
KwikNet™

SNMP Agent

User's Guide

First Printing: February 15, 1999
Last Printing: November 1, 2000

Manual Order Number: PN303-9S

Copyright © 1997 - 2000

KADAK Products Ltd.
206-1847 West Broadway Avenue

Vancouver, B.C., Canada, V6J 1Y5
Phone: (604) 734-2796
Fax: (604) 734-8114

KwikNet SNMP Agent Option KADAK Copyright © 1997-2000 KADAK Products Ltd. i

TECHNICAL SUPPORT

KADAK Products Ltd. is committed to technical support for its software products. Our
programs are designed to be easily incorporated in your systems and every effort has
been made to eliminate errors.

Engineering Change Notices (ECNs) are provided periodically to repair faults or to
improve performance. You will automatically receive these updates for a period of one
year. After that period, you may purchase additional updates. Please keep us informed
of the primary user in your company to whom these update notices and other pertinent
information should be directed.

Should you require direct technical assistance in your use of this KADAK software
product, engineering support is available by telephone, fax or e-mail without charge.
KADAK reserves the right to charge for technical support services which it deems to be
beyond the normal scope of technical support.

We would be pleased to receive your comments and suggestions concerning this product
and its documentation. Your feedback helps in the continuing product evolution.

KADAK Products Ltd.
#206 - 1847 West Broadway Avenue
Vancouver, B.C., Canada, V6J 1Y5

Phone: (604) 734-2796
Fax: (604) 734-8114
e-mail: amxtech@kadak.com

ii Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Agent Option

Copyright © 1997-2000 by KADAK Products Ltd.
All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated into any language or computer
language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual or otherwise, without the prior
written permission of KADAK Products Ltd., Vancouver, B.C., CANADA.

DISCLAIMER

KADAK Products Ltd. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any implied
warranties or merchantability or fitness for any particular purpose.
Further, KADAK Products Ltd. reserves the right to revise this
publication and to make changes from time to time in the content
hereof without obligation of KADAK Products Ltd. to notify any
person of such revision or changes.

TRADEMARKS

AMX in the stylized form is a registered trademark of KADAK Products Ltd.
KwikNet, AMX, InSight and KwikLook are trademarks of KADAK Products Ltd.
UNIX is a registered trademark of AT&T Bell Laboratories.
Microsoft, MS-DOS and Windows are registered trademarks of Microsoft Corporation.
All other trademarked names are the property of their respective owners.

KwikNet SNMP Agent Option KADAK Copyright © 1997-2000 KADAK Products Ltd. iii

KwikNet SNMP Agent User's Guide
Table of Contents

Page

1. KwikNet SNMP Agent Overview 1

1.1 Introduction.. 1
1.2 General Operation .. 2

Managed Data .. 2
Object Identifiers.. 3
SNMP Communities .. 3
SNMP Messages (Requests, Responses and Traps)............................. 4
SNMP Security .. 5

1.3 KwikNet SNMP Library Configuration ... 6
1.4 SNMP Agent Operation ... 9

SNMP Agent Definition... 10
1.5 SNMP Traps... 11

Trap Messages ... 11
Trap Targets ... 12
Authentication Traps.. 12

1.6 MIB Data Organization.. 13
MIB-II Support .. 15

1.7 SNMP Error and Statistics Logging... 16
1.8 Adding the SNMP Agent to Your Application 17

KwikNet SNMP Library .. 17
KwikNet Task Considerations ... 17
Reconstructing Your KwikNet Application... 18
AMX Considerations ... 18
Performance Considerations .. 18

2. KwikNet MIB Construction 19

2.1 Introduction.. 19
MIB Definition Files.. 19
SNMP Variables Module ... 19
MIB Access Modules... 21
MIB Access Header Files .. 21
MIB Documentation Files.. 21
Building a Custom MIB... 22
SNMP MIB Sample ... 23

2.2 MIB Definition Files .. 25
MIB Organization .. 25
Predefined Symbols used in MIB Definitions...................................... 28
Imported Symbols .. 28

2.3 MIB Finder Procedures .. 29
Operation of a MIB Finder Procedure ... 32
MIB Set Procedure... 32
MIB Finder Procedure Example .. 32

2.3.1 MIB Finder Procedure Specification... 35
2.3.2 MIB Set Procedure Specification .. 38

iv Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Agent Option

KwikNet SNMP Agent User's Guide
Table of Contents (continued)

Page

2. KwikNet MIB Construction (continued) 40

2.4 Using the MIB Compiler.. 40
Running the MIB Compiler ... 41
Files on the Command Line ... 41
Command Line Parameters .. 42
KwikNet Sample MIB ... 43
Using Multiple MIBs ... 44
Managing a Library of MIBs ... 45

2.5 Compiling and Linking a MIB ... 46
Linking the MIB with your Application .. 47
Using a MIB Library File... 47

3. KwikNet SNMP Services 49

3.1 Introduction to SNMP Services.. 49
KwikNet Procedure Descriptions... 49

3.2 SNMP Service Procedures ... 51

KwikNet SNMP Agent User's Guide
Table of Figures

Page

Figure 1.2-1 KwikNet SNMP Messages (PDUs) 4
Figure 1.2-2 MIB Access Rights and Allowed Operations 5
Figure 1.6-1 Standard MIB Tree Structure .. 13
Figure 2.1-1 Creating a Custom MIB ... 20
Figure 2.1-2 Sample SNMP Managed Device ... 23
Figure 2.1-3 MIB Structure for Sample Device 24
Figure 2.2-1 MIB Definition File for Sample Device 26
Figure 2.2-2 MIB Compiler Predefined Symbols 28
Figure 2.3-1 MIB Access Header File for Sample Device 30
Figure 2.3-2 MIB Access Module for Sample Device 31
Figure 2.3-3 MIB Finder Procedures for Sample Device 33

KwikNet SNMP Agent Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 1

1. KwikNet SNMP Agent Overview

1.1 Introduction
The Simple Network Management Protocol (SNMP) is a standard protocol used by
network administrators to observe and control interconnected network devices. The
SNMP administrator is called the SNMP manager. The network nodes for which the
manager is responsible are called managed devices. Each such device includes an SNMP
agent responsible for communication with the manager. The UDP protocol is used by the
manager and agent for network communication.

The KwikNet™ SNMP Agent implements the SNMP protocol on top of the KwikNet TCP/IP
Stack, a compact, reliable, high performance TCP/IP stack, well suited for use in
embedded networking applications.

The KwikNet SNMP Agent is best used with a real-time operating system (RTOS) such as
KADAK's AMX™ Real-Time Multitasking Kernel. However, the KwikNet SNMP Agent
can also be used in a single threaded environment without an RTOS. The KwikNet Porting
Kit User's Guide describes the use of KwikNet with your choice of RT/OS. Note that
throughout this manual, the term RT/OS is used to refer to any operating system, be it a
multitasking RTOS or a single threaded OS.

You can readily tailor the KwikNet stack to accommodate your SNMP needs by using the
KwikNet Configuration Builder, a Windows® utility which makes configuring KwikNet a
snap. Your KwikNet stack will only include the SNMP features required by your
application.

This manual makes no attempt to describe the Simple Network Management Protocol
(SNMP), what it is or how it operates. It is assumed that you have a working knowledge
of the SNMP protocol as it applies to your needs. Reference materials are provided in
Appendix A of the KwikNet TCP/IP Stack User's Guide.

The purpose of this manual is to provide the system designer and applications
programmer with the information required to properly configure and implement a
networking system using the KwikNet TCP/IP Stack and SNMP. It is assumed that you
are familiar with the architecture of the target processor.

KwikNet and its options are available in C source format to ensure that regardless of your
development environment, your ability to use and support KwikNet is uninhibited. The
source program may also include code fragments programmed in the assembly language
of the target processor to improve execution speed.

The C programming language, commonly used in real-time systems, is used throughout
this manual to illustrate the features of KwikNet and its SNMP Agent.

2 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Agent Overview

1.2 General Operation
The Simple Network Management Protocol (SNMP) is a standard protocol used by
network administrators to observe and control interconnected network devices. SNMP
version 1 is formally defined by the IETF document RFC-1157. The KwikNet SNMP
Agent is compliant with this specification. The RFC should be consulted for any detailed
questions concerning the SNMP protocol. The KwikNet SNMP Agent implements the
SNMP features typically required for use by a managed device in an embedded
application.

SNMP uses the connectionless UDP transport protocol. One machine, the network
SNMP manager, sends a request to another machine, the SNMP agent. The agent
handles the request and, if necessary, sends a separate response message to the manager.
The SNMP agent can also send a special message called a trap, to an SNMP manager,
informing the manager of a specific event or error condition which has occurred within
the managed device.

The SNMP manager sends each SNMP message in a UDP datagram to the well known
SNMP port number 161 within the managed device. The SNMP agent's response, if any,
is directed to the port identified by the manager in its request. The SNMP agent directs
its trap messages to the well known SNMP trap port number 162.

The KwikNet SNMP Library provides the services needed to implement an SNMP agent
capable of servicing requests from multiple SNMP managers.

Managed Data

Network devices are managed using a very simple strategy. An artificial element called a
variable is assigned to each feature of a device which is subject to observation or control.
Every such variable has an associated value. The SNMP manager monitors and controls
the managed device by reading and writing these management variables.

The management variables are maintained within the managed device in a Management
Information Base (MIB). Each variable is defined using a descriptive language referred
to as the Abstract Syntax Notation (ASN.1). The definition gives the variable a name,
specifies the type of value associated with the variable and identifies the operations
which can be performed on the variable.

The MIB is organized in a tree-like structure with each variable sitting as a leaf on a
branch of the tree. Chapter 1.6 describes the structure of the MIB in more detail.

The managed data supported by the KwikNet SNMP Agent conforms to the standards
described in RFC-1155, RFC-1212 and RFC-1213. In particular, KwikNet provides
built-in support for the MIB variables defined by RFC-1213 and used to monitor the
TCP/IP stack and its related protocols.

The specification of a Management Information Base (MIB) is provided in a text file
using ASN.1 notation. Unfortunately, the MIB definition itself is frequently referred to
as a MIB. Within this manual, the term MIB will be reserved for the actual database
accessed by the SNMP agent. The text file used to describe the elements of that MIB will
be called a MIB Definition File.

KwikNet SNMP Agent Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 3

Object Identifiers

A MIB variable is identified by an object identifier which uniquely specifies the location
of that MIB variable in the Management Information Base. The object identifier is an
ordered list of integer numbers separated from each other by the period ('.') character.
Each number in the object identifier is called a sub-identifier.

For convenience, each MIB variable is also given a human readable name in which the
sub-identifiers in the object identifier are replaced by text strings. For example, the
MIB-II variable icmpInErrors with object identifier 1.3.6.1.2.1.5.2 has been given
the full name of iso.org.dod.internet.mgmt.mib-2.icmp.icmpInErrors. The text
name for the MIB variable is used only in the MIB definition; it is NOT present in the
actual MIB database. Hence the SNMP agent has no access to this MIB variable name.

Even the object identifier in its dot separated numeric form is not used by the SNMP
agent. Instead, an object identifier is implemented as an array of sub-identifier values
called a subid array. Since KwikNet can be configured to use either 16-bit or 32-bit
sub-identifiers, the variable type knsa_subid is introduced in KwikNet header file
KN_SNMP.H. Using this definition, a subid array is as an array of n sub-identifiers of type
knsa_subid.

The KwikNet SNMP Agent also uses a private, compact form of the object identifier called
a compressed object identifier. This compressed object identifier can be extracted into
a subid array for manipulation by your application.

SNMP Communities

The term community is used to reference a group of SNMP managers and agents which
collectively serve a common management purpose. A community can include a single
manager and agent, one manager and several agents or several managers and agents.
Managers and agents can each belong to more than one community.

For example, a pipeline managed by a single SNMP manager might have two
communities. The pump community would include the manager and all pumping stations
along the pipeline. The meter community would include the manager and all stations
along the pipeline at which pipeline throughput could be measured. Most pumping
stations would belong to both communities. However, many metering stations with no
pumping capabilities would only belong to the meter community.

4 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Agent Overview

SNMP Messages (Requests, Responses and Traps)

The SNMP manager and agent communicate by sending SNMP messages to each other.
Each SNMP message is delivered within a single UDP datagram. Each message consists
of a version identifier, an SNMP community name and a protocol data unit (PDU).

The version identifier specifies the SNMP version which must be supported in order to
decode the message. The KwikNet SNMP Agent only supports SNMP version 1.

The community name identifies the SNMP community to which the message applies.
The message will be ignored if the recipient is not configured as a member of the
community referenced in the message.

Finally, the PDU identifies the particular management variable to which the message
applies and the operation, if any, to be performed by the message recipient. The PDU is
used by the SNMP manager to read and write variables. The PDU is used by the SNMP
agent to send the value associated with a variable to the SNMP manager which requested
the value.

The PDU is also used by the SNMP agent to send a trap message to a particular SNMP
manager. The recipient of the SNMP trap message is referred to as a trap target.

The protocol data units supported by KwikNet are summarized in Figure 1.2-1.

Protocol Data Unit Purpose

get-request Get the value of a MIB variable from the managed device
get-next-request Get the value of the next MIB variable from the

managed device
set-request Set the value of a MIB variable in the managed device
get-response Message from the managed device in response to a

get-request, get-next-request or set-request PDU
trap Report an event or error which occurred in the

managed device

Figure 1.2-1 KwikNet SNMP Messages (PDUs)

KwikNet SNMP Agent Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 5

SNMP Security

A limited security scheme is provided with SNMPv1. The definition of each MIB
variable specifies whether or not that variable can be read and/or written. Each
community to which the managed device belongs is also qualified as to whether or not
that community can read and/or write any of the MIB variables present in the managed
device. It is the KwikNet SNMP Agent which enforces the access rules summarized in
Figure 1.2-2.

