for TCP protocol level information.
Options for other protocol levels are not supported.

Optionid identifies the option of interest to the caller. The following
option identifiers can be used to determine the state of the option or to
retrieve its associated parameter. These options are described in
Chapter 5.3. Options marked > are non-standard KADAK extensions.
Only one option can be specified in each call.

SO_REUSEADDR bool UDP TCP Local address reuse
SO_ACCEPTCONN bool TCP Check for listening socket
SO_KEEPALIVE bool TCP Keep connections alive
SO_BROADCAST bool UDP Permission to broadcast messages
SO_OOBINLINE bool TCP Allow out-of-band data in band
SO_LINGER struct TCP Linger on close if data present
SO_SNDBUF int TCP Buffer size for send
SO_RCVBUF int TCP Buffer size for receive
SO_SNDLOWAT int TCP Buffer low limit for send
SO_RCVLOWAT int TCP Buffer low limit for receive
SO_SNDTIMEO struct TCP Timeout limit for send
SO_RCVTIMEO struct TCP Timeout limit for receive
SO_TYPE int UDP TCP Get type of socket
SO_ERROR int UDP TCP Get and clear error on a socket
SO_NONBLOCK bool UDP TCP > Socket is non-blocking mode
SO_RXDATA int TCP > Get received byte count
SO_TXDATA int TCP > Get untransmitted byte count
SO_MAXMSG int UDP TCP > Get maximum message segment size

TCP_NODELAY bool TCP Do not delay send to coalesce data
TCP_NOOPT bool TCP Do not send TCP options
TCP_MAXSEG int TCP Get maximum segment size (MSS)

...more

KwikNet TCP/IP Sockets KADAK Copyright © 1997-2000 KADAK Products Ltd. 171

Description ...continued

Optionval is a pointer to storage for the option value. The size of each
option is indicated in the option list. Note that bool is an int result
that is non-zero if the option is enabled or 0 if the option is disabled.
The structure linger required by option SO_LINGER is defined in
header file KN_SOCK.H. The structure timeval required by options
SO_SNDTIMEO and SO_RCVTIMEO is defined in header file KN_SOCK.H.

Optionlen is a pointer to storage for the length of the returned option
value. On entry, the integer at *optionlen must define the maximum
storage available at the location referenced by optionval.

Returns If successful, a value of 0 is returned.
The storage at *optionval contains the option value.
The length of the option value (in bytes) is stored at *optionlen.

On failure, the error status -1 is returned. The storage at *optionval and
*optionlen is unaltered.

The error indicator for socket s is set to define the reason for failure. Use
kn_errno() to retrieve the error code.

EBADF The socket descriptor s is invalid.
ENOPROTOOPT The option is unknown at the level indicated.
EINVAL Parameter *optionlen specifies a length that is less

than that required to accommodate the result.

See Also kn_setsockopt(), kn_socket()

172 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet TCP/IP Sockets

kn_listen kn_listen

Purpose Request a Socket to Listen for Connection Requests

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SOCK.H.
#include "KN_SOCK.H"
int kn_listen(int s, int backlog);

Description S is a socket descriptor identifying the socket on which requests for
connection will be enqueued. The socket s must have been created
with a call to kn_socket() and bound to an address with a call to
kn_bind(). The socket must be of type SOCK_STREAM.

Backlog is the maximum number of pending connection requests which
the socket is permitted to queue. Backlog must be greater than or
equal to 0 and no greater than the maximum allowed by your KwikNet
library configuration.

Any request for a connection to the socket will be permitted up to the
maximum specified by backlog. Requests are kept in a queue in the
order received. When the application calls accept(), it is given a new
socket connected to the client from whom the connection request was
received.

If a request for connection is received while the socket queue is full, the
request is rejected. Subsequent actions, if any, will be determined by
the client whose request was rejected.

Returns If successful, a value of 0 is returned.
On failure, the error status -1 is returned.

The error indicator for socket s is set to define the reason for failure. Use
kn_errno() to retrieve the error code.

EBADF The socket descriptor s is invalid.
EINVAL The connection queue specified by backlog is < 0 or

greater than the maximum allowed by your KwikNet
library configuration.

EOPNOTSUPP The operation is not supported by a socket unless the
socket is of type SOCK_STREAM.

See Also kn_accept(), kn_bind(), kn_socket()

KwikNet TCP/IP Sockets KADAK rev 6 173

kn_recv kn_recv

Purpose Receive Data from a Connected Socket

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SOCK.H.
#include "KN_SOCK.H"
int kn_recv(int s, void *buf, int len, int flags);

Description S is a socket descriptor identifying the connected socket from which data
is to be received.

Buf is a pointer to storage for the received data.

Len is the buffer size, measured in bytes.

Flags is a control variable used to modify the receive process. Flags is 0
or the logical OR of any of the following values.

MSG_OOB Read out-of-band data.
MSG_PEEK Peek at the received data but do not remove the data

from the socket.
MSG_DONTWAIT Receive in non-blocking fashion.

Returns If successful, the number of bytes of data stored at *buf is returned.
If the socket is closed by the sender, the value 0 is returned.
On failure, the error status -1 is returned.

The error indicator for socket s is set to define the reason for failure. Use
kn_errno() to retrieve the error code.

EBADF The socket descriptor s is invalid.
ENOTCONN The socket is not connected.
ECONNRESET The connection has been reset.
EINVAL The buffer length len is declared to be less than 0 or

an error was encountered while processing
out-of-band data

EWOULDBLOCK The socket is marked non-blocking or flags specifies
MSG_DONTWAIT and no data is available for reading.

Restrictions If there is no data available at the socket, the caller will be blocked waiting
for data to arrive unless the socket s is marked as non-blocking. In the
latter case, the caller will resume with a -1 error status and the error code
EWOULDBLOCK will be stored in the socket descriptor.

See Also kn_connect(), kn_recvfrom(), kn_recvmsg(),
kn_send(), kn_sendto(), kn_sendmsg(), kn_socket()

174 rev 6 KADAK KwikNet TCP/IP Sockets

kn_recvfrom kn_recvfrom

Purpose Receive Data from a Socket

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SOCK.H.
#include "KN_SOCK.H"
int kn_recvfrom(int s, void *buf, int len, int flags,

struct sockaddr *from, int *fromlen);

Description S is a socket descriptor identifying the socket from which data is to be
received. The socket can be connected or unconnected.

Buf is a pointer to storage for the received data.

Len is the buffer size, measured in bytes.

Flags is a control variable used to modify the receive process. Flags is 0
or the logical OR of any of the following values.

MSG_OOB Read out-of-band data.
MSG_PEEK Peek at the received data but do not remove the data

from the socket.
MSG_DONTWAIT Receive in non-blocking fashion.

From is a pointer to storage for the address of the source of the received
data. The format of the IP address in structure sockaddr is defined in
header file KN_SOCK.H.

The purpose of this parameter is to allow the sender to be identified
when using a connectionless socket such as that used for UDP
datagrams on a socket of type SOCK_DGRAM. The format of the address
is suitable for sending a response using procedure kn_sendto(). Set
from to NULL if the address of the message sender is not required.

When using a TCP socket, set parameter from to NULL and be sure to
connect before calling this function. Alternatively use procedure
kn_recv().

Fromlen is a pointer to storage for the length of the sender's address. On
entry, the integer at *fromlen must define the maximum storage
available within the structure referenced by from. If parameter from is
set to NULL, set parameter fromlen to NULL also.

...more

KwikNet TCP/IP Sockets KADAK rev 6 175

Returns If successful, the number of bytes of data stored at *buf is returned.
If the socket is closed by the sender, the value 0 is returned.
The structure at *from contains the sender's address.
The length of the address (in bytes) is stored at *fromlen.

On failure, the error status -1 is returned. The storage at *from and
*fromlen is unaltered.

The error indicator for socket s is set to define the reason for failure. Use
kn_errno() to retrieve the error code.

EBADF The socket descriptor s is invalid.
ENOTCONN The socket is not connected.
ECONNRESET The connection has been reset.
EINVAL The buffer length len is declared to be less than 0 or

parameter *fromlen specifies a length that is less
than that required to accommodate a valid address or
an error was encountered while processing
out-of-band data

EWOULDBLOCK The socket is marked non-blocking or flags specifies
MSG_DONTWAIT and no data is available for reading.

Restrictions If there is no data available at the socket, the caller will be blocked waiting
for data to arrive unless the socket s is marked as non-blocking. In the
latter case, the caller will resume with a -1 error status and the error code
EWOULDBLOCK will be stored in the socket descriptor.

See Also kn_connect(), kn_recv(), kn_recvmsg(),
kn_send(), kn_sendto(), kn_sendmsg(), kn_socket()

176 rev 6 KADAK KwikNet TCP/IP Sockets

kn_recvmsg kn_recvmsg

Purpose Receive Scattered Data from a Socket

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SOCK.H.
#include "KN_SOCK.H"
int kn_recvmsg(int s, struct msghdr *msg, int flags);

Description S is a socket descriptor identifying the socket from which data is to be
received. The socket can be connected or unconnected.

Flags is a control variable used to modify the receive process. Flags is 0
or the logical OR of any of the following values.

MSG_OOB Read out-of-band data.
MSG_PEEK Peek at the received data but do not remove the data

from the socket.
MSG_DONTWAIT Receive in non-blocking fashion.

Msg is a pointer to a structure defining the manner in which the received
data should be processed. Structure msghdr is defined in file
KN_SOCK.H as follows:

struct msghdr {
struct sockaddr *msg_name; /* Socket address */
long msg_namelen; /* Length of address */
struct iovec *msg_iov; /* Data vector array */
long msg_iovlen; /* # of entries in msg_iov */
char *msg_control; /* Control data */
int msg_controllen; /* Length of control data */
int msg_flags; /* Received flags */
};

Msg_name is a pointer to storage for the address of the source of the
received data. The format of the IP address in structure sockaddr is
defined in header file KN_SOCK.H.

The purpose of this parameter is to allow the sender to be identified
when using a connectionless socket such as that used for UDP
datagrams on a socket of type SOCK_DGRAM. The format of the address
is suitable for sending a response using procedure kn_sendmsg(). Set
msg_name to NULL if the address of the message sender is not required.