When the SNMP agent receives a request to fetch or modify the value of a MIB variable,
it checks the access rights of the community and MIB variable specified in the request. If
the community does not have access rights appropriate to the request, then the SNMP
agent does not respond to the request. Instead, it sends an authenticationFailure trap
message to all SNMP managers identified as trap targets to warn them of the
unauthorized access attempt.

Community Access RightsMIB Variable
Access Rights

read read/write write none

read get get — —

read/write get get, set set —

write — set set —

none — — — —

Figure 1.2-2 MIB Access Rights and Allowed Operations

6 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Agent Overview

1.3 KwikNet SNMP Library Configuration
You can readily tailor the KwikNet stack to accommodate your SNMP needs by using the
KwikNet Configuration Builder to edit your KwikNet Library Parameter File. The KwikNet
SNMP Library parameters are edited on the SNMP property page. The layout of the
window is shown below.

KwikNet SNMP Agent Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 7

SNMP Library Parameters (continued)

Include SNMP Agent

Check this box to permit your application to act as an SNMP managed device.
Otherwise, leave this box unchecked.

Enterprise Number

Specify the enterprise number used by your organization to reference your managed
device. Enterprise numbers are integer values allocated by the Internet Assigned
Numbers Authority (IANA). To apply for an enterprise number, contact the IANA at
www.iana.org.

Sub-id Width

Specify the number of bits to be used for the sub-identifier numbers in a MIB object
identifier. Pick either 16-bit or 32-bit from the pull down list. If you choose 16-bit
sub-ids, the maximum sub-identifier value allowed in any MIB object identifer will be
65535. If you require sub-ids greater than 65535, you must use 32-bit sub-ids.

Although the use of 16-bit sub-ids will minimize the memory occupied by your MIB, you
may pay a performance penalty if your memory system does not operate efficiently with
16-bit access. As a general rule, if you do not require sub-ids greater than 65535, use
16-bit sub-ids with 16-bit memory systems.

Maximum Sub-ids in an Object ID

Specify the maximum number of sub-identifiers required in any MIB object identifier
which will be used to reference a MIB variable in your managed device. For example, 20
sub-identifiers exist in the object identifiers used to reference some of the TCP MIB
variables specified by RFC-1213. A typical value is 32. Few managed devices will
require a larger value.

Maximum System Group String Length

Specify the maximum number of bytes allowed in any of the string variables present in
the MIB-II system group. The count must include the terminating '\0' character even
though this character is never delivered within the PDU of an SNMP message.

8 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Agent Overview

SNMP Library Parameters (continued)

Community Name Size

Specify the maximum number of bytes in the string which provides the name of a
community to which the managed device belongs. The count must include the
terminating '\0' character even though this character is never included within an SNMP
message.

Community Membership Limit

Specify the maximum number of communities to which your managed device can
belong. The managed device must belong to at least one community in order to be
accessible.

Log Statistics

Check this box if your application will use the KwikNet function kn_netstats() to
generate a summary of the SNMP events monitored by the SNMP agent. The summary
will be directed to the KwikNet logging device, if one has been provided. Otherwise, leave
this box unchecked. Leaving this box unchecked reduces the code size by eliminating the
service from the KwikNet SNMP Library.

Automatically Start SNMP Agent

Check this box if the KwikNet SNMP Agent is to be activated automatically by KwikNet
when KwikNet is started. If this box is unchecked, the KwikNet SNMP Agent will remain
idle until your application calls KwikNet procedure knsa_control() to start the agent.

SNMP Can Send Traps

Check this box if the KwikNet SNMP Agent is to be allowed to generate SNMP trap
messages. Otherwise, leave this box unchecked. Leaving this box unchecked reduces the
code size by eliminating all trap message generation logic from the SNMP procedures in
the KwikNet SNMP Library.

Maximum Number of Trap Targets

If you enable SNMP trap generation, you must specify the maximum number of trap
targets (SNMP managers) to which SNMP trap messages will be directed by the KwikNet
SNMP Agent. You must allow at least one trap target.

KwikNet SNMP Agent Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 9

1.4 SNMP Agent Operation
The KwikNet SNMP Library includes the SNMP agent and a collection of services for use
by your application as it interacts with the agent. Services are provided to allow you to
dynamically configure the SNMP agent and control its operation. Other services are
available for use by your MIB access functions as described in Chapter 2.

When used with a real-time operating system such as KADAK's AMX Real-Time
Multitasking Kernel or in a single threaded environment, the SNMP agent operates
within the context of the KwikNet Task. The SNMP agent is initialized by the KwikNet
Task as soon as KwikNet is operational. During this process, the SNMP agent calls
function snmp_agentinfo() in source module SNMPUSER.C to fetch your custom
definition of the managed device. The agent is then ready for use but remains idle until
started by KwikNet or by your application.

If your KwikNet SNMP Library has been built with the auto-start feature enabled, the
KwikNet Task will automatically start the SNMP agent as soon as it has been made ready
for use.

If your KwikNet SNMP Library has been built with the auto-start feature disabled, your
application must start the SNMP agent with a call to KwikNet procedure knsa_control().
By default, the SNMP agent will use your custom definition of the managed device from
source module SNMPUSER.C. However, prior to starting the SNMP agent, you are free to
inject an alternate definition or to adapt the default definition to your particular needs.
Service procedures knsa_config(), knsa_community() and knsa_traptarget() in the
SNMP Library are provided for this purpose.

Once started, the SNMP agent will service all SNMP requests directed to SNMP port
number 161 at any of the IP addresses assigned to the KwikNet network interfaces.

SNMP traps, if enabled within your KwikNet SNMP Library, are handled by the SNMP
agent as described in Chapter 1.5.

Your application can use KwikNet procedure knsa_control() to control the operation of
the SNMP agent. You can disable and enable the servicing of SNMP requests by the
SNMP agent, thereby easily adjusting the visibility of your managed device to all SNMP
managers. You can also enable or disable the SNMP agent's ability to generate SNMP
trap messages.

10 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Agent Overview

SNMP Agent Definition

Your SNMP managed device must appear as a unique, identifiable SNMP entity on the
network. The SNMP agent must be able to provide a description of the device and to
identify the communities to which the device belongs. If SNMP traps are to be
supported, the SNMP agent must be able to identify all of the trap targets (SNMP
managers) to whom the trap messages are to be directed.

When the SNMP agent is first initialized, it calls function snmp_agentinfo() in source
module SNMPUSER.C to fetch your custom definition of the managed device. This
function returns a pointer to an SNMP agent definition structure which provides the
following information for the benefit of the SNMP agent.

MIB-II system group information
List of community definitions
List of trap targets

The MIB-II system group is a collection of MIB variables defined by RFC-1213. These
variables provide an object identifier for the managed device, an indication of the
services which the device offers and text strings which describe the managed device and
its vendor. The values for these variables are provided in the default device description
provided in source module SNMPUSER.C.

The list of communities defines the communities to which the managed device belongs.
Each definition also specifies the MIB access rights granted to that community.

The list of trap targets defines the SNMP managers to which all SNMP generated trap
messages will be sent. Each trap target definition specifies the IP address of an SNMP
manager to whom the trap message is to be sent. The definition also specifies the
community name to be presented in the trap message when it is sent to that particular trap
target. If SNMP traps are not enabled within your KwikNet SNMP Library, the list of trap
targets will be ignored.

You are free to edit the SNMP agent definition module SNMPUSER.C to meet the needs of
your application. After editing the file, you must build your KwikNet SNMP Library to
incorporate the revised module.

Once KwikNet has been started, your application may reconfigure the SNMP agent at any
time using the KwikNet SNMP Library service procedures knsa_config(),
knsa_community() and knsa_traptarget().

KwikNet SNMP Agent Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 11

1.5 SNMP Traps
An SNMP trap is an unsolicited signal from an SNMP managed device to an SNMP
manager indicating that an event or error condition of possible interest has occurred. The
signal is an SNMP trap message which is sent by the managed device to one or more
SNMP managers called trap targets. SNMP trap messages are always directed to the well
known SNMP trap port number 162 at the trap target.

Your managed device can only generate SNMP traps if your KwikNet SNMP Library has
been configured with SNMP traps enabled. Edit your KwikNet Library Parameter File and
check the box labelled "SNMP can send traps" on the SNMP property page. Be sure to
generate an updated set of KwikNet Libraries after editing the Library Parameter File.

There are three kinds of SNMP traps generated by the KwikNet SNMP Agent during its
normal course of operation. The SNMP agent generates a cold start trap when it is first
started. If the SNMP agent is stopped and restarted by your application, the agent
generates a warm start trap. If the SNMP agent receives an unauthorized SNMP request
for access to a MIB variable, it generates an authentication failure trap.

Your application can generate an SNMP trap with a call to KwikNet procedure
knsa_trap(). In a multitasking system, only tasks of lower priority than the KwikNet
Task can generate SNMP traps. Of course, any application function which executes in
the context of the KwikNet Task can also generate an SNMP trap.

Once the KwikNet SNMP Agent has been initialized by KwikNet, your application can call
KwikNet procedure knsa_control() to globally disable the generation of traps.
Thereafter, any attempt by the SNMP agent or by your application to generate a trap will
be refused until such time as you again call procedure knsa_control() to enable trap
generation.

Trap Messages

An SNMP trap message is an SNMP message which contains a trap protocol data unit
(trap PDU). The trap PDU specifies the trap type and identifies the managed device
which is generating the trap. Application specific trap PDUs can also include the object
identifiers and values for one or more SNMP variables if so desired.

The following SNMP trap types are defined by SNMP.

coldStart Cold start trap generated by SNMP agent
warmStart Warm start trap generated by SNMP agent
linkUp Network available (not generated)
linkDown Network unavailable (not generated)
authenticationFailure Request for MIB access denied by SNMP agent
egpNeighborLoss EGP peer has been lost (not generated)
enterpriseSpecific Enterprise specific trap generated by your application

12 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Agent Overview

Trap Targets

A trap target is the SNMP manager to whom an SNMP trap message is sent. The KwikNet
SNMP Agent maintains a list of all known trap targets to whom SNMP traps are to be
sent. Each SNMP trap message generated by the SNMP Agent or by your application is
sent to every trap target in that list.

You must specify the maximum number of trap targets required by your application. Edit
your KwikNet Library Parameter File and adjust parameter labelled "Max number of trap
targets" on the SNMP property page. Be sure to generate an updated set of KwikNet
Libraries after editing the Library Parameter File.

Each trap target is identified by its IP address. Associated with each trap target is a text
string which provides the name of the SNMP community which is to be inserted into
each SNMP trap message sent to that particular trap target. The default set of trap targets
is provided in your custom definition of the managed device in source module
SNMPUSER.C. You must edit that module to specify your particular set of trap targets.

Once the KwikNet SNMP Agent has been initialized by KwikNet, your application can call
KwikNet procedure knsa_traptarget() to dynamically revise the trap target list
maintained by the agent. Trap targets can be added to or deleted from the list. Hence,
your application can dynamically initialize its list of trap targets and then adapt the list to
changing requirements as time goes on.

Authentication Traps

The KwikNet SNMP agent sends the authenticationFailure trap whenever it detects an
attempt by an unauthorized SNMP manager to access or modify a MIB variable. The
SNMP request causing the violation is ignored and an SNMP trap is generated instead.
Such access violations can occur in two ways.

A violation occurs if the community specified in an SNMP request does not have the
access rights necessary to service the request. For example, if the community has read-
only access rights, an SNMP request from that community to modify any MIB variable
will cause an access violation.

A violation also occurs if an SNMP request specifies an unknown community.

It is also important to know when an authenticationFailure trap will not be sent. If
the SNMP request specifies a known community with the access rights necessary to
perform the requested operation but the MIB variable of interest does not exist or has
access rights which preclude the requested operation, no trap is generated. In this case,
an error indication is provided in the SNMP message which is sent as a reply to the
SNMP manager making the request.

KwikNet SNMP Agent Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 13

1.6 MIB Data Organization
The data in an SNMP Management Information Base (MIB) is organized in a tree-like
structure. Each branch in the tree is given a number and a human readable name. The
name is only descriptive; it is not used by the SNMP protocol. Each branch can contain
zero or more managed variables as well as zero or more branches leading further down
the tree. Figure 1.6-1 illustrates the standard MIB tree defined by RFC-1155 and
extended by RFC-1213.

Figure 1.6-1 Standard MIB Tree Structure

Enterprise subtree numbers are assigned by the
IANA. Individual subtrees are administered by
their assigned organizations.

enterprise1 (1) enterprisen (n)

RFC 1213
(MIB-II)

snmp (11)system (1)

mib-2 (1)

transmission (10)

directory (1)

iso (1) joint-iso-ccitt (2)ccitt (0)

org (3)

dod (6)

internet (1)

mgmt (2) experimental (3) private (4)

enterprises (1)

RFC 1155

14 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Agent Overview

Each MIB variable has a unique object identifier which specifies the exact location of the
MIB variable within the MIB tree. The object identifier is a sequence of numbers which
specify the tree branches to be followed to find the variable.

For example, from Figure 1.6-1, all of the MIB-II variables defined in RFC-1213 are
contained in the subtree beginning at branch mib-2 which is identified as follows:

string form: iso.org.dod.internet.mgmt.mib-2
numeric form: 1.3.6.1.2.1

Since the MIB-II variable snmpOutPkts (2) is located in the snmp branch of the mib-2
subtree, its object identifier is:

string form: iso.org.dod.internet.mgmt.mib-2.snmp.snmpOutPkts
numeric form: 1.3.6.1.2.1.11.2

Figure 1.6-1 also shows the enterprises branch which contains a number of
enterprise subtrees. These subtrees are assigned to organizations by the Internet
Assigned Numbers Authority (IANA). The structure and data managed by these private
subtrees is completely controlled by their assigned organizations. It is this branch of the
MIB tree which will contain the custom MIB variables, if any, required to support your
managed device.