When using a TCP socket, set msg_name to NULL and be sure to connect
before calling this function.

...more

KwikNet TCP/IP Sockets KADAK rev 6 177

Description ...continued

Msg_namelen is the length of the sender's address. On entry,
msg_namelen must define the maximum storage available within the
structure referenced by msg_name. If parameter msg_name is set to
NULL, set parameter msg_namelen to 0.

Msg_iov is a pointer to an array of data vectors describing the locations of
storage buffers for the received data. Each data vector is an iovec
structure which is defined in file KN_SOCK.H as follows:

struct iovec {
void *iov_base; /* Data pointer */
long iov_len; /* Length of data */
};

Iov_base is a pointer to storage for the received data.

Iov_len is the data buffer size, measured in bytes.

Msg_iovlen is an integer defining the number of data vectors (iovec
structures) which are provided in the array referenced by parameter
msg_iov.

Msg_control is a pointer to storage for additional control information
received along with the message. If control data is not required, set
msg_control to NULL. This parameter is not used by KwikNet since it is
not required for any of the supported sockets protocols.

Msg_controllen is the length, in bytes, of the control data storage buffer.
On entry, msg_controllen must define the maximum storage available
within the structure referenced by msg_control. If parameter
msg_control is set to NULL, set parameter msg_controllen to 0.

Msg_flags is an extra variable received along with the message. This
variable is not supported by KwikNet since it is not provided by any of
the supported sockets protocols. Msg_flags will be undefined on
return.

...more

178 rev 6 KADAK KwikNet TCP/IP Sockets

Returns If successful, the total number of bytes of data received is returned.
If the socket is closed by the sender, the value 0 is returned.
The structure at *msg_name contains the sender's address.
The length of the address (in bytes) is stored at msg_namelen.
The array of iovec structures at *msg_iov is altered as described below.
Fields *msg_control, msg_controllen and msg_flags are not altered.

As data is received, the array of data vectors is updated. The data pointer
in each data vector is incremented by n where n is the number of data
bytes received using that vector. The corresponding data vector length
parameter is decremented by n. Hence, upon return, the data vectors will
have been updated to reflect the total number of bytes which have been
received. Since the data vectors are updated, you cannot use them after
the call to examine the received data.

Under error conditions, the data vectors may have been updated before the
error was detected and reported. If all of the expected data bytes have not
been received, you can issue another call to kn_recvmsg() to receive the
remaining bytes of data without altering the data vector array.

On failure, the error status -1 is returned. The storage at *msg_name and
msg_namelen is unaltered.

The error indicator for socket s is set to define the reason for failure. Use
kn_errno() to retrieve the error code.

EBADF The socket descriptor s is invalid.
ENOTCONN The socket is not connected.
ECONNRESET The connection has been reset.
EINVAL The buffer length in a data vector was declared to be

less than 0 or parameter msg_namelen specifies a
length that is less than that required to accommodate
a valid address or an error was encountered while
processing out-of-band data.

EWOULDBLOCK The socket is marked non-blocking or flags specifies
MSG_DONTWAIT and no data is available for reading.

Restrictions If there is no data available at the socket, the caller will be blocked waiting
for data to arrive unless the socket s is marked as non-blocking. In the
latter case, the caller will resume with a -1 error status and the error code
EWOULDBLOCK will be stored in the socket descriptor.

On 16-bit processors, the amount of data which can be received is
restricted to 32767 bytes because the value returned by kn_recvmsg() is a
signed integer.

See Also kn_connect(), kn_recv(), kn_recvfrom(),
kn_send(), kn_sendto(), kn_sendmsg(), kn_socket()

KwikNet TCP/IP Sockets KADAK rev 6 179

kn_select kn_select

Purpose Select Sockets Ready for Receive or Send

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SOCK.H.
#include "KN_SOCK.H"
int kn_select(int nfds, fd_set *readfds,

fd_set *writefds,
fd_set *exceptfds,
struct timeval *timeout);

Description Nfds indicates the number of descriptors which are to be examined in each
descriptor set. For example, if your descriptor sets identify sockets 2, 3
and 5, parameter nfds should be 5. For convenience, if nfds is -1,
KwikNet will examine all sockets identified in each descriptor set.

Readfds is a pointer to a descriptor set which, on entry, identifies the
sockets to be interrogated. Upon return, the descriptor set at *readfds
will be updated to identify which of the interrogated sockets have
received data ready to be read. A socket will also be declared ready to
read if an error other than EINPROGRESS or EWOULDBLOCK is recorded in
the socket while the socket is selected. Set this parameter to NULL to
ignore sockets which are ready to be read.

Writefds is a pointer to a descriptor set which, on entry, identifies the
sockets to be interrogated. Upon return, the descriptor set at
*writefds will be updated to identify which of the interrogated
sockets have no data remaining to be sent. Such sockets are ready for
sending more data. A socket will also be declared ready for sending if
an error other than EINPROGRESS is recorded in the socket while the
socket is selected. Set this parameter to NULL to ignore sockets which
are ready for sending.

Exceptfds is a pointer to a descriptor set which, on entry, identifies the
sockets to be interrogated. Upon return, the descriptor set at
*exceptfds will be updated to identify which of the interrogated
sockets have outstanding exceptions present. KwikNet treats recorded
errors other than EINPROGRESS and EWOULDBLOCK as exceptions.
KwikNet also reports an exception if out-of-band data has been received.
Set exceptfds to NULL to ignore sockets with outstanding exceptions.

Timeout is a pointer to a structure which defines the interval for which the
caller is prepared to wait for at least one socket to meet the selected
criteria. Set timeout to NULL to wait forever. Set the interval value to
0 to return immediately if no sockets are ready.

...more

180 rev 6 KADAK KwikNet TCP/IP Sockets

Description ...continued

Structure timeval is defined in file KN_SOCK.H as follows:

struct timeval {
unsigned long tv_sec; /* Number of seconds */
unsigned long tv_usec; /* Number of microseconds */
};

Type fd_set is defined by a typedef in file KN_SOCK.H. Variables of
type fd_set can be manipulated using the following macros which are
defined in file KN_SOCK.H. In the descriptions which follow, fdset is a
variable of type fd_set and s is a valid socket descriptor.

FD_SET(s, &fdset) Set socket s identifier in variable fdset.
FD_CLR(s, &fdset) Clear socket s identifier in variable fdset.
FD_ISSET(s, &fdset) Test socket s identifier in variable fdset.
FD_ZERO(&fdset) Clear all socket identifiers in variable fdset.

Use FD_ZERO to reset (clear) all socket identifiers in a descriptor set.
Use FD_SET to identify the specific sockets to be interrogated.
FD_ISSET returns a non-zero value if the identifier for socket s is set or
zero if the identifier for socket s is clear.

The behaviour of these macros is undefined if the socket descriptor s is
invalid.

Note that the structure and parameter names are derived from UNIX for
which this procedure interrogates both files and sockets.

Returns If successful, this procedure returns the total number of ready sockets
identified in the descriptor sets. The variables *readfds, *writefds and
*exceptfds are updated to identify the subset of the sockets specified by
the caller which match their respective criteria.

On failure, the error status -1 is returned. Unfortunately, the error
indicator defining the reason for failure cannot be recorded. You cannot
use kn_errno() to retrieve the error code since you do not have a unique
socket descriptor to interrogate. The following error codes, although not
available for testing, still define the possible reasons for failure.

EBADF A socket descriptor in one of the sets is invalid.
EINVAL The timeout parameter is invalid.

See Also kn_socket()

KwikNet TCP/IP Sockets KADAK rev 6 181

kn_send kn_send

Purpose Send Data to a Connected Socket

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SOCK.H.
#include "KN_SOCK.H"
int kn_send(int s, void *buf, int len, int flags);

Description S is a socket descriptor identifying the connected socket to which data is to
be sent.

Buf is a pointer to the buffer of data to be sent.

Len is the buffer size, measured in bytes.

Flags is a control variable used to modify the send process. Flags is 0 or
the logical OR of any of the following values.

MSG_OOB Allow sending of out-of-band data.
MSG_DONTWAIT Send message in non-blocking fashion.

Returns If successful, the number of bytes of data sent from *buf is returned.
On failure, the error status -1 is returned.

The error indicator for socket s is set to define the reason for failure. Use
kn_errno() to retrieve the error code.

EBADF The socket descriptor s is invalid.
ENOTCONN The socket is not connected.
ECONNRESET The connection has been reset.
EPIPE Cannot send any more out socket s.
EINVAL The buffer length len is declared to be less than 0 or

is invalid for the socket's protocol.
EWOULDBLOCK The socket is marked non-blocking or flags specifies

MSG_DONTWAIT but there is a need to block the caller
to complete the operation.

EMSGSIZE The message is larger than the maximum which can
be sent atomically as required by the socket protocol.

ENOBUFS Memory is not available to complete the request.
EDESTADDRREQ A destination is required but is not available.

Restrictions If the message data cannot be delivered in its entirety to the socket, the
caller will be blocked unless the socket s is marked as non-blocking. In
the latter case, the caller will resume with a -1 error status and the error
code EWOULDBLOCK will be stored in the socket descriptor.

See Also kn_connect(), kn_recv(), kn_recvfrom(), kn_recvmsg(),
kn_sendto(), kn_sendmsg(), kn_socket()

182 rev 6 KADAK KwikNet TCP/IP Sockets

kn_sendmsg kn_sendmsg

Purpose Send Scattered Data to a Socket

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SOCK.H.
#include "KN_SOCK.H"
int kn_sendmsg(int s, struct msghdr *msg, int flags);

Description S is a socket descriptor identifying the socket to which data is to be sent.
The socket can be connected or unconnected.

Flags is a control variable used to modify the send process. Flags is 0 or
the logical OR of any of the following values.

MSG_OOB Allow sending of out-of-band data.
MSG_DONTWAIT Send message in non-blocking fashion.

Msg is a pointer to a structure defining the data to be sent and how it
should be processed. Structure msghdr is defined in file KN_SOCK.H as
follows:

struct msghdr {
struct sockaddr *msg_name; /* Socket address */
long msg_namelen; /* Length of address */
struct iovec *msg_iov; /* Data vector array */
long msg_iovlen; /* # of entries in msg_iov */
char *msg_control; /* Control data */
int msg_controllen; /* Length of control data */
int msg_flags; /* Received flags */
};

Msg_name is a pointer to the address of the destination to which the data is
to be sent. The format of the IP address in structure sockaddr is
defined in header file KN_SOCK.H.