The MIB used by your managed device must be constructed using the KwikNet MIB
Compiler as described in Chapter 2. In addition to your own custom MIB definitions,
you can also add support for MIBs defined by other RFCs.

KwikNet SNMP Agent Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 15

MIB-II Support

The MIB-II Management Information Base defined in RFC-1213 is the standard MIB
used to manage TCP/IP based devices. The MIB-II variables are usually included as part
of the MIB for each such managed device. For this reason, the KwikNet SNMP Option
includes built-in support for MIB-II variables.

The KwikNet SNMP Library provides support for the MIB-II Management Information
Base defined in RFC-1213. This is the standard MIB used to manage TCP/IP based
devices.

The MIB-II groups and tables are listed below.

System group descriptions of the managed device and its capabilities
Interfaces group information about all network interfaces
Interfaces table information and statistics for individual network interfaces
Address translation table map of network (IP) addresses to sub-network (physical)

addresses for all networks interfaces
IP group information and statistics gathered by the IP layer
IP address table IP addressing information for each network interface
IP routing table IP routing information for the managed device
IP address translation table map of network (IP) addresses to sub-network (physical)

addresses for individual network interfaces
ICMP group statistics gathered by the ICMP layer
TCP group information and statistics gathered by the TCP layer
TCP connection table descriptions of individual TCP connections
UDP group information and statistics gathered by the UDP layer
UDP connection table descriptions of individual UDP listeners
EGP group information and statistics gathered by the EGP layer

(Exterior Gateway Protocol)
EGP neighbour table descriptions of individual EGP neighbours
Transmission group information and statistics gathered by various

transmission media
SNMP group information and statistics gathered by the SNMP agent

The KwikNet SNMP Option includes support for all of the MIB-II groups and tables listed
above with the following exceptions:

• The EGP group and the EGP neighbour table are not supported.
• The transmission group is declared by the MIB-II specification but the data

managed by this group is defined in other RFCs which are not supported.
• Changing the status of a network interface by writing to its ifAdminStatus

MIB variable in the interfaces table is supported for SLIP and PPP networks
but not for Ethernet networks.

• Deleting a TCP connection by writing to its tcpConnState MIB variable in
the TCP connections table is not supported.

16 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Agent Overview

1.7 SNMP Error and Statistics Logging
KwikNet provides a data logging service which can be used to advantage to observe the
progress of stack activity. This service is described in Chapter 1.6 of the KwikNet TCP/IP
Stack User's Guide.

The KwikNet SNMP Agent can be configured to record error information on the KwikNet
logging device. To enable this feature, edit your KwikNet Library Parameter File and
check the box labeled SNMP logic in the Debug Tracing column on the Debug property
page.

The SNMP agent does not log the normal receipt of SNMP requests or the sending of
SNMP response or trap messages. Since these operations involve normal UDP
transactions, they can be observed using the standard KwikNet debug logging and trace
facilities.

The KwikNet SNMP Agent maintains a statistical record of the events which occur during
its operation. Your application can call KwikNet procedure kn_netstats() to force
KwikNet to dump this SNMP information to the KwikNet logging device. To enable this
feature, edit your KwikNet Library Parameter File and check the box labeled Log statistics
on the SNMP property page.

Note

To include KwikNet data logging support, edit your Network
Parameter File and enable data logging on the Application
property page. Then generate and compile an updated copy
of your KwikNet Network Configuration Module.

KwikNet SNMP Agent Overview KADAK Copyright © 1997-2000 KADAK Products Ltd. 17

1.8 Adding the SNMP Agent to Your Application
Before you can add the SNMP agent to your application, there are a number of
prerequisites which your application must include. You must have a working KwikNet
UDP and IP stack. It is imperative that you start with a tested stack with functioning
device drivers before you add SNMP. If these components are not operational, the
KwikNet SNMP Agent cannot operate correctly.

KwikNet SNMP Library

Begin by deciding which SNMP features must be supported. Review the SNMP property
page described in Chapter 1.3. In particular, omit statistics logging and SNMP trap
support unless you actually have a need for these services.

Armed with your SNMP feature list, use the KwikNet Configuration Manager to edit your
application's KwikNet Library Parameter File to include the SNMP protocol. You might
also enable SNMP logic tracing on the Debug property page. Then rebuild your KwikNet
Libraries. A new SNMP Library, KNnnnSNM.A, will be produced along with your IP
Library. The library extension may be .A or .LIB or some other extension dictated by
the toolset which you are using.

KwikNet Task Considerations

Since the KwikNet SNMP Agent executes in the context of the KwikNet Task, you may
need to increase the stack size for this task. A stack size of 4096 bytes is considered
adequate for use with the SNMP agent. The stack size can be trimmed after the SNMP
agent has been tested and actual stack usage observed using your debugger.

In a multitasking system, the KwikNet Task must be of higher priority than any application
task which uses any of the KwikNet services listed in Chapter 3 to interact with the KwikNet
SNMP Agent.

18 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Agent Overview

Reconstructing Your KwikNet Application

Since you are adding the SNMP Agent to an existing KwikNet application, there is little to
be done.

If you have enabled SNMP statistics logging or SNMP debug tracing you may have to
update your Network Configuration Module to include data logging support.

Your application link and/or locate specification files must be updated to add the KwikNet
SNMP Library file KNnnnSNM.A prior to the KwikNet IP Library. The object modules
which collectively form your SNMP MIB (see Chapter 2), and any support modules
which they might require, must also be included in your link specification together with
your other application object modules.

With these changes in place, you can link and create an updated KwikNet application with
SNMP support included.

AMX Considerations

When reconstructing a KwikNet application which uses the AMX Real-Time Multitasking
Kernel, no changes to your AMX User Parameter File or AMX Target Configuration
Module are required to support the SNMP agent.

Performance Considerations

A meaningful discussion of all of the issues which affect the performance of an SNMP
agent or manager are beyond the scope of this document. Factors affecting the
performance of the KwikNet SNMP Agent include the following:

 processor speed
memory access speed and caching effects
network type (Ethernet, SLIP, PPP)
network device driver implementation (buffering, polling, DMA support, etc.)
IP packet fragmentation
network hops required for connection
operation of the remote (foreign) connected SNMP manager
KwikNet TCP/IP Stack configuration (clock, number of packets, queue sizes, etc.)

Of all these factors, only the last one can be easily adjusted. Increasing the fundamental
clock rate for the KwikNet TCP/IP Stack beyond 50Hz will have little effect and will
adversely affect systems with slow processors or memory. Increasing the number of
packets available for device use will help if high speed Ethernet devices are in use and
the processor is fast enough to keep up.

KwikNet MIB Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 19

2. KwikNet MIB Construction

2.1 Introduction
For your network device to be managed using the Simple Network Management
Prototcol (SNMP), you must provide a Management Information Base (MIB) which
defines your device and its capabilities. It is the purpose of this chapter to describe how
such a MIB is constructed for use with the KwikNet SNMP Agent.

Figure 2.1-1 illustrates the MIB construction process. A custom MIB is created using the
KwikNet MIB Compiler, a utility program which executes on your development system.
You create a text file which defines the structure of the data which makes up your custom
MIB. The MIB Compiler translates this description into a set of C source files which,
when compiled and linked with your application, form your custom MIB. The MIB
Compiler can also generate documentation files which summarize the content of your
custom MIB.

As shown in Figure 2.1-1, the KwikNet MIB Compiler needs access to its private MIB
Template File KN_MIB.CT from which the text files which it generates are derived.

MIB Definition Files

The MIB is defined by a set of one or more MIB Definition Files. A MIB Definition File
is a text file which describes a collection of MIB variables, their attributes and the
manner in which they are organized into a MIB tree. The MIB definition must follow the
organizational rules established by RFC-1155. The MIB definition is expressed using the
Abstract Syntax Notation (ASN.1).

Your MIB can be completely defined by a single MIB Definition File. Alternatively,
your MIB can be defined using several different MIB Definition Files, each providing the
definition of a subset of your entire MIB. For example, the MIB-II Management
Information Base defined in RFC-1213 is the standard MIB used to manage TCP/IP
based devices. These MIB-II variables are usually included as part of the MIB for each
such managed device. For this reason, the KwikNet SNMP Option includes a prebuilt
MIB Definition File, SNMP1213.MIB, to complement your custom MIB definition.

SNMP Variables Module

The KwikNet MIB Compiler is used to translate and merge your MIB Definition Files into
a single SNMP Variables Module named SNMPVARS.C. This C source file must compiled
and linked with your KwikNet application. It forms the foundation for your entire MIB.

20 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet MIB Construction

MIB Template File
KN_MIB.CT

MIB Definition File(s)
*.MIB

MIB Compiler

SNMP Variables
Module
SNMPVARS.C

MIB Access
Header File
YOURMIB.H

MIB Access
Module
YOURMIB.C

MIB Documentation
Files
YOURMIB.NUM or
YOURMIB.TRE

MIB Definition File
SNMP1213.MIB
(use is optional)

Figure 2.1-1 Creating a Custom MIB

KwikNet MIB Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 21

MIB Access Modules

The SNMP Variables Module does not actually contain the data corresponding to your
MIB variables. Instead, the SNMP agent calls a MIB Finder Procedure to locate a MIB
variable. A separate MIB Finder Procedure exists for each MIB group and table in your
entire MIB. Once the SNMP agent has located a MIB variable, it can manipulate its
value.

So where are these MIB Finder Procedures and how do they find the actual MIB values?
Each MIB Finder Procedure resides in a MIB Access Module which is a C source file
produced by the KwikNet MIB Compiler from information in your MIB Definition Files.
For each MIB group and table, the MIB Compiler generates the C code for a raw MIB
Finder Procedure. You must edit these raw MIB Finder Procedures, adding the code to
locate the MIB variables in the MIB group or table for which the procedure is
responsible.

The KwikNet SNMP Library includes the prebuilt MIB Access Module SNMP1213.C
which provides the MIB Finder Procedures for all of the MIB-II groups and tables
specified by RFC-1213. Hence, you can always include the SNMP1213.MIB Definition
File in the construction of your MIB without having to edit MIB Finder Procedures to
access the corresponding MIB variables.

The KwikNet MIB Compiler is used to generate one or more MIB Access Modules from
your MIB Definition Files. If you only have one MIB Definition File, you will create a
single MIB Access File. If you have several MIB Definition Files, you can create one
MIB Access File for each. Alternatively, you can generate a single MIB Access Module
from several MIB Definition Files. The choice is yours. For example, if you had three
MIB Definition Files, you could produce one MIB Access Module from the first two
MIB Definition Files and one MIB Access Module from the third MIB Definition File.

MIB Access Header Files

The KwikNet MIB Compiler also generates a MIB Access Header File for each of your
MIB Access Modules. The header file is required to compile the MIB Access Module. It
can also be used by other application modules which provide actual instances of the MIB
variables whose access is controlled by the MIB Access Module.

MIB Documentation Files

Finally, the KwikNet MIB Compiler can also be used to generate a MIB Documentation
File describing the content of the MIB defined by one or more MIB Definition Files.
This file is a text file which lists the MIB variables in either of two formats.

The numeric format provides the following information for each node and variable in
the MIB tree: the object identifier, the text name equivalent and the node or variable type.

The tree format shows the MIB tree in a graphical form with each node and variable in
the tree identified by its sub-identifier number and its text name equivalent.

22 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet MIB Construction

Building a Custom MIB

The process of building a custom MIB is quite simple.

1. Define the MIB variables in your managed device and describe their organizational
structure.

2. Create a custom MIB Definition File which implements this MIB. If warranted by
the complexity of your MIB data organization, its definition can be split into multiple
MIB Definition Files.

3. Use the MIB Compiler to generate a MIB Access Header File and a MIB Access
Module from the MIB Definition File(s) created in step 2.

4. Edit the MIB Access Module created in step 3. Edit the raw MIB Finder Procedures
to provide access to the MIB variables in your MIB groups and tables.

5. If your managed device is best described using separate MIBs for different subsets of
its MIB variables, repeat steps 1 through 4 for each of the separate MIBs.

6. Use the MIB Compiler to generate the SNMP Variables Module SNMPVARS.C from
the entire collection of MIB Definition Files created in step 2. If your managed
device must also include the MIB-II variables defined by RFC-1213, be sure to
include the prebuilt MIB Definition File SNMP1213.MIB provided with KwikNet.

7. Compile the MIB Access Module(s) which you edited in step 4.
8. Compile the SNMP Variables Module SNMPVARS.C generated in step 6.
9. Link the object modules from steps 7 and 8 with your KwikNet application.

KwikNet MIB Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 23

SNMP MIB Sample

The construction of a custom MIB for a managed device is best illustrated with a simple
example. The managed device shown in Figure 2.1-2 provides a visible text display and
error counter and has a set of seven of toggle switches used to control the device.

Hello 42

Figure 2.1-2 Sample SNMP Managed Device

The SNMP manager must be able to read and modify the text presented in the display.
The SNMP manager must be able to read, but not modify, the error count and the position
of each individual toggle switch.

The SNMP sample device is assumed to be one of many such sample devices
manufactured by KADAK Products Ltd. It is also assumed that KADAK classifies all
such devices as samples to distinguish them from all other products manufactured by
KADAK. This particular sample device is to be identified as device number 2 within the
entire collection of sample devices available from KADAK.

Figure 2.1-3 shows one particular implementation of a custom MIB which meets the
requirements of this simple device. Other equally valid organizations of the MIB data
could be devised. The sample MIB Definition File KNSAMMIB.MIB which implements this
MIB is described in Chapter 2.2.

The MIB tree shown in Figure 2.1-3 has been simplified by omitting the detail of the first
seven branches of the standard MIB tree. The first entry in the illustration represents the
entire path down the MIB tree to the enterprise node identified by KADAK's enterprise
number 4001.