This parameter is required to identify the destination address when
using a connectionless socket such as that used for UDP datagrams on a
socket of type SOCK_DGRAM. The format of the address is compatible
with that received by procedure kn_recvmsg(). Set msg_name to NULL
if the address of the message destination is not required.

When using a TCP socket, set msg_name to NULL and be sure to connect
before calling this function.

Msg_namelen is the length of the destination address. If parameter
msg_name is set to NULL, set parameter msg_namelen to 0.

...more

KwikNet TCP/IP Sockets KADAK rev 6 183

Description ...continued

Msg_iov is a pointer to an array of data vectors describing the locations of
the data to be sent. Each data vector is an iovec structure which is
defined in file KN_SOCK.H as follows:

struct iovec {
void *iov_base; /* Data pointer */
long iov_len; /* Length of data */
};

Iov_base is a pointer to data to be sent.

Iov_len is the data buffer size, measured in bytes.

Msg_iovlen is an integer defining the number of data vectors (iovec
structures) which are provided in the array referenced by parameter
msg_iov.

Msg_control is a pointer to additional control information to be sent
along with the message. If control data is not required, set
msg_control to NULL. This parameter is not used by KwikNet since it is
not required for any of the supported sockets protocols.

Msg_controllen is the length, in bytes, of the control data buffer. If
parameter msg_control is set to NULL, set parameter msg_controllen
to 0.

Msg_flags is an additional variable to be sent along with the message.
This variable is not supported by KwikNet since it is not required for any
of the supported sockets protocols.

Returns If successful, the total number of bytes of data sent is returned.
No fields in structure *msg are altered.
The array of iovec structures at *msg_iov is altered as follows.

As data is sent, the array of data vectors is updated. The data pointer in
each data vector is incremented by n where n is the number of data bytes
sent from that vector. The corresponding data vector length parameter is
decremented by n. Hence, upon return, the data vectors will have been
updated to reflect the total number of bytes which have been sent.

...more

184 rev 6 KADAK KwikNet TCP/IP Sockets

Returns ...continued

Under error conditions, the data vectors may have been updated before the
error was detected and reported. If all data bytes have not been sent, you
can issue another call to kn_sendmsg() to send the remaining bytes of
data without altering the data vector array.

On failure, the error status -1 is returned. The error indicator for socket s
is set to define the reason for failure. Use kn_errno() to retrieve the error
code.

EBADF The socket descriptor s is invalid.
ENOTCONN The socket is not connected.
ECONNRESET The connection has been reset.
EPIPE Cannot send any more out socket s.
EINVAL The buffer length in a data vector was declared to be

less than 0 or is invalid for the socket's protocol or
parameter msg_namelen specifies a length that is less
than the length of a valid address.

EWOULDBLOCK The socket is marked non-blocking or flags specifies
MSG_DONTWAIT but there is a need to block the caller
to complete the operation.

EMSGSIZE The message is larger than the maximum which can
be sent atomically as required by the socket protocol.

ENOBUFS Memory is not available to complete the request.
EDESTADDRREQ A destination is required but is not available.
EADDRNOTAVAIL The specified address is not available from the

local machine or a broadcast address is not allowed
as a destination for this socket.

Restrictions If the message data cannot be delivered in its entirety to the socket, the
caller will be blocked unless the socket s is marked as non-blocking. In
the latter case, the caller will resume with a -1 error status and the error
code EWOULDBLOCK will be stored in the socket descriptor.

On 16-bit processors, the amount of data which can be sent is restricted to
32767 bytes because the value returned by kn_sendmsg() is a signed
integer.

See Also kn_connect(), kn_recv(), kn_recvfrom(), kn_recvmsg(),
kn_send(), kn_sendto(), kn_socket()

KwikNet TCP/IP Sockets KADAK rev 6 185

kn_sendto kn_sendto

Purpose Send Data to a Socket

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SOCK.H.
#include "KN_SOCK.H"
int kn_sendto(int s, void *buf, int len, int flags,

struct sockaddr *to, int tolen);

Description S is a socket descriptor identifying the socket to which data is to be sent.
The socket can be connected or unconnected.

Buf is a pointer to the buffer of data to be sent.

Len is the buffer size, measured in bytes.

Flags is a control variable used to modify the send process. Flags is 0 or
the logical OR of any of the following values.

MSG_OOB Allow sending of out-of-band data.
MSG_DONTWAIT Send message in non-blocking fashion.

To is a pointer to the address of the destination to which the data is to be
sent. The format of the IP address in structure sockaddr is defined in
header file KN_SOCK.H.

This parameter is required to identify the destination address when
using a connectionless socket such as that used for UDP datagrams on a
socket of type SOCK_DGRAM. The format of the address is compatible
with that received by procedure kn_recvfrom(). Set parameter to to
NULL if the address of the destination is not required.

When using a TCP socket, set parameter to to NULL and be sure to
connect before calling this function. Alternatively use procedure
kn_send().

Tolen is the length of the destination address. If parameter to is set to
NULL, set parameter tolen to 0.

...more

186 rev 6 KADAK KwikNet TCP/IP Sockets

Returns If successful, the number of bytes of data sent from *buf is returned.
On failure, the error status -1 is returned.

The error indicator for socket s is set to define the reason for failure. Use
kn_errno() to retrieve the error code.

EBADF The socket descriptor s is invalid.
ENOTCONN The socket is not connected.
ECONNRESET The connection has been reset.
EPIPE Cannot send any more out socket s.
EINVAL The buffer length len is declared to be less than 0 or

is invalid for the socket's protocol or
parameter tolen specifies a length that is less than
the length of a valid address.

EWOULDBLOCK The socket is marked non-blocking or flags specifies
MSG_DONTWAIT but there is a need to block the caller
to complete the operation.

EMSGSIZE The message is larger than the maximum which can
be sent atomically as required by the socket protocol.

ENOBUFS Memory is not available to complete the request.
EDESTADDRREQ A destination is required but is not available.
EADDRNOTAVAIL The specified address is not available from the

local machine or a broadcast address is not allowed
as a destination for this socket.

Restrictions If the message data cannot be delivered in its entirety to the socket, the
caller will be blocked unless the socket s is marked as non-blocking. In
the latter case, the caller will resume with a -1 error status and the error
code EWOULDBLOCK will be stored in the socket descriptor.

See Also kn_connect(), kn_recv(), kn_recvfrom(), kn_recvmsg(),
kn_send(), kn_sendmsg(), kn_socket()

KwikNet TCP/IP Sockets KADAK rev 6 187

kn_setsockopt kn_setsockopt

Purpose Set a Particular Socket Option

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SOCK.H.
#include "KN_SOCK.H"
int kn_setsockopt(int s, int level, int optionid,

void *optionval, int optionlen);

Description S is a socket descriptor identifying the socket for which the particular
socket option is to be modified.

Level is an identifier indicating the socket or protocol level for which an
option must be modified. Use SOL_SOCKET for the highest, socket level
options. Use IPPROTO_TCP for TCP protocol level options. KwikNet
does not support modification of options for other protocol levels.

Optionid identifies the option which is to be modified. The following
option identifiers can be used to set the state of the option or to modify
its associated parameter. These options are described in Chapter 5.3.
Options marked > are non-standard KADAK extensions. Only one
option can be specified in each call.

SO_BROADCAST bool UDP Permission to broadcast messages
SO_REUSEADDR bool UDP TCP Local address reuse
SO_KEEPALIVE bool TCP Keep connections alive
SO_OOBINLINE bool TCP Allow out-of-band data in band
SO_LINGER struct TCP Linger on close if data present
SO_SNDBUF int TCP Buffer size for send
SO_RCVBUF int TCP Buffer size for receive
SO_NONBLOCK bool UDP TCP > Socket is non-blocking mode

TCP_NODELAY bool TCP Do not delay send to coalesce data
TCP_NOOPT bool TCP Do not send TCP options

...more

188 rev 6 KADAK KwikNet TCP/IP Sockets

Description ...continued

Optionval is a pointer to the option value. The size of each option is
indicated in the option list. Note that bool is an int value that is non-
zero if the option is to be enabled or 0 if the option is to be disabled.
The structure linger required by option SO_LINGER is defined in
header file KN_SOCK.H. The structure timeval required by options
SO_SNDTIMEO and SO_RCVTIMEO is defined in header file KN_SOCK.H.

Optionlen is the length of the option value at the location referenced by
optionval.

Note Option SO_NONBLOCK is a unique KwikNet option which conditions a socket
such that subsequent socket operations proceed with or without blocking
the caller. Note that, although a socket is always a blocking socket when
first created, this option permits the mode of operation to be altered by
your application. The option value in the call must be non-zero to set
non-blocking mode or zero to restore the socket to blocking mode.

Returns If successful, a value of 0 is returned.
On failure, the error status -1 is returned.

The error indicator for socket s is set to define the reason for failure. Use
kn_errno() to retrieve the error code.

EBADF The socket descriptor s is invalid.
ENOPROTOOPT The option is unknown at the level indicated.
EINVAL One or more parameters are invalid or

parameter optionlen specifies a length that is less
than that required to specify the option.

See Also kn_getsockopt(), kn_socket()

KwikNet TCP/IP Sockets KADAK Copyright © 1997-2000 KADAK Products Ltd. 189

kn_shutdown kn_shutdown

Purpose Shutdown All or Part of a Full Duplex Socket Connection

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SOCK.H.
#include "KN_SOCK.H"
int kn_shutdown(int s, int how);

Description S is a socket descriptor identifying the socket with the connection which is
to be shutdown.

How is an integer which defines how the connection is to be adjusted.
0 if no further receives are allowed
1 if no further sends are allowed
2 if no further receives or sends are allowed

Returns If successful, a value of 0 is returned.
On failure, the error status -1 is returned.

The error indicator for socket s is set to define the reason for failure. Use
kn_errno() to retrieve the error code.

EBADF The socket descriptor s is invalid.
ENOTCONN The socket is not connected.