24 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet MIB Construction

kadak=iso(1)org(3)dod(6)internet(1)private(4)enterprises(1) 4001

└kdkprod(1) All of KADAK's SNMP managed products
└kdksamples(1) All of KADAK's sample products
└kdksample(2) This particular sample device
└ksamStatus(1)
├ksamStatDisplay(1) OCTET STRING ┬─ ksamStatus group
├ksamStatErrs(2) COUNTER ┘
└ksamSwitchTable(3)
└ksamSwitchEntry(1)
├ksamSwitchEntIndex(1) INTEGER ┬─ ksamSwitchEntry table
└ksamSwitchEntState(2) INTEGER ┘

ksamStatDisplay = 1.3.6.1.4.1.4001.1.1.2.1.1.0
ksamStatErrs = 1.3.6.1.4.1.4001.1.1.2.1.2.0
ksamSwitchEntIndex = 1.3.6.1.4.1.4001.1.1.2.1.3.1.1.row
ksamSwitchEntState = 1.3.6.1.4.1.4001.1.1.2.1.3.1.2.row

└── 1 to 7

Figure 2.1-3 MIB Structure for Sample Device

The MIB Access Header File KNSAMMIB.H and MIB Access Module KNSAMMIB.C for this
sample device are generated by invoking the KwikNet MIB Compiler with the following
command line.

KN_MIB KNSAMMIB.MIB -hc

The MIB Finder Procedures in the MIB Access Module KNSAMMIB.C must be edited to
provide access to the MIB variables in the groups and tables specified in MIB Definition
File KNSAMMIB.MIB. This process is described in Chapter 2.3.

The SNMP Variables Module SNMPVARS.C for this sample device is generated by
invoking the KwikNet MIB Compiler with the following command line. Note that the
optional KwikNet MIB Definition File SNMP1213.MIB has been included in the MIB
compilation so that the sample managed device will also support the MIB-II variables
defined by RFC-1213.

KN_MIB KNSAMMIB.MIB SNMP1213.MIB -v

The full operation of the KwikNet MIB Compiler is described in Chapter 2.4.

The MIB Access Module KNSAMMIB.C and the SNMP Variables Module SNMPVARS.C
must be compiled and linked with the KwikNet application for this sample device as
described in Chapter 2.5.

KwikNet MIB Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 25

2.2 MIB Definition Files
A MIB Definition File is a text file which describes a collection of MIB variables, their
attributes and the manner in which they are organized into a MIB tree. The MIB
definition must follow the organizational rules established for the Structure of
Management Information (SMI) defined in RFC-1155. The MIB definition must be
expressed using the Abstract Syntax Notation (ASN.1).

This manual makes no attempt to describe the detailed structure of a MIB Definition File.
It is assumed that you have a working knowledge of the SMI data organization rules and
the ASN.1 language. Reference materials are provided in Appendix A of the KwikNet
TCP/IP Stack User's Guide.

The MIB Definition File for the sample device introduced in Chapter 2.1 is illustrated in
Figure 2.2-1. The MIB tree structure of this sample MIB was shown in Figure 2.1-3.

MIB Organization

All of the data within a MIB tree is contained in MIB variables which are organized into
groups and tables. A group contains a single instance of zero or more MIB variables. A
table consists of zero or more sets of MIB variables in which the variables define the
columns in the table and each instance of the set of variables forms a row in the table.

Each MIB variable in a group is identified using the object identifier of the group
followed by the sub-identifier for the MIB variable and a mandatory trailing sub-
identifier of 0. The MIB shown in Figure 2.1-3 defines a single group, ksamStatus,
which contains two members, ksamStatDisplay and ksamStatErrs.

Each MIB variable in a table is identified using the object identifier of the table followed
by the sub-identifier for that variable. Each MIB variable which forms a column in the
table is defined in this fashion. To specify a particular instance of a MIB variable in a
table, the values for each of the INDEX objects specified in the table description are
appended, in their order of definition, to the MIB variable object identifier as sub-
identifiers. These extra sub-identifiers act as the row identifier, providing access to a
particular instance of the MIB variable in the table.

The MIB shown in Figure 2.1-3 defines a single table, ksamSwitchTable, containing a
collection of ksamSwitchEntry objects, each of which contains two members,
ksamSwitchEntIndex and ksamSwitchEntState. Each object fully describes one of the
seven switches in the managed device. The MIB variable ksamSwitchEntState
provides the state of one switch. The particular switch is identified by the MIB variable
ksamSwitchEntIndex which is used as the INDEX to select a specific row of the table.

26 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet MIB Construction

Figure 2.2-1 MIB Definition File for Sample Device

KADAK-SAMPLE-MIB DEFINITIONS ::= BEGIN

-- External symbols

IMPORTS
enterprises, Counter FROM RFC1155-SMI
OBJECT-TYPE FROM RFC-1212;

-- Base Object Identifiers for kdksample MIB

kadak OBJECT IDENTIFIER ::= { enterprises 4001 }
kdksample OBJECT IDENTIFIER ::=

{ kadak kdkprod(1) kdksamples(1) 2 }

-- Define the status group (ksamStatus)

ksamStatus OBJECT IDENTIFIER ::= { kdksample 1 }

ksamStatDisplay OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-write
STATUS mandatory
DESCRIPTION

"Currently displayed text string."
::= { ksamStatus 1 }

ksamStatErrs OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

"Running count of device errors."
::= { ksamStatus 2 }

...more

KwikNet MIB Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 27

...continued

-- Define the switch table (ksamSwitchTable)

ksamSwitchTable OBJECT-TYPE
SYNTAX SEQUENCE OF KsamSwitchEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

"A list of switches in the device."
::= { ksamStatus 3 }

ksamSwitchEntry OBJECT-TYPE
SYNTAX KsamSwitchEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

"A switch entry containing objects
describing a particular switch."

INDEX { ksamSwitchEntIndex }
::= { ksamSwitchTable 1 }

KsamSwitchEntry ::=
SEQUENCE {

ksamSwitchEntIndex
INTEGER,

ksamSwitchEntState
INTEGER

}

ksamSwitchEntIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

"A unique value for each switch in the device.
Its value ranges between 1 and the number of
switches in the device."

::= { ksamSwitchEntry 1 }

ksamSwitchEntState OBJECT-TYPE
SYNTAX INTEGER {

up(1),
down(2)

}
ACCESS read-only
STATUS mandatory
DESCRIPTION

"The position of a switch in the device."
::= { ksamSwitchEntry 2 }

END

Figure 2.2-1 MIB Definition File for Sample Device

28 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet MIB Construction

Predefined Symbols used in MIB Definitions

The KwikNet MIB Compiler recognizes the key elements of a MIB Definition. To reduce
the number of repeated definitions which you might otherwise require in your MIB
Definition Files, the commonly occurring SMI constructs and keywords listed in Figure
2.2-2 are predefined by the KwikNet MIB Compiler.

The macro OBJECT-TYPE from RFC-1212
The macro TRAP-TYPE from RFC-1215
The following defined object types from RFC-1155:

NetworkAddress
IpAddress
Counter
Gauge
TimeTicks
Opaque

The following identifiers from RFC-1155 and RFC-1213:
iso OBJECT IDENTIFIER ::= { 1 }
org OBJECT IDENTIFIER ::= { iso 3 }
dod OBJECT IDENTIFIER ::= { org 6 }
internet OBJECT IDENTIFIER ::= { dod 1 }
directory OBJECT IDENTIFIER ::= { internet 1 }
mgmt OBJECT IDENTIFIER ::= { internet 2 }
experimental OBJECT IDENTIFIER ::= { internet 3 }
private OBJECT IDENTIFIER ::= { internet 4 }
enterprises OBJECT IDENTIFIER ::= { private 1 }
mib-2 OBJECT IDENTIFIER ::= { mgmt 1 }

Figure 2.2-2 MIB Compiler Predefined Symbols

Imported Symbols

The ASN.1 IMPORTS directive is intended to provide access within one MIB Definition
File to object, symbol, type or macro definitions located in another MIB Definition File.
The KwikNet MIB Compiler does not support this use of the IMPORTS directive. Instead,
when an IMPORTS directive is encountered, the MIB Compiler simply checks that the
imported symbols have been defined. Therefore, you must ensure that all symbols in the
IMPORTS section are either predefined by the KwikNet MIB Compiler or defined in your
MIB Definition File prior to the IMPORTS directive.

KwikNet MIB Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 29

2.3 MIB Finder Procedures
A MIB Finder Procedure is an application procedure which the KwikNet SNMP Agent
calls to locate each MIB variable. A separate MIB Finder Procedure exists for each MIB
group and table in your entire MIB. These procedures are created for you in your MIB
Access Module(s), the C source file(s) produced by the KwikNet MIB Compiler from
information in your MIB Definition Files.

For each MIB group and table, the MIB Compiler generates the C code for a raw MIB
Finder Procedure. You must edit these raw MIB Finder Procedures, adding the code to
locate the MIB variables in the MIB group or table for which the procedure is
responsible.

Prebuilt MIB Finder Procedures are provided in the KwikNet SNMP Library for all of the
MIB-II variables specified by RFC-1213. The source code for these MIB Finder
Procedures is provided in file SNMP1213.C in the KwikNet SNMP installation directory.

In addition to the MIB Access Module, the KwikNet MIB Compiler also generates a MIB
Access Header File, a C header file which can be used to create and manipulate instances
of your custom MIB data. For each group or table which is defined in the MIB
Definition File, the MIB Access Header File contains a structure definition for the group
or for one entry (row) in the table, a set of magic constants which can be used to identify
members of the structure and a prototype for the MIB Finder Procedure which will be
called to access that group or table.

For a group or table named XXX, the MIB Finder Procedure is named var_XXX. The
structure defining the group or table is named XXX_mib. Each member of structure
XXX_mib is given the name of the MIB variable which it implements. The group structure
does not include members for tables, if any, which are considered to belong to the group.

There is a magic constant defined for each member of structure XXX_mib. The constant
name is derived by converting the name of the structure member to upper case. The
constant is assigned a value equal to the offset of the member within structure XXX_mib.
As will be shown, the magic constants can be used by the MIB Finder Procedure to
readily identify the MIB variable of interest without having to interpret its object
identifier.

Warning

The MIB Access Header File contains information which is
duplicated in the SNMP Variables Module.

Do NOT edit your MIB Access Header File(s).

30 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet MIB Construction

Figure 2.3-1 illustrates the MIB Access Header File KNSAMMIB.H generated by the
KwikNet MIB Compiler from the sample MIB Definition File provided in Figure 2.2-1.

Figure 2.3-2 shows the corresponding MIB Access Module KNSAMMIB.C with its raw
MIB Finder Procedures ready to be edited.

/* Recommended MIB structures */

/* 'ksamStatus' group */
struct ksamStatus_mib {

void* ksamStatDisplay;
unsigned long ksamStatErrs;
};

/* 'ksamSwitchEntry' table */
struct ksamSwitchEntry_mib {

long ksamSwitchEntIndex;
long ksamSwitchEntState;
};

/* Variable Access Constants */

/* 'ksamStatus' group */
#define KSAMSTATDISPLAY 0
#define KSAMSTATERRS KSAMSTATDISPLAY+4

/* 'ksamSwitchEntry' table */
#define KSAMSWITCHENTINDEX 0
#define KSAMSWITCHENTSTATE KSAMSWITCHENTINDEX+4

/* Prototypes for MIB Finder Procedures */
/* 'ksamStatus' group */
extern unsigned char *var_ksamStatus(

const struct knsa_var *, knsa_subid *, int *, int, int *);

/* 'ksamSwitchEntry' */
extern unsigned char *var_ksamSwitchEntry(

const struct knsa_var *, knsa_subid *, int *, int, int *);

Figure 2.3-1 MIB Access Header File for Sample Device

KwikNet MIB Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 31

/* MIB Finder Procedure for 'ksamStatus' group */
unsigned char *var_ksamStatus(

const struct knsa_var *vp,
knsa_subid *name, int *length,
int oper, int *var_len)

{
/* >>>> TODO: Add code here */
return NULL; /* Default FAIL return */
}

/* MIB Finder Procedure for 'ksamSwitchEntry' table */
unsigned char *var_ksamSwitchEntry(

const struct knsa_var *vp,
knsa_subid *name, int *length,
int oper, int *var_len)

{
/* >>>> TODO: Add code here */
return NULL; /* Default FAIL return */
}

Figure 2.3-2 MIB Access Module for Sample Device

32 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet MIB Construction

Operation of a MIB Finder Procedure

A MIB Finder Procedure is called by the KwikNet SNMP Agent to locate one of the MIB
variables in the group or table for which the MIB Finder Procedure is responsible. The
procedure is presented with enough information to permit it to locate the MIB variable of
interest. If the MIB variable exists, the procedure presents the SNMP agent with a
pointer to the memory location at which the MIB variable data is maintained. The SNMP
agent can read and/or write at that memory location as required to manipulate the MIB
variable's value. Of course the agent will only do either if the MIB access rights permit.

The MIB Finder Procedure can call KwikNet service procedure knsa_setvarrange() to
limit the range of values which the SNMP agent is permitted to write into a numeric MIB
variable. For non-numeric MIB variables such as strings (octets) and object identifiers,
the range indicates the minimum and maximum number of bytes which the MIB variable
value can occupy.

The MIB Finder Procedure must follow the specifications presented in Chapter 2.3.1.

MIB Set Procedure

Normally, the KwikNet SNMP Agent takes complete responsibility for writing a MIB
variable value at the memory location specified by the MIB Finder Procedure. However,
the MIB Finder Procedure can override the agent by providing a MIB Set Procedure
which the SNMP agent must subsequently use to alter the MIB variable value. The MIB
Finder Procedure must call KwikNet service procedure knsa_setvarfunc() to provide the
SNMP agent with a pointer to the MIB Set Procedure to be used.

The KwikNet MIB Compiler generates a single raw MIB Set Procedure in each MIB
Access Module. This empty procedure, which resides within a C comment block, can be
deleted or used as a template for any of the MIB Set Procedures which your MIB Finder
Procedures might require.

The MIB Set Procedure must follow the specifications presented in Chapter 2.3.2.

MIB Finder Procedure Example

Figure 2.3-2 showed the sample MIB Access Module KNSAMMIB.C with its raw MIB
Finder Procedures ready for editing.

Figure 2.3-3 shows the same MIB Access Module KNSAMMIB.C with the pair of MIB
Finder Procedures coded to meet the requirements of the sample SNMP managed device
introduced in Chapter 2.1.

KwikNet MIB Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 33

Figure 2.3-3 MIB Finder Procedures for Sample Device

struct ksamStatus_mib KsamMib; /* Storage for variable data */
char KsamStatDisplay[128];

/* MIB Finder Procedure for the 'ksamStatus' group */
unsigned char *var_ksamStatus(const struct knsa_var *vp,

knsa_subid *name, int *length, int oper, int *var_len)
{

/* Do object identifier operations */
if (oper != KNSA_NEXT_OP) {

/* For KNSA_SET_OP or KNSA_GET_OP, check for exact match*/
if (knsa_oidcmpv(name, *length, vp))

return NULL; /* FAIL return */

/* Note: *name and *length are already correct. */
}

else {
/* For KNSA_NEXT_OP, save name of matched variable */
knsa_oidcpyv(name, vp);
*length = vp->grp->namelen;
}

/* Handle variable length types or special integer variables.*/
switch (vp->magic) {
case KSAMSTATDISPLAY:

/* Length of current string */
*var_len = strlen(KsamStatDisplay);

/* Max length for set operation */
knsa_setvarrange(0, 127);

/* Return pointer to string storage */
return ((unsigned char *)KsamStatDisplay);
}

/* Default return for integer types */
*var_len = sizeof(long);
return ((unsigned char *)&KsamMib + vp->magic);
}

...more

34 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet MIB Construction

...continued

#define NUMSWITCHES 7 /* Sample device has 7 switches */
#define SW_LEN 15 /* SwitchEntry object identifiers */

/* always have 15 sub-ids */
/* (from MIB Definition) */

long KsamSwitchStates[NUMSWITCHES]; /* Storage for variable data */

/* MIB Finder Procedure for the 'ksamSwitchEntry' table */
unsigned char *var_ksamSwitchEntry(const struct knsa_var *vp,

knsa_subid *name, int *length, int oper, int *var_len)
{

int row; /* Row index of switch */
int result; /* Name comparison results */
knsa_subid newname[SW_LEN]; /* Buffer for new object id */
static long long_return; /* Temporary return buffer */

/* Find requested switch and build its object identifer */
knsa_oidcpyv(newname, vp);
for (row = 1; row <= NUMSWITCHES; row++) {

newname[SW_LEN-1] = (knsa_subid)row;
result = knsa_oidcmp(name, *length, newname, SW_LEN);
if (((oper != KNSA_NEXT_OP) && (result == 0)) ||

((oper == KNSA_NEXT_OP) && (result < 0)))
break;

}

if (row > NUMSWITCHES)
return (NULL); /* Not found */

/* Save name of matched variable */
knsa_oidcpy(name, newname, SW_LEN);
*length = SW_LEN;

/* Handle variable length types or special integer variables.*/
switch (vp->magic) {
case KSAMSWITCHENTINDEX:

long_return = (long)row;
*var_len = sizeof(long_return);
/* Return pointer to temporary static storage */
/* This method is safe for 'read-only' variables. */
return ((unsigned char *)&long_return);

case KSAMSWITCHENTSTATE:
/* Return pointer to switch state array entry */
*var_len = sizeof(KsamSwitchStates[0]);
return ((unsigned char *)(&KsamSwitchStates[row-1]));
}

/* All known table entries handled. Return an error. */
return (NULL);
}

Figure 2.3-3 MIB Finder Procedures for Sample Device

KwikNet MIB Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 35

2.3.1 MIB Finder Procedure Specification

Purpose To Find a MIB Variable

Used by � KwikNet SNMP Agent

Setup Prototype is in a MIB Access Header File such as KNSAMMIB.H.
#include "KN_LIB.H"
#include "KN_SNMP.H"
#include "KNSAMMIB.H"
unsigned char *var_xxx(

const struct knsa_var *vp,
knsa_subid *name,
int *length,
int oper,
int *var_len);

Description Vp is a pointer to a structure used by the KwikNet SNMP Agent to reference
an SNMP MIB variable. Although the structure knsa_var, defined in
header file KN_SNMP.H, is considered private to the SNMP agent, it
contains the following members which can be read, but not modified,
by the MIB Finder Procedure.

vp->magic Magic constant (KSAMSTATERRS)

vp->type ASN.1 or SMI type (SMI_COUNTER)

vp->acl Access rights (KNSA_RONLY)

vp->grp->namelen Number of sub-identifiers (13)

The values shown in parentheses describe the MIB variable
ksamStatErrs defined for the sample SNMP managed device
introduced in Chapter 2.1. That MIB variable is a read-only counter
with an object identifier of 1.3.6.1.4.1.4001.1.1.2.1.2.0 which
includes 13 sub-identifiers.

The magic constant is defined in the MIB Access Header File. It
uniquely identifies the MIB variable in a group or the column of
interest in a table.

The MIB variable type is one of the ASN.1 types ASN_xxxxx or SMI
types SMI_xxxxx defined in header file KN_SNMP.H.

The MIB variable will have read-only (KNSA_RONLY), read-write
(KNSA_RWRITE) or write only (KNSA_WONLY) access rights.

The structure referenced by parameter vp also contains a compressed
object identifier which may be accessed using the KwikNet service
procedures knsa_oidcpyv() and knsa_oidcmpv(). The last sub-
identifier in the compressed object identifier is considered to be a row
identifier. For MIB variables in a group, this row identifier is always 0.
For MIB variables in a table, this row identifier is 0xFFFF for 16-bit
object identifiers or 0xFFFFFFFF for 32-bit object identifiers.

...more

36 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet MIB Construction

Description ...continued

Name is a pointer to an array of sub-identifiers. The maximum number of
sub-identifiers in the array is defined in header file KN_LIB.H to be
KN_SNMP_SUBIDS. The value for this constant is determined by the
value which you entered on the SNMP property page when you edited
your KwikNet Library Parameter File.

 On entry, this sub-identifier array contains the object identifier received
in an SNMP request to access a particular MIB variable. On return,
this sub-identifier array will contain the object identifier of the MIB
variable which was actually found.

Length is a pointer to storage for the number of sub-identifiers present in
the sub-identifier array referenced by parameter name. On entry,
*length specifies the number of sub-identifiers present in the object
identifier received in an SNMP request to access a particular MIB
variable. On return, *length specifies the number of sub-identifiers in
the object identifier of the MIB variable which was actually found.

Oper indicates the operation specified in the SNMP request. Parameter
oper will be one of the following constants defined in header file
KN_SNMP.H:

KNSA_GET_OP Get the value of a MIB variable
KNSA_NEXT_OP Get the value of the next MIB variable
KNSA_SET_OP Set the value of a MIB variable

For operations KNSA_GET_OP and KNSA_SET_OP, the only MIB variable
which can satisfy the request is the one with the object identifier
specified by input parameter name. If the MIB variable is in a group,
parameter vp already references the MIB variable of interest. If the
MIB variable is in a table, parameter vp identifies the MIB variable of
interest, but the MIB Finder Procedure must decode parameter name to
locate the row containing the particular instance of that variable.

For operation KNSA_NEXT_OP, the MIB Finder Procedure must locate
the MIB variable whose object identifier lexicographically follows the
object identifier specified by input parameter name. If the MIB variable
is in a group, parameter vp already references the MIB variable of
interest. If the MIB variable is in a table, parameter vp identifies the
MIB variable of interest, but the MIB Finder Procedure must decode
parameter name to locate the next row containing an instance of that
variable.

Var_len is a pointer to storage for an integer result which must be
returned to the SNMP agent. The value stored at *var_len will specify
the number of bytes of storage occupied by the value of the MIB
variable.

...more

KwikNet MIB Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 37

Returns If the MIB variable can be located, the MIB Finder Procedure must return
a pointer to storage which contains the current value of that MIB
variable. The pointer is treated by the SNMP agent as a pointer to an
array of unsigned characters. The value stored at *var_len must
specify the number of bytes of storage occupied by that MIB variable
value.

A numeric MIB value must be stored in 4 bytes in host endian form. A
variable length MIB value, such as a string, must be stored as an array of n
bytes where n is the array size. A MIB value which is an IP address must
be stored as an array of 4 bytes in net endian form.

The object identifier of the MIB variable identified by the MIB Finder
Procedure must be stored at *name. The number of sub-identifiers in that
object identifier must be stored at *length.

If the MIB variable cannot be located, the MIB Finder Procedure must
return the NULL pointer. In this case, the input parameters at *name and
*length must NOT be modified. The value at *var_len can be left
undefined.

Notes The MIB Finder Procedure only finds the location the MIB variable value.
The actual read or write operation will be performed by the SNMP agent
or by your custom MIB Set Procedure.

For write operations, the range of acceptable numeric values or the
allowable length of variable length values can be limited using KwikNet
service procedure knsa_setvarrange(). Restrictions on written values
can also be imposed by using a custom MIB Set Procedure.

You can override the SNMP agent write operation by providing a MIB Set
Procedure which the SNMP agent will call to actually write the MIB
variable value. Your MIB Finder Procedure must call KwikNet service
procedure knsa_setvarfunc() to identify your custom MIB Set
Procedure.

See Also knsa_setvarfunc(), knsa_setvarrange()

38 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet MIB Construction

2.3.2 MIB Set Procedure Specification

Purpose To Write into a MIB Variable

Used by � KwikNet SNMP Agent

Setup A template is provided in each MIB Access Module such as KNSAMMIB.C.
#include "KN_LIB.H"
#include "KN_SNMP.H"
#include "KNSAMMIB.H"
int set_xxx(struct knsa_setparms *parmp);

Description Parmp is a pointer to the MIB set parameter structure knsa_setparms
defined in header file KN_SNMP.H as follows:

struct knsa_setparms { /* 'Set' function parameters*/
const unsigned char *varp; /* A(ASN.1 encoded set value)*/
const knsa_subid *name; /* Object id of variable */
int varlen; /* Length of set value */
int name_len; /* # of subids in subid array*/
unsigned char vartype; /* ASN.1 type of set value */
char rsv1, rsv2, rsv3; /* Reserved for alignment */
unsigned char *setp; /* A(value storage buffer) */
int setlen; /* Length of storage buffer */
int rsv4; /* Reserved for alignment */
const struct knsa_var *vp; /* A(MIB variable info) */
};

Parameter parmp->vp is a pointer to the MIB variable description. This is
the same pointer provided to the MIB Finder Procedure which located the
MIB variable.

The object identifier of the MIB variable identified by the MIB Finder
Procedure is stored as a subid array at parmp->name. The number of
sub-identifiers in that object identifier is specified by parmp->name_len.

Parameter parmp->setp is a pointer to storage for the MIB variable value.
This is the pointer returned to the SNMP agent by the MIB Finder
Procedure when it located the MIB variable.

Parameter parmp->setlen specifies the length, in bytes, of the storage
buffer referenced by parameter parmp->setp. This length is the value
returned to the SNMP agent by the MIB Finder Procedure when it located
the MIB variable.

The value to be written into the MIB variable is available as an ASN.1
encoded value at parmp->varp. The value is of the ASN.1 type specified
by parmp->vartype. The length of ASN.1 encoded value is provided by
parmp->varlen. KwikNet service procedure knsa_asndecode() can be
used to extract the MIB value from the ASN.1 encoded representation.

...more

KwikNet MIB Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 39

Returns One of the following error status values:

KNSA_ERR_NOERROR Operation was successful
KNSA_ERR_NOSUCHNAME Variable does not exist or cannot be set
KNSA_ERR_BADVALUE Set value is not valid
KNSA_ERR_TOOBIG Set value exceeds a limit imposed by the

MIB Set Procedure
KNSA_ERR_GENERR Other unspecified error

It is up to the MIB Set Procedure to determine if it is willing to update the
MIB variable with the value provided. The operation is declared a success
by returning the value KNSA_ERR_NOERROR. Success usually implies that
the MIB Set Procedure has accepted the ASN.1 encoded MIB value and
written the decoded value, or some derived equivalent value, into the MIB
value storage buffer referenced by parameter parmp->setp. In rare cases,
the operation may be deemed successful even though the MIB value is left
unaltered.

If an error is reported, the MIB value should not be altered. However, it is
up to your MIB Set Procedure to decide whether or not to follow this
recommendation.

Typically, the MIB Set Procedure writes the new data into the buffer
located by the MIB Finder Procedure and then calls an application
function to notify the application of the changed value.

Restriction The SNMP agent will not call the MIB Set Procedure if the value to be
written into the MIB variable exceeds the range limitation, if any, imposed
on the value by the MIB Finder Procedure with a call to KwikNet service
procedure knsa_setvarrange().

Note The data value to be written to the MIB variable is presented as an ASN.1
encoded value referenced by parameter parmp->varp. The following
code fragment illustrates how your MIB Set Procedure can decode this
value directly into the MIB variable data buffer.

knsa_asndecode(parmp->varp, parmp->vartype,
parmp->setp, parmp->setlen);

See Also knsa_asndecode(), knsa_setvarfunc()

40 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet MIB Construction

2.4 Using the MIB Compiler
The KwikNet MIB Compiler is a utility program which will create a Management
Information Base (MIB) for use with the KwikNet TCP/IP Stack and its SNMP Option.
The MIB Compiler is provided ready for use on a PC or compatible running the
Microsoft® MS-DOS® or Windows® 9x or NT operating system.