See Also kn_accept(), kn_connect(), kn_socket()

190 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet TCP/IP Sockets

kn_socket kn_socket

Purpose Create a Socket (an Endpoint for Communication)

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SOCK.H.
#include "KN_SOCK.H"
int kn_socket(int domain, int type, int protocol);

Description Domain specifies the communications domain within which
communication will occur. The domain identifies the protocol family
which should be used. The protocol family generally matches the
address family for the addresses supplied in subsequent socket
operations. The only protocol family support by KwikNet is the ARPA
Internet Protocol, identified as PF_INET . The corresponding address
family is AF_INET.

Type defines the semantics of communication supported by the socket.
Type must be SOCK_STREAM for use with the TCP protocol or
SOCK_DGRAM for use with the UDP protocol.

The SOCK_STREAM type of socket provides sequenced, reliable, two-way
connection based byte streams. An out-of-band data transmission
mechanism can be supported.

The SOCK_DGRAM type of socket supports datagrams: connectionless,
unreliable messages of a fixed (typically small) maximum length.

Protocol specifies a particular protocol to be used with the socket.
Normally only a single protocol exists to support a particular socket
type within a given protocol family. However, it is possible that many
protocols may exist, in which case a particular protocol must be
specified.

The protocol parameter is ignored by KwikNet since the protocols are
dictated by the domain and socket type. Streaming sockets use TCP
over IP. Datagram sockets use UDP over IP.

...more

KwikNet TCP/IP Sockets KADAK Copyright © 1997-2000 KADAK Products Ltd. 191

Returns If successful, a positive, non-zero socket descriptor is returned.
On failure, the error status -1 is returned.

If a socket cannot be created, the error indicator defining the reason for
failure cannot be recorded. You cannot use kn_errno() to retrieve the
error code since you have no socket descriptor to interrogate. The
following error codes, although not available for testing, still define the
possible reasons for failure.

EPROTONOSUPPORT The socket type or the specified protocol is not
supported within the domain.

ENOBUFS Resources needed to create a socket are unavailable.

Restrictions Sockets of type SOCK_DGRAM cannot be created unless you have configured
your KwikNet libraries to allow UDP to be used with sockets.

See Also kn_accept(), kn_bind(), kn_connect()

192 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet TCP/IP Sockets

This page left blank intentionally.

Reference Materials and Glossary KADAK Copyright © 1997-2000 KADAK Products Ltd. A - 1

A. Reference Materials and Glossary

A.1 Reference Materials
The following reference books and documents are recommended by KADAK's technical
staff as good sources of information about TCP/IP and related protocols. Comer's text
provides interesting historical background and a good general introduction to the topics
of interest. Siyan's massive document is an excellent TCP/IP handbook.

Books

CARLSON, James [1998], PPP Design and Debugging, Addison Wesley Longman, Inc.,
Reading, Massachusets.

COMER, Douglas E. [1991], Internetworking with TCP/IP Volume I, Principles,
Protocols and Architectures, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

MUSCIANO, Chuck and KENNEDY, Bill [1997], HTML: The Definitive Guide, Second
Edition, O'Reilly & Associates, Inc., Sebastopol, California.

PERKINS, David and McGINNIS, Evan [1996], Understanding SNMP MIBS, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey.

SIYAN, Karanjit S. [1997], Inside TCP/IP, Third Edition, New Riders Publishing,
Indianapolis, Indiana.

STALLINGS, William [1999], SNMP, SNMPv2, SNMPv3, and RMON 1 and 2, Addison
Wesley Longman, Inc., Reading, Massachusets.

Internet Sources

www.rfc-editor.org RFCs and related documents via web server

comp.protocols.tcp-ip News group for ongoing TCP/IP discussion

comp.protocols.snmp News group for ongoing SNMP discussion

A - 2 Copyright © 1997-2000 KADAK Products Ltd. KADAK Reference Materials and Glossary

This page left blank intentionally.

Reference Materials and Glossary KADAK Copyright © 1997-2000 KADAK Products Ltd. A - 3

A.2 KwikNet Glossary
API An application programming interface defines the method by

which a software program can access software components such as
procedures in the KwikNet Libraries.

App-Task The name given to the body of application code which uses
KwikNet services in a single threaded system. The App-Task is any
application function (except those executed by an interrupt service
routine) which calls KwikNet to perform some operation.

ARP Address Resolution Protocol: the TCP/IP protocol used to resolve
the correlation between an IP address and a physical hardware
address such as an Ethernet address.

BOOTP Boot Protocol: an older protocol used to derive a network IP
address during the startup (boot) initialization of an IP stack.

BSD The University of California, Berkeley refers to its TCP/IP
software release as the Berkely Software Distribution.

Clock Handler The name given to the procedure which is called by the ISR or ISP
root which services the hardware clock interrupt.

Clock Tick The interrupt generated by a hardware clock.

Conforming ISP An AMX Interrupt Service Procedure consisting of an ISP root
which calls an Interrupt Handler which has the right to make calls
to a subset of the KwikNet service procedures.

DHCP Dynamic Host Configuration Protocol: a protocol used by a
DHCP client to derive a network IP address during the startup
(boot) initialization of an IP stack. The client uses services
provided by a DHCP server elsewhere on the network.

DNS Domain Name System: the database distributed across all
interconnected networks used to map each text-like machine name
to its equivalent IP address.

Error Code A series of signed integers used by KwikNet to indicate error or
warning conditions detected by KwikNet service procedures.

Exit Procedure An AMX or application procedure executed by AMX during the
exit phase when an AMX system is shut down.

Fatal Error A condition detected by KwikNet which is considered so abnormal
that to proceed might risk catastrophic consequences.

FIFO First in, first out. Usually used to refer to the ordering of elements
in a queue or linked list.

FTP File Transfer Protocol: a TCP/IP protocol used for reliably
transferring files between two points on a network.

A - 4 Copyright © 1997-2000 KADAK Products Ltd. KADAK Reference Materials and Glossary

Handle An identifier assigned by AMX or KwikNet for use by your
application to reference a private AMX or KwikNet data item.

ICMP Internet Control Message Protocol: a component of the IP protocol
which handles error and control messages.

Interrupt Handler An application procedure called from an ISR or ISP root to service
an interrupting device.

Interrupt Service Procedure (ISP)
A procedure (in an AMX application) which is executed in
response to an external device interrupt request.

Interrupt Service Routine (ISR)
The procedure in any application which is executed in response to
an external device interrupt request. In an AMX application, such
a procedure is called an ISP.

IP Internet Protocol: the protocol that defines the delivery of IP
datagrams across an internet in a connectionless, best effort
fashion.

IP address A 32-bit number (address) used to identify the interconnection of a
host computer to a physical network. IP addresses are easily
recognized when expressed using dotted decimal notation in which
IP address 0x7F000005 is written as "127.0.0.5".

ISP See Interrupt Service Procedure

ISP root The ISP code fragment (produced by the AMX Configuration
Generator) which informs AMX that an interrupt has occurred and
calls an application Interrupt Handler.

ISR See Interrupt Service Routine

KwikNet Task The private KwikNet procedure which is responsible for all timing
control and event sequencing in a KwikNet application.

Library Configuration Module
A C header file produced during the KwikNet library construction
process and used to compile all KwikNet source modules.

Library Parameter File
A text file which can be edited by the KwikNet Configuration
Builder to describe a particular KwikNet library configuration.

Reference Materials and Glossary KADAK Copyright © 1997-2000 KADAK Products Ltd. A - 5

MAC Media Access Control: a general term used to define the method
by which access to a physical network is controlled. This term is
sometimes used when referencing Ethernet cards since Ethernet is
a very common MAC protocol.

Memory Block A portion of a memory pool that has been allocated for use by one
or more tasks.

Memory Pool A collection of memory sections whose use is controlled by the
AMX Memory Manager.

Memory Pool Id The handle assigned to a memory pool by AMX for use as a
unique memory pool identifier.

Memory Section A contiguous region of memory assigned to the AMX Memory
Manager for allocation to application tasks.

MIB Management Information Base: the set of variables which
constitute a database maintained by a network host which supports
SNMP.

Multi-homed A host computer with interconnections to multiple physical
networks is said to be multi-homed.

Multitasking A method of program execution in which an operating system
makes it appear as though several procedures (called tasks) are
running concurrently.

Network Configuration Module
A C source file, produced by the KwikNet Configuration Builder,
which defines the network and device driver characteristics of a
particular KwikNet application.

Network Parameter File
A text file which can be edited by the KwikNet Configuration
Builder to describe the networks and device drivers required for a
particular KwikNet application.

Network Tick A multiple of the system tick from which the fundamental KwikNet
unit of time is derived. All KwikNet time intervals in the system are
measured in multiples of the network tick.

OS A short form for the two words operating system. When the term
OS is used alone, no assumption about the operational
characteristics of the OS can be made.

PING Packet InterNet Groper: the name given to the process of sending
an ICMP echo request in order to learn if a destination is
reachable.

PPP Point to Point Protocol: a network protocol used to control the
delivery of IP datagrams between two hosts interconnected by a
serial link.

A - 6 Copyright © 1997-2000 KADAK Products Ltd. KADAK Reference Materials and Glossary

RAM Alterable memory used for data storage and stacks.

Restart Procedure An AMX or application procedure executed by AMX during the
initialization phase when an AMX system is started.

ROM Read only memory of all types including PROMs, EPROMs and
EAROMs.

RTOS A short form for referencing a real-time operating system, usually
one with multitasking capability and reasonably good response to
rapidly occurring external events.

RT/OS The KwikNet syntax used to specify a general purpose operating
system. The term RT/OS is used to encompass both multitasking
and single threaded operating systems when the distinction is
irrelevant.

Semaphore A data structure which can be used by an RTOS to provide an
event signaling mechanism or mutually exclusive access by tasks
to specific resources.

Single threaded A method of program execution in which all procedures execute
sequentially. This method of operation is sometimes called single
tasking. Although interrupts can cause a brief digression in the
program's sequential operation, execution after an interrupt has
been serviced always resumes in the procedure which was
preempted by the interrupt.

SLIP Serial Line Internet Protocol: a simple network protocol used to
control the delivery of IP datagrams between two hosts
interconnected by a serial link.

SMTP Simple Mail Transfer Protocol: a TCP/IP protocol used to transfer
mail messages from one machine to another.

SNMP Simple Network Management Protocol: a protocol used to
monitor and manage the operation of a host computer and the
networks to which it is attached. Operations depend on the ability
to access and modify variables in the host's Management
Information Base (MIB).

Reference Materials and Glossary KADAK Copyright © 1997-2000 KADAK Products Ltd. A - 7

System Configuration Module
A software module, produced by the AMX Configuration Builder,
which defines the characteristics of a particular AMX application.

System Tick A multiple of the hardware clock tick from which the fundamental
unit of time for an RT/OS is derived. All time intervals in the
system are measured in multiples of the system tick.

Tag A 4-character name that can be assigned to any AMX system data
structure when it is created. A tag can be used to find the identifier
of a task, timer, semaphore, event group, mailbox, message
exchange, memory pool or buffer pool with a particular name.

Tags are also used to identify KwikNet networks and their
associated device drivers.

Tailoring file A special make file included by the make file which is used to
build a library or application. The tailoring file provides macro
definitions and implicit rules which specify how the make utility
can use a specific set of software development tools (compiler,
assembler, librarian, linker/locator).

Target Configuration Module
A software module, produced by the AMX Configuration Builder,
which defines the characteristics of your target hardware as used in
a particular AMX application.

Task An application procedure which is executed by an RTOS in a way
which makes it look as though all such procedures are executing at
once.

Task Id The handle assigned to a task by KwikNet for use as a unique task
identifier.

Task Priority The priority at which a task executes.

TCP Transport Control Protocol: the protocol used to provide reliable,
full-duplex delivery of data streams across a logical connection
established between two end points.

Timer A facility provided by AMX to permit precise interval
measurement in AMX applications.

Timer Id The handle assigned to a timer by AMX for use as a unique timer
identifier.

Timer Procedure An application procedure which is executed by AMX whenever
the corresponding timer interval expires.

UDP User Datagram Protocol: a protocol which permits applications to
send and receive datagrams using only the underlying IP network
services. UDP datagrams use a port number, in addition to the IP
address, to identify the source and destination of each datagram.

A - 8 Copyright © 1997-2000 KADAK Products Ltd. KADAK Reference Materials and Glossary

This page left blank intentionally.

KwikNet Error Codes KADAK rev 6 B - 1

B. KwikNet Error Codes

TCP/IP Socket Error Codes

TCP/IP socket error codes are signed integers. An error code of -1 indicates that a socket
error has occurred. Codes greater than zero describe the reason for the error. To assist
you during testing, the hexadecimal value of the least significant 16-bits of the error code
is listed as it might appear in a register or memory dump.

Mnemonic Value Value Meaning
(dec) (hex)

0 0x0000 Socket call successful

KN_SOCKERR -1 0xFFFF Socket call failed
(Use kn_errno() to fetch reason)

ENOBUFS 1 0x0001 No memory buffers are available
ETIMEDOUT 2 0x0002 Operation timed out
EISCONN 3 0x0003 The socket is already connected
EOPNOTSUPP 4 0x0004 Operation not supported
ECONNABORTED 5 0x0005 The connection was aborted
EWOULDBLOCK 6 0x0006 Caller would block
ECONNREFUSED 7 0x0007 The connection was refused
ECONNRESET 8 0x0008 The connection has been reset
ENOTCONN 9 0x0009 The socket is not connected
EALREADY 10 0x000A Operation is already in progress
EINVAL 11 0x000B Invalid parameter
EMSGSIZE 12 0x000C Invalid message size
EPIPE 13 0x000D Cannot send any more
EDESTADDRREQ 14 0x000E Destination address is missing
ESHUTDOWN 15 0x000F Connection has been shut down
ENOPROTOOPT 16 0x0010 The option is unknown for this protocol
EHAVEOOB 17 0x0011 Have received out-of-band data
ENOMEM 18 0x0012 No memory available
EADDRNOTAVAIL 19 0x0013 The specified address is not available
EADDRINUSE 20 0x0014 The specified address is already in use
EAFNOSUPPORT 21 0x0015 Address family is not supported
EINPROGRESS 22 0x0016 Operation is in progress
ELOWER 23 0x0017 Unused
EBADF 24 0x0018 The socket descriptor s is invalid

(Use KN_EBADF if EBADF conflicts with C)

B - 2 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Error Codes

KwikNet Error Codes

KwikNet error codes are signed integers. Codes less than zero are error codes. Codes
greater than zero are warning codes. To assist you during testing, the hexadecimal value
of the least significant 16-bits of the error code is listed as it might appear in a register or
memory dump.

Mnemonic Value Value Meaning
(dec) (hex)

KN_EROK 0 0 Call successful

Warnings
KN_WRPENDING 1 0x0001 Packet queued for send

(waiting for an ARP reply)
KN_WRREJECT 2 0x0002 Received packet not of interest

Device Driver errors
KN_DER_BADID -1 0xFFFF Invalid device id
KN_DER_BADPARAM -2 0xFFFE Invalid parameter
KN_DER_BADMODE -3 0xFFFD Invalid in current operating mode
KN_DER_NOSUPPORT -4 0xFFFC Ioctl command is not supported
KN_DER_DEVICE -5 0xFFFB Device specific error occurred
KN_DER_NOTAVAIL -6 0xFFFA Requested data not yet available

Programming errors
KN_ERPARAM -10 0xFFF6 Invalid parameter
KN_ERLOGIC -11 0xFFF5 Unexpected sequence of events

System errors
KN_ERNOMEM -20 0xFFEC Memory not available for allocation
KN_ERNOBUFFER -21 0xFFEB Packet buffer not available
KN_ERQUEUE -22 0xFFEA Queuing resource not available
KN_ERTCPSTATE -23 0xFFE9 TCP layer state transition error
KN_ERTIMEOUT -24 0xFFE8 TCP layer timeout
KN_ERNOFILE -25 0xFFE7 Expected file was missing
KN_ERFILEIO -26 0xFFE6 File I/O error

Net errors
KN_ERSEND -30 0xFFE2 Send to net failed at low layer
KN_ERNOARP -31 0xFFE1 No ARP response for a given host
KN_ERHEADER -32 0xFFE0 Bad upper layer header
KN_ERROUTE -33 0xFFDF Cannot find a reasonable next IP hop
KN_ERIFACE -34 0xFFDE Cannot find a device interface
KN_ERHARDWARE -35 0xFFDD Hardware failure

KwikNet Error Codes KADAK Copyright © 1997-2000 KADAK Products Ltd. B - 3

KwikNet Error Codes (continued)

Mnemonic Value Value Meaning
(dec) (hex)

FTP errors
KN_ERFTPD -200 0xFF38 Invalid FTP descriptor
KN_ERFTPCMD -201 0xFF37 FTP command rejected by server
KN_ERFTPSRC -202 0xFF36 Source file error
KN_ERFTPDST -203 0xFF35 Destination file error
KN_ERFTPXFER -204 0xFF34 Transfer failed
KN_ERFTPDIR -205 0xFF33 Directory error
KN_ERFTPLOGIN -206 0xFF32 FTP login failed
KN_ERFTPSOCKC -207 0xFF31 FTP command socket fault
KN_ERFTPSOCKD -208 0xFF3O FTP data socket fault
KN_ERFTPTERM -209 0xFF2F FTP server terminated the session
KN_ERFTPNOUSER -210 0xFF2E No user logged in yet

HTTP errors
KN_ERWEBSD -220 0xFF24 Invalid web server descriptor
KN_ERWEBBD -221 0xFF23 Invalid web browser descriptor
KN_ERWEBCGIP -222 0xFF22 Invalid CGI parameter string
KN_ERWEBNOOP -223 0xFF21 Operation not allowed

Telnet errors
KN_ERTELND -240 0xFF10 Invalid Telnet descriptor
KN_ERTELSOCK -241 0xFF0F Telnet socket fault
KN_ERTELNOCONN -242 0xFF0E No connection with Telnet peer
KN_ERTELNOCBF -243 0xFF0D No callback function provided
KN_ERTELREJECT -244 0xFF0C Invalid operation for Telnet entity
KN_ERTELINCBF -245 0xFF0B Invalid request by callback function
KN_ERTELNOSESS -246 0xFF0A Operation requires a Telnet session
KN_ERTELINSESS -247 0xFF09 Operation invalid in Telnet session
KN_ERTELNOSPC -248 0xFF08 No buffer space available
KN_ERTELBUSY -249 0xFF07 Busy: command send in progress
KN_ERTELNOLOG -250 0xFF06 Logging not enabled
KN_ERTELACTIVE -251 0xFF05 Server has active sessions
KN_ERTELMAXNC -252 0xFF04 Server has max number of connections

B - 4 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Error Codes

KwikNet Fatal Error Codes

Mnemonic Value Value Meaning
(dec) (hex)

KN_FERNOTASK 100 0x0064 Cannot find KwikNet Task
KN_FERNOTMR 101 0x0065 Cannot create network timer

102 0x0066 reserved
103 0x0067 reserved

KN_FERFN 104 0x0068 Cannot send fn msg to KwikNet Task
KN_FEREVWAIT 105 0x0069 Cannot send wait msg to KwikNet Task
KN_FEREVSIG 106 0x006A Cannot send event msg to KwikNet Task
KN_FERSUSPEND 107 0x006B Cannot suspend a task to wait for event
KN_FERRESUME 108 0x006C Cannot resume a task after event occurs
KN_FERTIMER 109 0x006D Cannot start/stop a KwikNet timer
KN_FERNOSEM4 110 0x006E No semaphores available for use
KN_FERNRESID 111 0x006F Invalid network resource identifier
KN_FERLOCK 112 0x0070 Resource lock failed
KN_FERUNLOCK 113 0x0071 Resource unlock failed
KN_FERNOMEM 114 0x0072 No memory for allocation
KN_FERBADMEM 115 0x0073 Free memory that was never allocated
KN_FEREXIT 116 0x0074 Cannot send exit to KwikNet Task
KN_FERSTART 117 0x0075 Cannot start KwikNet Stack operation
KN_FERNOSLEEP 118 0x0076 KwikNet Task cannot sleep
KN_FERPORT 119 0x0077 Custom port panic
KN_FERPANIC 120 0x0078 KwikNet TCP/IP Stack panic

KwikNet Universal File System Interface KADAK Copyright © 1997-2000 KADAK Products Ltd. C - 1

C. KwikNet Universal File System Interface

C.1 Introduction
The KwikNet TCP/IP Stack does not require a file system for normal use. However,
several of the optional KwikNet components, such as the FTP client and server and the
HTTP Web Server, do require file services. For these options, KwikNet provides its own
Universal File System (UFS) interface to the file services provided by the file system
operating on the host computer.