When the optional KwikNet SNMP components are installed on your hard disk, the MIB
Compiler utility program and its related files are stored in directory MIBCOMP in your
KwikNet installation directory.

File Purpose
KN_MIB.EXE KwikNet MIB Compiler (utility program)
KN_MIB.CT KwikNet MIB Template File
SNMP1213.MIB RFC-1213 MIB-II MIB Definition File

The MIB generation process has been illustrated in the block diagram of Figure 2.1-1.

The MIB Compiler reads the definition of your MIB from a set of one or more MIB
Definition Files. It then generates a set of output files using its MIB Template File as a
model for each. The output files include the MIB Access Module, the corresponding
MIB Access Header File and an SNMP Variables Module. A MIB Documentation File
can also be generated in either a numeric or tree form.

The MIB Access Module generated by the MIB Compiler must be edited to implement
your application specific MIB Finder Procedures. Once you have edited this module, you
must be very careful not to accidentally regenerate the module using the MIB Compiler.
Doing so will produce a new copy of the MIB Access Module which will no longer
contain your edited procedures. The MIB Compiler attempts to avoid such a disaster. If
the MIB Access Module being generated, say YOUR_MIB.C, already exists, the MIB
Compiler renames it to be YOUR_MIB.BAK and then generates a new copy of file
YOUR_MIB.C. You then have an opportunity to recover your edited procedures from the
backup file.

!!! Important Note !!!

If you regenerate a MIB Access Module without proper
care, you may lose the edited MIB Finder Procedures
which it contains.

Always duplicate or rename your MIB Access Module
before generating a new version of the same file.

KwikNet MIB Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 41

Running the MIB Compiler

The KwikNet MIB Compiler is a utility program which is provided ready for use on a PC
or compatible running the Microsoft® MS-DOS® or Windows® 9x or NT operating
system. The MIB Compiler must be started from the MS-DOS command line or from the
Windows MS-DOS command prompt. It can also be started from the Windows RUN
dialog box. Alternatively, you can create a Windows shortcut to the MIB Compiler's
filename and then simply double click the shortcut's icon.

The directory which is in effect when the MIB Compiler is started is called the working
directory. Hence, when the MIB Compiler is started from an MS-DOS command
prompt, the MS-DOS current directory becomes the MIB Compiler's working directory.
If the MIB Compiler is started from a Windows shortcut, the working directory is
determined by the start path specified in the shortcut's link file. If the MIB Compiler is
started from the Windows RUN dialog box, the working directory will be undefined.

The command line used to start the MIB Compiler is as follows:

KN_MIB [-f] mibdefn1 [mibdefn2 ...] [-i mibdefn3 ...] [-a cmdfile]
[-c] [-h] [-n] [-t|-T] [-v] [-q|-q0|-q1|-q2|-q3] [-?]

The MIB Compiler utility program is named KN_MIB.EXE.

The MIB Compiler requires a list of one or more MIB Definition Files which it treats as a
single MIB description. At least one MIB Definition File (mibdefn1 in the example)
must be provided.

All other parameters are optional as indicated by the enclosing [] brackets. Omit the
[and] characters when entering an optional parameter. The symbol | indicates that only
one of the set of optional parameters can be used. Option letters are case sensitive. The
order of optional parameters is not important. The default condition for each option is
defined in the option descriptions which follow.

If an option is repeated on the command line, an error message may be generated. If no
error is observed, then the last (rightmost) use of an option will take precedence.

The file generation options -c, -h, -n, -t, -T and -v can be combined into a single
option. For example, the option string -nchT is equivalent to -n -c -h -T. The option
ordering and case sensitivity rules defined above still apply. If no file generation option
is specified, the -n option is assumed.

Files on the Command Line

Three of the command line options provide control over file related commands. The -f
option, if used, precedes a list of one or more MIB Definition Files which will be
compiled. An implicit -f option is assumed if none is present.

Option -i, if used, precedes a list of one or more MIB Definition Files which will be
parsed for object, symbol, type and macro definitions but will otherwise not be compiled.

To avoid long command lines, the "-a cmdfile" option can be used to inject command
line parameters from a text file named cmdfile as though the parameters were directly
entered on the command line. End of line characters are treated as whitespace.

42 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet MIB Construction

Command Line Parameters

mibdefnX Mandatory full path and file name of your MIB Definition File.
A file name with extension MIB, such as MY_MIB.MIB, is recommended.
The working directory is used if no path, or a relative path, is specified.
Multiple MIB Definition Files may be specified.

-c Generate a MIB Access Module named mibdefn1.C.
This module will contain the raw MIB Finder Procedures which you must
edit to provide access to your custom MIB variables.

-h Generate a MIB Access Header File named mibdefn1.H.
This file contains C structure and constant definitions and function
prototypes for use by the MIB Access Module.

-n Generate a MIB Documentation File mibdefn1.NUM in numeric format.
This file lists the object identifier, its text name and the type of each
MIB variable defined in your set of MIB Definition Files.

-t or -T Generate a MIB Documentation File mibdefn1.TRE in tree format.
This file shows the MIB tree structure containing all of the MIB variables
defined in your set of MIB Definition Files.
The -t option renders the tree using only standard ASCII characters.
The -T option permits the use of IBM extended graphical characters.

-v Generate the SNMP Variables Module SNMPVARS.C.
This file contains the C data representation for all of the MIB variables
which are available within your SNMP managed device.
You must specify all of your MIB Definition Files in the input file list
when you generate the SNMP Variables Module. If your device is to
support the MIB-II variables defined in RFC-1213, you must include the
KwikNet MIB Definition File SNMP1213.MIB.

-qN The -qN option controls the display of messages by the MIB Compiler.
The -q or -q0 option inhibits the display of any messages.
The -q1 option enables the display of error messages only.
The -q2 option enables the display of error messages and simple progress
messages.
The -q3 option enables the display of error messages and more detailed
progress messages.
Unless otherwise specified, the -q2 option is assumed.

-? Use the -? option to display a helpful summary of the command line
syntax and available options.

KwikNet MIB Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 43

KwikNet Sample MIB

Included with the KwikNet MIB Compiler are the sample files required to create the
custom MIB for the sample managed device described in this chapter. The following
files, located in directory MIBCOMP\SAMPLE in your KwikNet installation directory, are
provided.

File Purpose
KNSAMMIB.MIB Sample MIB Definition File
KNSAMMIB.H Sample MIB Access Header File
KNSAMMIB.C Sample MIB Access Module (in edited form)
KNSAMMIB.NUM Sample MIB Documentation File (in numeric form)
KNSAMMIB.TRE Sample MIB Documentation File (in tree form)

File KNSAMMIB.MIB is the MIB Definition File from which the other files were derived.
MIB Access File KNSAMMIB.C was generated by the MIB Compiler and then edited to
implement the MIB Finder Procedures listed in Figure 2.3-3. The remaining files can be
regenerated as follows.

In order to avoid losing the edited MIB Finder Procedures in file KNSAMMIB.C, rename
the file KNSAMMIB.MFP. Then generate the raw MIB Access Module KNSAMMIB.C and its
MIB Access Header File. The MIB Documentation Files KNSAMMIB.NUM in numeric form
and KNSAMMIB.TRE in tree form can be generated at the same time. The -T option
permits the use of IBM graphical characters to draw the tree structure.

RENAME KNSAMMIB.C KNSAMMIB.MFP
KN_MIB KNSAMMIB.MIB -hcnT

You should then save the raw MIB Access Module KNSAMMIB.C and restore the original
edited version of the file provided with KwikNet.

RENAME KNSAMMIB.C KNSAMMIB.RAW
RENAME KNSAMMIB.MFP KNSAMMIB.C

To generate the SNMP Variables Module SNMPVARS.C for this application, use the
following command line. Note that in this case, support for MIB-II variables per RFC-
1213 is not being included.

KN_MIB KNSAMMIB.MIB -v

In this simple example, the SNMP Variables Module SNMPVARS.C could have been
generated together with the MIB Access Module using the following command.

KN_MIB KNSAMMIB.MIB -hcnTv

44 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet MIB Construction

To include support for MIB-II variables per RFC-1213 for this application, you must
generate the SNMP Variables Module SNMPVARS.C using the following command line.
The MIB Definition File SNMP1213.MIB must be included in the list of such files to
provide MIB-II support.

KN_MIB KNSAMMIB.MIB SNMP1213.MIB -v

It is important to note that when MIB-II support is required, the MIB Definition File
SNMP1213.MIB must NOT be included in the generation of your MIB Access Module.
Hence the SNMP Variables Module SNMPVARS.C must be generated separately from the
MIB Access Module as just illustrated.

Warning

Your MUST NOT include the RFC-1213 MIB Definition
File SNMP1213.MIB in the generation of any MIB Access
Header File or MIB Access Module. Doing so will
duplicate information already present in the KwikNet SNMP
header file SNMP1213.H and library module SNMP1213.C.

The MIB Documentation Files generated in this example do not include descriptions of
the MIB-II variables. If you include MIB-II support in your SNMP Variables Module
SNMPVARS.C and want the MIB-II variable descriptions to appear in your MIB
Documentation File(s), create the MIB Documentation File(s) separate from all other
generated files as follows.

KN_MIB KNSAMMIB.MIB SNMP1213.MIB -nT

Using Multiple MIBs

A complex SNMP managed device may have several components which must be
managed separately. For example, a robotic controller might also include a front panel
display. You decide that it is best to define two MIBs for this device: one for the robot
and one for the display panel. You therefore create MIB Definition Files RBOT_CTL.MIB
for the robot and RBOT_PNL.MIB for the display panel.

The MIB for this device can be generated as follows.

KN_MIB RBOT_CTL.MIB -hc
KN_MIB RBOT_PNL.MIB -hc

The MIB Access Modules RBOT_CTL.C and RBOT_PNL.C must be edited to implement the
MIB Finder Procedures for the MIB groups and tables which these MIBs describe.

To generate the SNMP Variables Module SNMPVARS.C for this device, use the following
command line. The MIB Definition File SNMP1213.MIB must be included in the file list
if the device must also provide MIB-II support.

KN_MIB RBOT_CTL.MIB RBOT_PNL.MIB SNMP1213.MIB -v

KwikNet MIB Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 45

Managing a Library of MIBs

A complex SNMP managed device may have several components or operating modes
which must be managed separately. For example, a device might be configurable to
serve one of several different purposes. You decide that each use of the device is best
defined with a unique MIB which is unencumbered by the other possible uses of the
device. You then have a library (i.e. a collection) of individual MIBs from which the
complete MIB for a device can be generated. The MIB for a specific device is
constructed from the set of MIBs which describe that device's actual capabilities.

Assume that your MIB library includes a collection of MIB Definition Files named
LIBMIBnn.MIB, where nn varies from 01 to 99. You create a custom MIB Definition File
DVCA_MIB.MIB which describes the MIB variables, if any, which are unique to that
particular device. The device also needs MIBs LIBMIB05.MIB, LIBMIB12.MIB and
LIBMIB36.MIB from your MIB library.

The simplest implementation of the MIB for this device can be generated as follows.

KN_MIB DVCA_MIB.MIB -hc
KN_MIB LIBMIB05.MIB -hc
KN_MIB LIBMIB12.MIB -hc
KN_MIB LIBMIB36.MIB -hc
KN_MIB DVCA_MIB.MIB LIBMIB05.MIB LIBMIB12.MIB LIBMIB36.MIB -nT

The MIB Access Modules DVCA_MIB.C, LIBMIB05.C, LIBMIB12.C and LIBMIB36.C must
be edited to implement the MIB Finder Procedures for the MIB groups and tables which
these MIBs describe. Of course, once you have edited and tested the MIB Access
Modules for your standard MIBs, you will probably save them in your MIB library along
with the corresponding MIB Access Header Files.

To generate the SNMP Variables Module SNMPVARS.C for this device, use the following
command line. The MIB Definition File SNMP1213.MIB must be included in the file list
if the device must also provide MIB-II support.

KN_MIB DVCA_MIB.MIB LIBMIB05.MIB LIBMIB12.MIB LIBMIB36.MIB
SNMP1213.MIB -v

If the list of MIB Definition Files results in an excessively long command line, you can
concatenate the MIB Definition Files into a single temporary file which you present to
the MIB Compiler. For example, the SNMP Variables Module SNMPVARS.C produced
above could also be generated as follows.

COPY DVCA_MIB.MIB+LIBMIB05.MIB+LIBMIB12.MIB TMP1_MIB.MIB
COPY TMP1_MIB.MIB+LIBMIB36.MIB+SNMP1213.MIB TMP2_MIB.MIB
KN_MIB TMP2_MIB.MIB -v

Note

If the SNMP agent cannot access the standard MIB-II
variables, you may have omitted the MIB Definition File
SNMP1213.MIB when you generated the SNMP Variables
Module, SNMPVARS.C.

46 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet MIB Construction

2.5 Compiling and Linking a MIB
The Management Information Base (MIB) for your SNMP managed device is
constructed from one or more MIB Access Modules and the SNMP Variables Module
SNMPVARS.C. These modules are created for you by the KwikNet MIB Compiler. Each
MIB Access Module must have been edited to provide MIB Finder Procedures for each
of the MIB groups and tables described in the module.

The MIB Access Modules and the SNMP Variables Module are C source files which
must be compiled to produce object modules which are then linked as part of your
KwikNet application.

In order to compile these modules, the following KwikNet header files must be present in
the same directory as the C source files. Alternatively, you may choose to define the path
to the header files using compiler switches or environment variables.