The Universal File System interface provides access to one of four file systems:

AMX/FS File System for use with the AMX Multitasking Kernel
Standard C using the MS-DOS® file system
Standard C using a UNIX-like file system
Custom user defined file system

When used with KADAK's AMX Multitasking Kernel, KwikNet supports only three of the
four file systems. AMX/FS can be used with AMX and KwikNet on all of the supported
target processors. Access to the MS-DOS file system is only available when using
AMX 86 or AMX 386/EP on a PC compatible platform. A custom file system can also
be adapted for use with AMX and KwikNet.

The Universal File System interface for a UNIX-like file system is provided with an
alternate KwikNet product which is suitable for porting to other operating environments.

There should be no need to become familiar with the internal operation of the Universal
File System unless you must adapt it for use with your own custom file system. This
customization procedure is described in Appendix C.5.

C - 2 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Universal File System Interface

C.2 KwikNet File System Parameters
The KwikNet Universal File System (UFS) interface forms part of the KwikNet IP Library.
To include the UFS interface in the library, you must use the KwikNet Configuration
Builder to edit your KwikNet Library Parameter File. The Universal File System
parameters are edited using the File System property page. The layout of the window is
shown below.

Attached File System

From the pull down list, choose the type of underlying file system to which the Universal
File System must connect. If you are not using any of the optional KwikNet components
which require a file system, select option None.

If you are using a KwikNet option such as FTP or HTTP which does require a file system,
choose the file system you will be using with that KwikNet option.

KwikNet Universal File System Interface KADAK Copyright © 1997-2000 KADAK Products Ltd. C - 3

Universal File System Parameters (continued)

Protect File System Services

When operating in a multitasking environment, the file system services must be thread-
safe. If the file system you have chosen to use is safe, leave this box unchecked.
Otherwise, check this box and KwikNet will use its file system locking mechanism to
protect access to the unsafe file system services. In a single threaded environment, file
system services are inherently thread-safe. Hence, leave this box unchecked.

Use KwikNet Virtual File System

For embedded systems which do not include a file system, KwikNet offers a very simple
Virtual File System (VFS) which can provide access to a limited set of read-only files
built into the application. The Virtual File System can be used with or without a file
system. It will forward file requests which it is not equipped to handle, to the underlying
file system, if one exists.

Check this box if you intend to use the KwikNet Virtual File System. Otherwise, leave this
box unchecked.

Enable VFS Compression

Using the KwikNet VFS Generator, you can create compressed HTML files for use with
the KwikNet HTTP Web Server. These files must be decompressed by the KwikNet Virtual
File System prior to use by the HTTP Web Server. Check this box if any of the read-only
files which you have built into your application have been compressed in this manner.
Otherwise, leave this box unchecked.

Maximum Path and File Name Lengths

Specify the maximum number of characters which can appear in a path name string used
to reference a directory location. The path length must include room for a terminating
'\0' character. The path length excludes any file name.

Specify the maximum number of characters which can appear in a file name string used
to identify any file. The file name includes the base name and extension(s) and any
separating characters. The file name length must include room for a terminating '\0'
character. The file name length excludes any path information.

There is no reason to set the path or file name lengths any greater than the maximum
allowed by the selected file system. For the KwikNet Virtual File System, a path length of
32 and a file name length of 16 are reasonable. For AMX/FS and MS-DOS file systems,
a path length of 128 and a file name length of 16 will be adequate.

To minimize memory waste in embedded applications in which short paths are the norm,
the maximum path length can be reduced. However, be aware that KwikNet FTP and
HTTP servers may be forced to reject requests for service if the paths and file names
which they receive exceed the limits defined by these configuration parameters.

Administration Parameters (see Appendix D)

C - 4 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Universal File System Interface

C.3 Using the AMX/FS File System
The KwikNet Universal File System (UFS) interface supports the AMX/FS File System.
No customization is required. Any file devices, including RAM drives, hard drives,
floppy drives and custom devices, which have been attached to the AMX/FS File System
are accessible through the UFS interface.

To use the AMX/FS File System with KwikNet, you must first install AMX and AMX/FS
and test them in your intended target environment. The AMX/FS Sample Program offers
a good starting point. Once you have it operating with your target hardware, you are
ready to merge it with KwikNet.

AMX System Configuration

The first step is to merge the AMX configuration information required for both AMX/FS
and KwikNet into a new AMX configuration suitable for use with both products. You may
have to increase the maximum number of tasks, timers and semaphores to meet the
expanding requirements. Adjust the parameters in your AMX User Parameter File
accordingly.

If you are using options such as the KwikNet FTP client or server or the KwikNet HTTP
Web Server, be sure to account for the total number of client and server tasks which you
intend to employ.

Since each server or client task must have file access, you may have to increase the
maximum number of tasks which are permitted to concurrently use AMX/FS. You may
also have to increase the maximum number of files which can be concurrently in use.
Adjust the parameters in your AMX User Parameter File accordingly.

Your AMX configuration must include the device drivers for both the KwikNet network
interfaces and the AMX/FS file devices. You may have to adjust your choices of
interrupt assignments to prevent conflicts among these devices.

Once you have an integrated AMX configuration, try using it to confirm that AMX/FS
works well in the presence of KwikNet but without KwikNet actually in use. Then use the
configuration to test that KwikNet will operate on your network without any file
operations. Then you are ready to try KwikNet and AMX/FS together.

KwikNet Universal File System Interface KADAK Copyright © 1997-2000 KADAK Products Ltd. C - 5

AMX System Startup

Special care must be taken when launching an AMX system which includes both KwikNet
and the AMX/FS File System. Initialize AMX/FS before starting KwikNet. This implies
that execution of AMX/FS Restart Procedure fj_restart() must precede the call to
KwikNet function kn_enter().

AMX/FS requires that a logical drive be mounted before it can be accessed. This
operation is not supported by the Universal File System interface. Hence, before starting
any KwikNet clients or servers which require file support, your application must call
AMX/FS procedure fjdrvopen() to mount each of the logical drives which these
KwikNet components are permitted to access.

There is no strict rule governing when logical drives should be mounted. The simplest
solution is to have an application task unconditionally mount all available logical drives
and then start KwikNet. In this way, all KwikNet components which require file support
will have access to all logical drives whenever required.

Alternate solutions may better meet your needs. For example, suppose you intend to
have one FTP server task which only requires access to logical drive D:. Your FTP
server task can mount drive D: and then call KwikNet FTP procedure knfs_start() to
begin operating as an FTP server. Note that other tasks are not precluded from accessing
drive D:. The FTP server task is also not prevented from accessing another logical drive
mounted by some other task.

AMX System Shutdown

When shutting down your AMX application, you must stop KwikNet before terminating
AMX/FS. Hence KwikNet function kn_exit() must reach completion prior to the
execution of AMX/FS Exit Procedure fj_exit().

End of Line Indication

The use of CR ('\r', ASCII 0x0D), LF ('\n', ASCII 0x0A) or CRLF (CR followed by
LF) as an end of line indicator in text files depends on the interpretation (translation) of
strings by file streaming functions such as fread() and fwrite().

Although the AMX/FS File System is MS-DOS® file format compatible, it does not
provide a streaming level API. For example, the description of fjopen() states that all
files are read and written in binary mode only. Hence AMX/FS does no translation of the
data, even if the file is opened in text mode.

Unfortunately, protocols such as FTP demand that CRLF be used as the end of line
indicator for files sent in text mode. To avoid the overhead of data translation in the FTP
client and server, KwikNet assumes that the underlying file system stores text files with
CRLF as the end of line indicator. Such files can then be read and written as binary files.

Since MS-DOS stores text files with CRLF terminators, the KwikNet interface is
compatible with the most prevalent file system with which it must operate. Furthermore,
since AMX/FS has no streaming support, CRLF has been adopted as the end of line
indicator to be used by applications when recording text files with AMX/FS.

C - 6 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Universal File System Interface

C.4 Using the MS-DOS File System
When used with AMX 86 or AMX 386/EP, the KwikNet Universal File System (UFS)
interface supports the MS-DOS® file system. No customization is required. All file
devices, including RAM drives, hard drives and floppy drives, are accessible through the
UFS interface.

Both AMX 86 and AMX 386/EP include a component called the PC Supervisor which
permits these versions of AMX to be used with MS-DOS on PC platforms. Special care
must be taken when using the PC Supervisor with AMX and KwikNet as described in
Chapter 3.7.1.

The PC Supervisor Task must be of lower priority than tasks which use it to access
MS-DOS. This requirement leads to the following recommended task priority order
when using KwikNet components such as an FTP client or server or the HTTP Web
Server.

PC Supervisor Clock Tick Task Highest priority
PC Supervisor Keyboard Task
KwikNet Task
FTP server task
HTTP Web Server task
FTP client task
PC Supervisor Task Lowest priority

Note that the order of priority of servers and clients may have to be adjusted to reflect the
relative importance of each of these services in your application.

KwikNet Universal File System Interface KADAK Copyright © 1997-2000 KADAK Products Ltd. C - 7

C.5 Using a Custom File System
The KwikNet Universal File System (UFS) interface can be adapted to support a custom
file system. To do so, you need only edit file KNFSUSER.H to meet the requirements of
your custom file system. No other customization is required.

Once file KNFSUSER.H is ready, simply edit the File System parameters in your KwikNet
Library Parameter File to reference your custom file system. Then build your KwikNet
Libraries and link them with your application. The KwikNet Universal File System
interface will then use your custom file system for all file operations.

File KNFSUSER.H serves two purposes. As its name implies, it is a header file which maps
all KwikNet file access functions to those in your file system. However, it is also a code
generating module which can provide a custom version of any file access function which
is not available in your file system. The code generated by this module will actually
reside in KwikNet module KN_FILES.C which is located in the KwikNet INET installation
directory.

The following minimal file system services must be provided by your file system.

Open a file for read, write or append in text or binary mode
Close a file
Write n elements of size m to a file
Read n elements of size m from a file
Seek within a file
Tell location of file pointer within a file
Remove (delete) a file

The following file system services, if provided by your file system, will permit the
KwikNet FTP server to offer directory services.

Make a directory
Remove (delete) a directory
Verify that a path name references a directory
Generate a directory listing into a file

The following file system services, if provided by your file system, will permit the
KwikNet HTTP Web Server to use your file system.

Get a character from a file
Get a string from a file

C - 8 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Universal File System Interface

This page left blank intentionally.

KwikNet Administration Interface KADAK Copyright © 1997-2000 KADAK Products Ltd. D - 1

D. KwikNet Administration Interface

D.1 Introduction
Many network protocols, such as FTP, were originally developed when large mainframe
computers were shared by many users. The computers accommodated multiple users,
each with a password and all administered by a higher authority. Network protocols were
developed to support user names and passwords.

Unfortunately, user name and password administration services are rarely provided by the
operating systems found in desktop computers or embedded devices. This is true even of
KADAK's AMX Multitasking Kernel.

The KwikNet TCP/IP Stack does not require a user administration system for normal use.
However, to accommodate protocols such as FTP, KwikNet provides its own user name
and password administrative services.

User Definitions

All KwikNet users are defined in array kn_users[] in module KN_ADMIN.C located in the
KwikNet INET installation directory. Each user definition is a knx_userinfo structure
which is defined in header file KN_ADMIN.H.

struct knx_userinfo { /* User info structure */
int xu_access; /* User access rights */
int xu_rsv1; /* Fill for alignment */
void *xu_app; /* Reserved for application */
char xu_username[KN_FS_LUSER]; /* User name */
char xu_password[KN_FS_LPASS]; /* User password */
char xu_basedir[KN_FS_LPATH+4]; /* User base directory */
};

To add, modify or delete users, you must edit file KN_ADMIN.C. Each definition includes
a user name, an unencrypted password, a base directory path and a definition of the user's
access rights. User names and passwords are character arrays. The base directory
defines the path to a file directory considered to be the user's base (home) directory if a
file system is employed. A pointer variable in the definition is reserved for the private
use of your application.

D - 2 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Administration Interface

User Access Rights

User access rights are formed from the logical OR of the following bit masks which are
defined in header file KN_ADMIN.H.

KN_ADM_ACC_READ Allow file read
KN_ADM_ACC_WRITE Allow file write
KN_ADM_ACC_REMOVE Allow file remove (delete)
KN_ADM_ACC_DIRSEL Allow directory traversal (selection)
KN_ADM_ACC_DIRLIST Allow directory listing
KN_ADM_ACC_DIRMK Allow directory make
KN_ADM_ACC_DIRRM Allow directory remove (delete)
KN_ADM_ACC_VISIBLE Allow file visibility

KN_ADM_ACC_FULL Allow full access (all of the above)

These access rights are used by optional KwikNet components, such as the FTP server, to
restrict a user's access to directories and files. Access right KN_ADM_ACC_DIRSEL is
required to be able to change directories. Most of the other access rights are self
explanatory.

The visibility right is special. If a user has access right KN_ADM_ACC_VISIBLE, then the
user will have full view of all files and directories. Without this access right, the user
will not be able to view files or traverse directories which are above the user's base
directory.

Customizing Administration Services

File KN_ADMIN.C defines two users. User anonymous with password guest has read only
access to files and directories beginning at a base directory determined by the KwikNet
server making use of the user definitions. User KADAK with password KwikNet has full
access to all files from the root directory. You are free to alter these definitions to suit
your needs.

File KN_ADMIN.C also includes a set of functions which are used by servers, such as the
KwikNet FTP server, to validate user names, passwords and access rights. Other functions
in the module validate directory path information if a file system is used. Strings of the
form ">>>>" identify functions in the file which may require modification. You can alter
these validation functions, if necessary, to meet the needs of your application.

After editing the file KN_ADMIN.C, you must build your KwikNet libraries to incorporate
the revised module. Before building the KwikNet libraries, be sure to adjust the maximum
user name and password lengths (see Appendix D.2) to meet or exceed the lengths of the
user names and passwords in your user definitions.

KwikNet Administration Interface KADAK Copyright © 1997-2000 KADAK Products Ltd. D - 3

D.2 KwikNet Administration Parameters
The KwikNet administration interface forms part of the KwikNet IP Library. To adapt the
administration interface parameters for your use, you must use the KwikNet Configuration
Builder to edit your KwikNet Library Parameter File. The administration parameters are
edited using the File System property page. The layout of the window is shown below.

D - 4 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Administration Interface

Administration Parameters (continued)

Maximum User Name and Password Lengths

Specify the maximum number of characters which can appear in a user name string. The
user name length must include room for a terminating '\0' character.

Specify the maximum number of characters which can appear in a user password string.
The password length must include room for a terminating '\0' character.

For most applications, a user name length of 32 and a password length of 24 will be
adequate.

To minimize memory waste in embedded applications in which short user names and
passwords might be expected, the maximum lengths can be reduced. However, be aware
that the KwikNet FTP server may be forced to reject requests for service if the user names
and passwords which it receives exceed the limits defined by these configuration
parameters.

File System Parameters (see Appendix C)

KwikNet Sample Program Architecture KADAK Copyright © 1997-2000 KADAK Products Ltd. E - 1

E. KwikNet Sample Program Architecture
The manner in which the KwikNet TCP/IP Sample Program starts and operates is
completely dependent upon the underlying operating system with which KwikNet is being
used. Operation can be either multitasking or single threaded. All sample programs
provided with KwikNet and its optional components share the common implementation
methodology about to be described.

All KwikNet sample programs are built upon a common framework. The building blocks
are a set of files located in toolset directory TOOLXXX\SAM_COMN where XXX is KADAK's
mnemonic for the particular set of software development tools which you are using. The
common files and the procedures which they contain are listed in Figure E-1.

A quick review of the common sample program files will indicate that most of the
implementation is devoted to the man/machine interface and to the startup process.
These two topics always seem to account for the bulk of any networking example, no
matter how simple the actual network operations may be.

Console Interface

The KwikNet data logging service, message recording service and console driver have
been described in detail in Chapters 1.6 to 1.7 of the KwikNet TCP/IP Stack User's Guide.
If you review that material again, you will note that the procedures referenced in the
description are all present in the common sample program modules listed in Figure E-1.

The sample programs use KwikNet procedure kn_dprintf() to record messages using the
KwikNet data logging service. KwikNet passes each such message to the log function
sam_record() in the Application OS Interface module KNSAMOS.C. This common log
function is specified on the Application property page of the Network Parameter File
provided with each KwikNet sample program.

The sample programs use console driver procedures knconin() and knconins() for
console input and knconout() and knconouts() for console output.

The sample programs also use a command line parsing service provided by console
driver procedure kncon_parse(). This procedure parses a command string into its
various tokens according to directions provided by the caller.

The sample programs use a common error message generation service provided by
console driver procedure kncon_error(). This procedure generates an error message on
the console device. The error message is derived from a KwikNet error code using a
message list provided by the sample program.

Many of the interactive KwikNet sample programs implement a dump command to display
recorded messages. These applications call console driver procedure kncon_logdump()
to extract all of the message strings from the recording array using recording procedure
kn_loggets(). The extracted messages are displayed on the console device. Once all
recorded strings have been displayed, the recording list is reset with a call to recording
procedure kn_loginit().

E - 2 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Sample Program Architecture

KNSAMOS.C Application OS Interface
main() Sample program main entry point
sam_osshutdown() OS shutdown on exit
sam_ostkprep() Task create/prepare
sam_ostkstart() Task start
sam_record() Log function used by kn_dprintf()
print_task() Print task
backg_task() Background task (AMX only)
rrproc() Restart Procedure (AMX only)
exproc() Exit Procedure (AMX only)

KNRECORD.C Message recording services
kn_loginit() Initialize data recording services
kn_logputc() Record one character
kn_logmsg() Record a message
kn_loggets() Get one recorded message from the recorded list

KNCONSOL.C Console driver
knconinit() Initialize console device for use
knconexit() Close console device upon exit
knconin() Get a character from the console device
knconins() Get a string from the console device
knconout() Send a character to the console device
knconouts() Send a string to the console device
kncon_logprep() Prepare to use console for data logging
kncon_logputc() Log a character to the console device
kncon_logdump() Log all recorded strings on the console device
kncon_parse() Parse a console command line
kncon_error() Generate an error message on the console device

KN8250S.C INS8250 (NS16550) UART driver
kn_iouart() All serial I/O device operations

Figure E-1 KwikNet Sample Program Procedures

KwikNet Sample Program Architecture KADAK Copyright © 1997-2000 KADAK Products Ltd. E - 3

KwikNet Sample Program Operation with AMX

When KwikNet is used with AMX, the KwikNet sample programs operate as follows. Once
your board level initialization is complete and the C startup code has been executed, the
sample program begins execution at main() in the Application OS Interface module
KNSAMOS.C.

The main program makes a series of calls to initialize the various components which
make up the sample program. Your AMX board support function chbrdinit() is called
to set up the hardware environment for AMX use. KwikNet board driver procedure
kn_brdreset() is called to initialize its interrupt support for all KwikNet device drivers.

The KwikNet message recording interface is initialized with a call to kn_loginit(). If
the console driver has been configured for use as the recording device, procedure
kn_loginit() calls console driver procedure kncon_logprep() to prepare it
accordingly.

Next, the main() procedure calls kn_osprep() in the KwikNet OS Interface Module
KN_OSIF.C (in the KwikNet IP Library) to initialize the RTOS interface. Since this
procedure initializes the KwikNet data logging service, KwikNet procedure kn_dprintf()
can be used by the sample program even before KwikNet is started.

Finally, the main() procedure launches AMX to start the multitasking sample program.

Once AMX is ready, it calls the KwikNet Restart Procedure kn_osready() in the
KwikNet OS Interface Module KN_OSIF.C (in the KwikNet IP Library) to initialize the
AMX resources required by KwikNet and to prepare the memory allocation subsystem for
use by KwikNet and your application.