KN_LIB .H KwikNet Library Configuration Module
KN_API .H KwikNet Application Interface definitions
KN_COMN .H KwikNet Common Interface definitions
KN_OSIF .H KwikNet OS Interface definitions
KNZZZCC .H KwikNet compiler specific definitions
KN_SNMP .H KwikNet SNMP Application Interface definitions

Header file KN_LIB.H is a copy of your KwikNet Library Configuration Module from your
KwikNet library directory. This file is created as a byproduct of the KwikNet Library
construction process described in Chapter 3.2 of the KwikNet TCP/IP Stack User's Guide.

Header files KN_API.H, KN_COMN.H and KN_OSIF.H are the KwikNet files with which all
application modules must be compiled. These files will be found in KwikNet installation
directory INET.

Header file KNZZZCC.H is the compiler specific file which will be found in KwikNet
installation directory TOOLXXX, where XXX is KADAK's three character mnemonic for a
particular vendor's C tools.

Header file KN_SNMP.H is the KwikNet SNMP file with which all SNMP application
modules must be compiled. This file will be found in KwikNet installation directory SNMP.

Finally, note that when compiling a MIB Access Module, the C compiler must have
access to the corresponding MIB Access Header File. If necessary, copy the MIB Access
Header File to the directory containing the MIB Access Module being compiled.

The SNMP MIB modules are compiled using exactly the same C command line switches
as are used for compiling the C modules in the KwikNet libraries. These command line
switches are defined in the tailoring file KNZZZCC.INC which you used to create your
KwikNet libraries with your particular C compiler. Tailoring files are described in Chapter
3.2 of the KwikNet TCP/IP Stack User's Guide.

KwikNet MIB Construction KADAK Copyright © 1997-2000 KADAK Products Ltd. 47

Linking the MIB with your Application

Your application link and/or locate specification files must be updated to include your
MIB Access Module(s), the SNMP Variables Module and the KwikNet SNMP Library.

The object module for the SNMP Variables Module, SNMPVARS.OBJ, must be linked prior
to the KwikNet libraries. It is recommended that it be inserted along with your KwikNet
Network Configuration Module.

The object module for your MIB Access Module must be linked prior to the KwikNet
libraries. It is recommended that it be linked after the SNMP Variables Module
SNMPVARS.OBJ. If you have more than one MIB Access Module, collect the
corresponding object files and link them following the SNMP Variables Module
SNMPVARS.OBJ. If your MIB Finder Procedures reference other application specific
support modules, be sure to link those modules explicitly or link with the library
containing them.

Link the KwikNet SNMP Library file KNnnnSNM.LIB after all object modules but prior to
the KwikNet IP Library.

With these changes to your application link and/or locate specification files in place, you
can link and create an updated KwikNet application with SNMP support included.

Note that object and library files may have extensions .O or .A or some other extension
as dictated by the toolset which you are using.

Using a MIB Library File

If your MIB has more than one MIB Access Module, you can combine the compiled
object modules into one or more custom MIB library files using your object module
librarian. Do NOT include the object module for the SNMP Variables Module,
SNMPVARS.OBJ, in any such library.

When linking a MIB library file, insert it following the KwikNet SNMP Library
KNnnnSNM.LIB.

Note

If, when linking your application, the MIB Finder
Procedure var_XXX for the MIB group or table named XXX
is undefined, you probably omitted the MIB Access
Module which provides that procedure or inadvertently
altered its name when editing the procedure.

48 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet MIB Construction

This page left blank intentionally.

KwikNet SNMP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 49

3. KwikNet SNMP Services

3.1 Introduction to SNMP Services
KwikNet provides a set of service procedures which control the operation of your KwikNet
SNMP Agent. These service procedures reside in the KwikNet SNMP Library which you
must link with your application. A description of these service procedures is provided in
Chapter 3.2. The descriptions are ordered alphabetically for easy reference.

Italics are used to distinguish programming examples. Procedure names and variable
names which appear in narrative text are also displayed in italics. Occasionally a lower
case procedure name or variable name may appear capitalized if it occurs as the first
word in a sentence.

Vertical ellipses are used in program examples to indicate which a portion of the program
code is missing. Most frequently this will occur in examples where fragments of
application dependent code are missing.

:
: /* Continue processing */
:

Capitals are used for all defined KwikNet file names, constants and error codes. All
KwikNet procedure, structure and constant names can be readily identified according to
the nomenclature introduced in Chapter 1.3 of the KwikNet TCP/IP Stack User's Guide.

KwikNet Procedure Descriptions

A consistent style has been adopted for the description of the KwikNet SNMP service
procedures. The procedure name is presented at the extreme top right and left as in a
dictionary. This method of presentation has been chosen to make it easy to find
procedures since they are ordered alphabetically.

Purpose A one-line statement of purpose is always provided.

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure � Other

This block is used to indicate which application procedures can call the
KwikNet procedure. A filled in box indicates that the procedure is allowed
to call the KwikNet procedure. In the above example, only tasks would be
allowed to call the procedure.

For AMX users, this block is used to indicate which of your AMX
application procedures can call the KwikNet procedure. You are reminded
that the term ISP refers to the Interrupt Handler of a conforming ISP.

...more

50 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Services

KwikNet Procedure Descriptions (continued)

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure � Other

For other multitasking systems, a task is any application task executing at
a priority below that of the KwikNet Task. A Timer procedure is a function
executed by a task of higher priority than the KwikNet Task. An ISP is a
KwikNet device driver interrupt handler called from an RTOS compatible
interrupt service routine. The other procedures do not exist.

For a single threaded system, your App-Task (see glossary in Appendix A
of the KwikNet TCP/IP Stack User's Guide) is the only task. An ISP is a
KwikNet device driver interrupt handler called from an interrupt service
routine. Timer, restart and exit procedures do not exist.

The category Other is rarely present. When the category is needed, the
word Other is replaced with a more meaningful term which is then
explained in the body of the procedure description. Procedures which can
only be called by the MIB Finder Procedures and MIB Set Procedures in
your MIB Access Modules are identified in this fashion.

Setup The prototype of the KwikNet procedure is shown.
The KwikNet header file in which the prototype is located is identified.
Include KwikNet header files KN_LIB.H and KN_SNMP.H for compilation.

File KN_LIB.H is the KwikNet include file which corresponds to the KwikNet
Libraries which your application uses. This file is created for you by the
KwikNet Configuration Manager when you create your KwikNet Libraries.
File KN_LIB.H automatically includes the correct subset of the KwikNet
header files for a particular target processor.

File KN_SNMP.H is the KwikNet include file which you must include if your
application uses any SNMP services. This file is located in KwikNet
installation directory SNMP.

Description Defines all input parameters to the procedure and expands upon the
purpose or method if required.

Returns The outputs, if any, produced by the procedure are always defined. Most
KwikNet procedures return an integer error status.

Restrictions If any restrictions on the use of the procedure exist, they are described.

Note Special notes, suggestions or warnings are offered where necessary.

See Also A cross reference to other related KwikNet procedures is always provided if
applicable.

KwikNet SNMP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 51

3.2 SNMP Service Procedures
KwikNet provides a set of SNMP service procedures which your application can use to
interact with the KwikNet SNMP Agent. These service procedures reside in the KwikNet
SNMP Library which you must link with your application. Some of these procedures
must only be called by the MIB Finder Procedures and MIB Set Procedures in your MIB
Access Modules.

The following list summarizes these KwikNet SNMP service procedures. They are
grouped functionally for easy reference.

SNMP Agent Operations
knsa_control Control the operation of KwikNet SNMP Agent
knsa_address Get the IP address and port number of the KwikNet SNMP Agent

knsa_config Configure the KwikNet SNMP Agent
knsa_community Modify the access rights of an SNMP community
knsa_traptarget Add/remove an SNMP trap target to/from the trap target list
knsa_trap Send an SNMP trap message to all known trap targets

General SNMP Operations
knsa_oidcmp Compare two object identifiers
knsa_oidcpy Copy an object identifier
knsa_oidfrombytes Convert a byte array to an object identifier
knsa_oidtobytes Convert an object identifier to a byte array

MIB Access Operations
knsa_asndecode Decode an ASN.1 encoded MIB value
knsa_setvarrange Specify the valid range of values for a MIB variable
knsa_setvarfunc Specify the MIB Set Procedure which is to write to a MIB variable

knsa_oidcmpv Compare an object identifier with a compressed object identifier
knsa_oidcpyv Copy (extract) a compressed object identifier

Related KwikNet Services
kn_netstats Log a statistics summary for the KwikNet SNMP Agent

(See Chapter 4.6 of the KwikNet TCP/IP Stack User's Guide.)

52 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Services

knsa_address knsa_address

Purpose Get the IP address and Port Numbers of the KwikNet SNMP Agent

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SNMP.H.
#include "KN_LIB.H"
#include "KN_SNMP.H"
int knsa_address(struct in_addr *inadrp,

int *snmpportp, int *trapportp);

Description Inadrp is a pointer to a structure into which the SNMP agent will store the
IP address, in net endian form, which SNMP managers can use to
communicate with the agent. The BSD structure in_addr is defined in
file KN_API.H as follows:

struct in_addr {
unsigned long s_addr; /* IP address (net endian) */
};

Snmpportp is a pointer to storage for the UDP port number on which the
KwikNet SNMP Agent will accept SNMP messages.

Trapportp is a pointer to storage for the UDP port number to which the
KwikNet SNMP Agent will direct SNMP trap messages.

Returns The value 0 is always returned.
The agent's IP address is stored at inadrp->s_addr.
The agent's SNMP port number is stored at *snmpportp.
The agent's SNMP trap port number is stored at *trapportp.

See Also knsa_control()

KwikNet SNMP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 53

knsa_asndecode knsa_asndecode

Purpose Decode an ASN.1 Encoded MIB Value

Used by � MIB Finder Procedure � MIB Set Procedure

Setup Prototype is in file KN_SNMP.H.
#include "KN_LIB.H"
#include "KN_SNMP.H"
void knsa_asndecode(const unsigned char *var_valp,

int var_val_type,
unsigned char *destp,
int destlen);

Description Var_valp is a pointer to the ASN.1 encoded MIB variable value.

Var_val_type is the ASN.1 type of the encoded variable.

Destp is a pointer to storage for the decoded MIB variable value.

Destlen is the length, in bytes, of the destination buffer referenced by
parameter destp.

If var_val_type specifies a numeric type for the MIB variable, then
four bytes of storage must be provided. If var_val_type specifies a
MIB variable whose type permits values of variable length, then
sufficient storage must be provided to hold the longest expected value.

Note 1 MIB variables which are strings (ASN.1 type ASN_OCTET_STR) are a
special case. The storage length destlen specifies the maximum allowed
string length, excluding a terminating '\0' character. However, the
buffer referenced by destp must provide destlen+1 bytes of storage to
allow for the terminating '\0' character which procedure
knsa_asndecode() always appends to a string value.

...more

54 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Services

Note 2 The MIB Set Procedure calling knsa_asndecode() is executed by the
SNMP agent as a consequence of a request from a MIB Finder Procedure.
The MIB Finder Procedure uses procedure knsa_setvarfunc() to make
such a request.

The MIB Finder Procedure can call knsa_setvarrange() to establish the
range of permissible values for the MIB variable. This action can
influence the subsequent operation of procedure knsa_asndecode() when
eventually called by the MIB Set Procedure. The effect is as follows.

If the MIB variable has a variable length value (ASN.1 types
ASN_OCTET_STR, SMI_IPADDRESS or SMI_OPAQUE), then the upper limit of
the MIB value established by the call to knsa_setvarrange() will be
used by knsa_asndecode() as the length of the MIB storage buffer,
overriding your parameter destlen.

Returns The decoded MIB value is stored in the data buffer referenced by
parameter destp. If the MIB variable is a string, a terminating '\0'
character will have been appended to the string by this procedure.

Example See the usage illustrated in the MIB Set Procedure specification provided
in Chapter 2.3.2.

See Also knsa_setvarrange(), knsa_setvarfunc()

KwikNet SNMP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 55

knsa_community knsa_community

Purpose Modify the Access Rights of an SNMP Community

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SNMP.H.
#include "KN_LIB.H"
#include "KN_SNMP.H"
int knsa_community(const char *community, unsigned int access);

Description Community is a pointer to a text string which specifies the name of an
SNMP community for which the access rights are to be adjusted.

Access is one of the following constants which determine the action to be
taken. These constants are defined in header file KN_SNMP.H.

KNSA_DELETE Delete the SNMP agent from the community
KNSA_RONLY Grant read-only access to the community
KNSA_WONLY Grant write-only access to the community
KNSA_RWRITE Grant read/write access to the community

If the SNMP agent already belongs to the specified community, the
access rights for the community will be adjusted per parameter access.
If you grant access to a community to which the SNMP agent does not
already belong, the SNMP agent will be added to that community. The
agent can only be deleted from a community to which it belongs.

Returns If successful, a value of 0 is returned.

The access rights for the specified community are adjusted per parameter
access. If you grant access to a community to which the SNMP agent
does not already belong, the SNMP agent is added to that community. If
you deny access by a community to which the SNMP agent belongs, the
agent will be deleted from that community.

On failure, the error status -1 is returned. Reasons for failure include:

The community pointer is NULL.
The community string is too long or is of zero length.
The access value is not one of the specified constants.
The SNMP agent cannot be added to the community without exceeding
the agent's community membership limit.
The SNMP agent cannot be deleted from a community to which it does
not belong.

Note The maximum length of a community name string and the maximum
number of communities to which the KwikNet SNMP Agent can belong are
specified in your KwikNet Library Parameter File (see Chapter 1.3).