AMX then calls the application Restart Procedure rrproc() in the Application OS
Interface module KNSAMOS.C to start the KwikNet sample program as an AMX application.
The AMX clock driver is initialized with a call to procedure chclockinit(). Task
services in the Application OS Interface module are then used to create and start a low
priority background task (procedure backg_task()) which provides a simulated software
clock in case a real hardware clock is unavailable and an AMX clock driver has not been
linked with the sample program.

Next, Restart Procedure rrproc() starts the sample program's print task, a task used by
some sample programs to log messages on the console device. Finally, procedure
app_prep() in the sample program module is called to prepare all application level
components needed by the sample program.

Every KwikNet sample program provides function app_prep() as its advance preparation
entry point. This procedure creates and starts one or more application tasks which
collectively make up the sample program. One of these tasks, usually called the client
task, is the task in charge of the sequence of operations performed by the sample
program. For example, the client task often provides a user command line console
interface which allows you to interactively control sample program activities.

E - 4 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Sample Program Architecture

The sample program begins operation at task level once AMX completes its startup
processing. The client task executes and calls function app_enter(), the entry point to
the main body of the sample program.

The client task starts KwikNet with a call to KwikNet procedure kn_enter(). KwikNet
initializes all of its private resources and starts the KwikNet Task which prepares all
network interfaces and their associated device drivers for use.

If the sample program requires AMX/FS file services, procedure sam_osfsprep() in the
Application OS Interface module KNSAMOS.C is called to prepare the AMX/FS File
System for use. If the client task provides an interactive user interface, the console driver
is initialized with a call to procedure knconinit(). Thereafter, the client task
orchestrates the sequence of network operations it is designed to illustrate.

The termination process is handled by the client task. If the console driver was in use, it
is closed with a call to knconexit(). KwikNet is stopped with a call to kn_exit(). After
a brief pause to allow KwikNet to stop, the RTOS shutdown is initiated with a call to
sam_osshutdown() which simply requests AMX to exit in its usual orderly fashion.

AMX executes the sample program Exit Procedure exproc() which calls
chclockexit() to disable the AMX clock driver. Once all Exit Procedures have been
called, AMX ceases operation and returns to the main() function from which AMX was
launched. One final call to procedure kn_osfinish() in the KwikNet OS Interface
Module KN_OSIF.C (in the KwikNet IP Library) breaks the connection between KwikNet
and its RTOS interface.

KwikNet Sample Program Architecture KADAK Copyright © 1997-2000 KADAK Products Ltd. E - 5

KwikNet Porting Kit Sample Program - Multitasking Operation

When the KwikNet Porting Kit is used with a multitasking RTOS, the KwikNet sample
programs operate as follows. Once your board level initialization is complete and the C
startup code has been executed, the sample program begins execution at main() in the
Application OS Interface module KNSAMOS.C.

The main program makes a series of calls to initialize the various components which
make up the sample program. Your KwikNet board driver procedure kn_brdreset() is
called to initialize its interrupt support for all KwikNet device drivers.

The KwikNet message recording interface is initialized with a call to kn_loginit(). If
the console driver has been configured for use as the recording device, procedure
kn_loginit() calls console driver procedure kncon_logprep() to prepare it
accordingly.

Next, the main() procedure calls kn_osprep() in your KwikNet OS Interface Module
KN_OSIF.C (in the KwikNet IP Library) to initialize your RTOS interface. Since this
procedure initializes the KwikNet data logging service, KwikNet procedure kn_dprintf()
can be used by the sample program even before KwikNet is started. In many cases,
procedure kn_osprep() will also start your KwikNet clock driver with a call to its
initialization procedure kn_uclockinit().

Finally, the main() procedure starts your RTOS to run the multitasking sample program.
In the example provided with the KwikNet Porting Kit, the RTOS creates a startup task
which is executed by the RTOS as it begins operation. The startup task is located at entry
point sam_osmain() in the Application OS Interface module KNSAMOS.C.

Once the RTOS is ready, it executes the startup task procedure sam_osmain(). Task
services in the Application OS Interface module are used to create and start the sample
program's print task, a task used by some sample programs to log messages on the
console device. Finally, procedure app_prep() in the sample program module is called
to prepare all application level components needed by the sample program.

Every KwikNet sample program provides function app_prep() as its advance preparation
entry point. This procedure creates and starts one or more application tasks which
collectively make up the sample program. One of these tasks, usually called the client
task, is the task in charge of the sequence of operations performed by the sample
program. For example, the client task often provides a user command line console
interface which allows you to interactively control sample program activities.

E - 6 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Sample Program Architecture

The sample program begins operation at task level once the high priority startup task
terminates. The client task executes and calls function app_enter(), the entry point to
the main body of the sample program.

The client task starts KwikNet with a call to KwikNet procedure kn_enter(). KwikNet
initializes all of its private resources and starts the KwikNet Task which prepares all
network interfaces and their associated device drivers for use.

If the client task provides an interactive user interface, the console driver is initialized
with a call to procedure knconinit(). Thereafter, the client task orchestrates the
sequence of network operations it is designed to illustrate.

The termination process is handled by the client task. If the console driver was in use, it
is closed with a call to knconexit(). KwikNet is stopped with a call to kn_exit(). After
a brief pause to allow KwikNet to stop, the RTOS shutdown is initiated with a call to
sam_osshutdown() which, if possible, forces the RTOS to terminate execution in an
orderly fashion.

If the RTOS ceases operation, it returns to the main() function from which it was
launched. One final call to procedure kn_osfinish() in your KwikNet OS Interface
Module KN_OSIF.C (in the KwikNet IP Library) breaks the connection between KwikNet
and your RTOS. In many cases, procedure kn_osfinish() will also stop your KwikNet
clock driver with a call to its termination procedure kn_uclockexit().

KwikNet Sample Program Architecture KADAK Copyright © 1997-2000 KADAK Products Ltd. E - 7

KwikNet Porting Kit Sample Program - Single Threaded Operation

When the KwikNet Porting Kit is used with a single threaded operating system (OS), the
KwikNet sample programs operate as follows. Once your board level initialization is
complete and the C startup code has been executed, the sample program begins execution
at main() in the Application OS Interface module KNSAMOS.C.

The main program makes a series of calls to initialize the various components which
make up the sample program. Your KwikNet board driver procedure kn_brdreset() is
called to initialize its interrupt support for all KwikNet device drivers.

The KwikNet message recording interface is initialized with a call to kn_loginit(). If
the console driver has been configured for use as the recording device, procedure
kn_loginit() calls console driver procedure kncon_logprep() to prepare it
accordingly.

Next, the main() procedure calls kn_osprep() in your KwikNet OS Interface Module
KN_OSIF.C (in the KwikNet IP Library) to initialize your OS interface. Since this
procedure initializes the KwikNet data logging service, KwikNet procedure kn_dprintf()
can be used by the sample program even before KwikNet is started. In many cases,
procedure kn_osprep() will also start your KwikNet clock driver with a call to its
initialization procedure kn_uclockinit().

Finally, the main() procedure assumes its App-Task role and calls function
app_enter(), the entry point to the main body of the sample program.

The App-Task starts KwikNet with a call to KwikNet procedure kn_enter(). KwikNet
initializes all of its private resources and starts the KwikNet Task which prepares all
network interfaces and their associated device drivers for use.

If the App-Task provides an interactive user interface, the console driver is initialized
with a call to procedure knconinit(). Thereafter, the App-Task orchestrates the
sequence of network operations it is designed to illustrate.

The termination process is handled by the App-Task. If the console driver was in use, it
is closed with a call to knconexit(). KwikNet is stopped with a call to kn_exit(). After
a brief pause to allow KwikNet to stop, the OS is forced to shut down with a call to
sam_osshutdown(). Rarely is any termination processing performed by this function.

The App-Task procedure app_enter() returns to the main() function from which it was
called. One final call to procedure kn_osfinish() in your KwikNet OS Interface Module
KN_OSIF.C (in the KwikNet IP Library) breaks the connection between KwikNet and your
OS. In many cases, procedure kn_osfinish() will also stop your KwikNet clock driver
with a call to its termination procedure kn_uclockexit().

E - 8 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet Sample Program Architecture

This page left blank intentionally.

	Cover
	Table of Contents
	1. KwikNet Overview
	Introduction
	General Operation
	KwikNet Nomenclature
	Byte Ordering and Endianness
	Memory Allocation Requirements
	Data Logging Service
	Message Recording Service
	Debugging Aids
	KwikNet Console Driver
	TCP/IP Sample Program

	2. KwikNet System Configuration
	Introduction
	KwikNet Configuration Builder
	Library Parameter File
	Target Parameters
	OS Parameters
	IP Stack Parameters
	TCP Stack Parameters
	Ethernet / SLIP Parameters
	Modem Parameters
	DNS / DHCP Client Parameters
	Debug and Trace Parameters

	Network Parameter File
	General Application Parameters
	Ethernet Network Definition
	SLIP Network Definition
	Network Device Driver Definition
	Network IP Address Definition
	Modem Options

	3. KwikNet System Construction
	Building an Application
	Making the KwikNet Libraries
	Compiling Network Configuration
	Compiling Application Modules
	Linking the Application
	Making TCP/IP Sample Program
	Using KwikNet with AMX
	AMX System Configuration
	AMX Target Configuration
	Toolset Considerations
	AMX Application Construction

	4. KwikNet IP/UDP Services
	The UDP Programming Interface
	The DHCP (BOOTP) Client
	The DNS Client
	ICMP Protocol
	KwikNet State Management
	IP and UDP Library Services

	5 KwikNet TCP/IP Sockets
	Introduction to KwikNet Sockets
	Socket Types
	Socket Options
	KwikNet Socket Services

	A. Reference Materials and Glossary
	Reference Materials
	KwikNet Glossary

	B. KwikNet Error Codes
	C. Universal File System Interface
	Introduction
	File System Parameters
	Using the AMX/FS File System
	Using the MS-DOS File System
	Using a Custom File System

	D. KwikNet Administration Interface
	Introduction
	Administration Parameters

	E. Sample Program Architecture