See Also knsa_config()

56 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Services

knsa_config knsa_config

Purpose Configure the KwikNet SNMP Agent

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SNMP.H.
#include "KN_LIB.H"
#include "KN_SNMP.H"
int knsa_config(const struct knsa_snmpinfo *cfgp);

Description Cfgp is a pointer to a structure which contains SNMP agent configuration
information. The configuration information which you provide will
override the default configuration used to initialize the SNMP agent.
The default parameters are located in source module SNMPUSER.C in
KwikNet directory SNMP. The structure knsa_snmpinfo is defined in
header file KN_SNMP.H as follows:

struct knsa_snmpinfo {
/* MIB-II System Group Information (RFC-1213) */
const char *sysDescr; /* System description */
const char *sysContact; /* Contact information */
const char *sysName; /* Name of the node */
const char *sysLocation; /* Location of the node */
const knsa_subid *sysObjID; /* Vendor ID subid array */
int sysObjIDlen; /* # of subids in Vendor ID */
int sysServices; /* Services provided by node */

/* Array of Community Access Definitions */
const struct knsa_accessdef *commAcl;
int commCount; /* # of communities defined */
int rsv1; /* Reserved for alignment */

/* Default trap community name string */
const char *trapDefaultComm;

/* Array of Trap Target Definitions */
const struct knsa_trapdef *trapTargets;
int trapCount; /* # of trap targets defined */
int rsv2; /* Reserved for alignment */
};

The MIB-II System Group Information is defined by RFC-1213. A brief
description of these parameters can be found in the KwikNet MIB
Definition File SNMP1213.MIB located in directory MIBCOMP in your
KwikNet installation directory. For examples, review the default
configuration in source module SNMPUSER.C in KwikNet directory SNMP.

If, within this structure, a pointer parameter is set to NULL or an integer
parameter is set to 0, the corresponding SNMP agent configuration
parameter will not be altered. You can therefore use this procedure to
selectively alter specific configuration parameters without altering the
configuration as a whole.

...more

KwikNet SNMP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 57

Description ...continued

Member commAcl provides a pointer to an array of Community Access
Control Definitions. Member commCount specifies the number of
communities defined in the array. These definitions specify the
communities to which the SNMP agent is to belong. This list of
communities completely replaces the list of communities, if any, to which
the SNMP agent currently belongs. Each definition is a knsa_accessdef
structure which is defined in header file KN_SNMP.H as follows:

struct knsa_accessdef {
const char *name; /* Community name string */
unsigned short access; /* Community access rights */

/* One of KNSA_RONLY, */
/* KNSA_WONLY or KNSA_RWRITE */

short rsv1; /* Reserved for alignment */
};

Member trapDefaultComm is a pointer to a text string specifying the
community name to be used in any SNMP trap message sent to a trap
target which has a NULL community name pointer in its definition.

Member trapTargets provides a pointer to an array of Trap Target
Definitions. Member trapCount specifies the number of trap targets
defined in the array. These definitions specify the trap targets to which the
SNMP agent is to direct SNMP trap messages. This list of trap targets
completely replaces the list of targets, if any, currently in use by the
SNMP agent. Each definition is a knsa_trapdef structure which is
defined in header file KN_SNMP.H as follows:

struct knsa_trapdef {
const char *name; /* Community name string */

/* If NULL, the default trap */
/* community will be used */

struct in_addr fhost; /* IP address of trap target */
};

Returns If successful, a value of 0 is returned.

On failure, the error status -1 is returned. Failure indicates that at least
one of the configuration parameters is invalid.

Note The maximum length of a community name string and the maximum
number of communities to which the KwikNet SNMP Agent can belong are
specified in your KwikNet Library Parameter File (see Chapter 1.3).

If you have not enabled SNMP traps in your KwikNet Library Parameter
File, structure members trapDefaultComm, trapTargets and trapCount
will be ignored.

See Also knsa_community(), knsa_traptarget()

58 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Services

knsa_control knsa_control

Purpose Control the Operation of the KwikNet SNMP Agent

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file KN_SNMP.H.
#include "KN_LIB.H"
#include "KN_SNMP.H"
int knsa_control(int cmask, int cvalue);

Description This procedure is used to control the operation of the KwikNet SNMP
Agent. Your application can call this procedure to enable or disable the
agent from servicing SNMP requests or generating SNMP traps.

When KwikNet first starts and the SNMP agent is initialized, SNMP trap
generation and the service of SNMP requests are both disabled.
However, if you have enabled the automatic start option in your
KwikNet Library Parameter File, the SNMP agent immediately enables
both operations.

Cmask is a bit mask which identifies the SNMP agent features which are to
be enabled or disabled. Only the features specified by this mask will be
affected. Parameter cmask is created by ORing one or more of the
following constants whose definitions are in header file KN_SNMP.H.

KNSA_CTRL_REQUESTS Service SNMP requests
KNSA_CTRL_TRAPS Generate SNMP traps

Cvalue is a bit mask which specifies whether the feature identified by
parameter cmask is to be enabled or disabled. A value of 0 will disable
all of the features specified by cmask. Add any of the above constants
to cvalue to enable the corresponding feature.

Set cmask and cvalue to 0 to read the current control state of the
SNMP agent without affecting its operation.

Returns The previous control state of the SNMP agent is always returned. The bit
mask constants defined above can be used to isolate the current state of the
feature controlled by the mask bit.

The special mask KNSA_CTRL_WARM can be applied to the result to
determine if the SNMP agent has ever been permitted to service SNMP
requests. If the masked result is 0, then the SNMP agent has never been
active.

Enabling an already enabled feature or disabling an already disabled
feature has no effect.

...more

KwikNet SNMP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 59

Note 1 Attempting to control the generation of SNMP traps will have no effect
unless the SNMP trap feature is enabled in your KwikNet Library
Parameter File (see Chapter 1.3).

Note 2 If SNMP trap generation is enabled when you call this procedure to enable
the servicing of SNMP requests, the SNMP agent will generate an SNMP
trap. The trap will only be generated if the servicing of SNMP requests by
the agent is not already enabled.

A cold start trap (KNSA_TRAP_COLDSTART) will be generated the first time
the servicing of SNMP requests is enabled. Thereafter, a warm start trap
(KNSA_TRAP_WARMSTART) will be generated.

See Also knsa_address()

60 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Services

knsa_oidcmp knsa_oidcmp

Purpose Compare Two Object Identifiers

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure
� MIB Finder Procedure � MIB Set Procedure

Setup Prototype is in file KN_SNMP.H.
#include "KN_LIB.H"
#include "KN_SNMP.H"
int knsa_oidcmp(const knsa_subid *name1, int length1,

const knsa_subid *name2, int length2);

Description Name1 is a pointer to the subid array specifying the first of two object
identifiers to be compared.

Length1 is the number of sub-identifiers in the subid array referenced by
parameter name1.

Name2 is a pointer to the subid array specifying the second of the two
object identifiers to be compared.

Length2 is the number of sub-identifiers in the subid array referenced by
parameter name2.

Returns -1 if object identifier per name1 < object identifier per name2
0 if object identifier per name1 = object identifier per name2
1 if object identifier per name1 > object identifier per name2

See Also knsa_oidcmpv(), knsa_oidcpy(), knsa_oidcpyv(),
knsa_oidfrombytes(), knsa_oidtobytes()

KwikNet SNMP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 61

knsa_oidcmpv knsa_oidcmpv

Purpose Compare an Object Identifier with a Compressed Object Identifier

Used by � MIB Finder Procedure � MIB Set Procedure

Setup Prototype is in file KN_SNMP.H.
#include "KN_LIB.H"
#include "KN_SNMP.H"
int knsa_oidcmpv(const knsa_subid *name1, int length1,

const struct knsa_var *vp);

Description Name1 is a pointer to the subid array specifying the first of two object
identifiers to be compared.

Length1 is the number of sub-identifiers in the subid array referenced by
parameter name1.

Vp is a pointer to a private KwikNet MIB variable description which
contains the compressed object identifier to which the object identifer
specified by parameter name1 is to be compared. This pointer is
presented by the SNMP agent as a parameter to your MIB Finder
Procedure or MIB Set Procedure.

Returns -1 if object identifier per name1 < object identifier per *vp
0 if object identifier per name1 = object identifier per *vp
1 if object identifier per name1 > object identifier per *vp

See Also knsa_oidcmp(), knsa_oidcpy(), knsa_oidcpyv(),
knsa_oidfrombytes(), knsa_oidtobytes()

62 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Services

knsa_oidcpy knsa_oidcpy

Purpose Copy an Object Identifier

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure
� MIB Finder Procedure � MIB Set Procedure

Setup Prototype is in file KN_SNMP.H.
#include "KN_LIB.H"
#include "KN_SNMP.H"
knsa_subid *knsa_oidcpy(knsa_subid *destp,

const knsa_subid *srcp, int length);

Description Destp is a pointer to storage for a subid array into which an object
identifier can be copied.

Srcp is a pointer to the subid array containing the object identifier which
is to be copied.

Length is the number of sub-identifers in the subid array referenced by
parameter srcp.

Returns The destination subid array pointer destp.

The subid array at *srcp is copied to *destp.

Restriction There must be sufficient storage at the location referenced by destp to
hold a subid array with the number of sub-identifiers specified by
parameter length.

See Also knsa_oidcmp(), knsa_oidcmpv(), knsa_oidcpyv(),
knsa_oidfrombytes(), knsa_oidtobytes()

KwikNet SNMP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 63

knsa_oidcpyv knsa_oidcpyv

Purpose Copy (Extract) a Compressed Object Identifer

Used by � MIB Finder Procedure � MIB Set Procedure

Setup Prototype is in file KN_SNMP.H.
#include "KN_LIB.H"
#include "KN_SNMP.H"
knsa_subid *knsa_oidcpyv(knsa_subid *destp,

const struct knsa_var *vp);

Description Destp is a pointer to storage for a subid array into which an object
identifier can be copied.

Vp is a pointer to a private KwikNet MIB variable description which
contains the compressed object identifier which is to be extracted and
stored into the subid array specified by parameter destp. This pointer
is presented by the SNMP agent as a parameter to your MIB Finder
Procedure or MIB Set Procedure.

The number of sub-identifiers in the compressed object identifier can
be accessed as vp->grp->namelen.

Returns The destination subid array pointer destp.

The compressed object identifier in the MIB variable description
referenced by parameter vp is converted to an object identifier and stored
in the subid array referenced by parameter destp.

Restriction There must be sufficient storage at the location referenced by destp to
hold the subid array extracted from the MIB variable description.

See Also knsa_oidcmp(), knsa_oidcmpv(), knsa_oidcpy(),
knsa_oidfrombytes(), knsa_oidtobytes()

64 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Services

knsa_oidfrombytes knsa_oidfrombytes

Purpose Convert a Byte Array to an Object Identifier

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure
� MIB Finder Procedure � MIB Set Procedure

Setup Prototype is in file KN_SNMP.H.
#include "KN_LIB.H"
#include "KN_SNMP.H"
void knsa_oidfrombytes(knsa_subid *destp,

const void *srcp, int count);

Description Destp is a pointer to storage for a subid array into which an object
identifier can be stored.

Srcp is a pointer to the array of bytes which is to be converted into an
object identifer.

Count is the number of bytes in the source byte array. This number
therefore also specifies the number of sub-identifiers which will be
present in the resulting object identifier.

Returns Nothing

The array of count bytes at *srcp is treated as an array of unsigned
characters. Each byte is converted to a sub-identifier of type knsa_subid
in the range 0 to 255. The resulting array of sub-identifiers is stored in the
subid array at *destp.

See Also knsa_oidcmp(), knsa_oidcpy(), knsa_oidtobytes()

KwikNet SNMP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 65

knsa_oidtobytes knsa_oidtobytes

Purpose Convert an Object Identifier to a Byte Array

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure
� MIB Finder Procedure � MIB Set Procedure

Setup Prototype is in file KN_SNMP.H.
#include "KN_LIB.H"
#include "KN_SNMP.H"
void knsa_oidtobytes(void *destp,

const knsa_subid *srcp, int count);

Description Destp is a pointer to storage for the array of bytes which are to be derived
from an object identifer.

Srcp is a pointer to the subid array which contains an object identifier
which is to be converted into an array of bytes.

Count is the number of sub-identifiers in the object identifier referenced
by parameter srcp. This number also determines the number bytes
which must be available in the destination byte array referenced by
parameter destp.

Returns Nothing

Each of the sub-identifiers in the subid array referenced by srcp is masked
to 8 bits and stored in the byte array at *destp. The most significant 8 or
24 bits of each sub-identifier are ignored.

See Also knsa_oidcmp(), knsa_oidcpy(), knsa_oidfrombytes()

66 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Services

knsa_setvarfunc knsa_setvarfunc

Purpose Install a MIB Set Procedure to be Used to Set a MIB Value

Used by � MIB Finder Procedure � MIB Set Procedure

Setup Prototype is in file KN_SNMP.H.
#include "KN_LIB.H"
#include "KN_SNMP.H"
int knsa_setvarfunc(KNSA_ACCESS setfunc);

Description This procedure is called by a MIB Finder Procedure to install a MIB Set
Procedure which the SNMP agent will call to set the value of the MIB
variable located by the MIB Finder Procedure.

Parameter setfunc is a pointer to the MIB Set Procedure.

The MIB Finder Procedure can cancel a MIB Set Procedure which it has
already installed by calling this procedure again with parameter setfunc
set to NULL.

The type definition for a pointer to a MIB Set Procedure is specified in
header file KN_SNMP.H as follows:

typedef int (*KNSA_ACCESS)(struct knsa_setparms *parmp);

The MIB Set Procedure must be coded according to the specification
provided in Chapter 2.3.2. The specification includes a complete
description of the parameters provided to the function in the structure
referenced by parmp.

Returns A value of 0 is always returned.

Note The SNMP agent always cancels any previously installed MIB Set
Procedure prior to calling a MIB Finder Procedure to locate a MIB
variable. Hence any use of procedure knsa_setvarfunc() by the MIB
Finder Procedure can only affect writes to the MIB variable which it
successfully locates for the agent.

See Also knsa_setvarrange()

KwikNet SNMP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 67

knsa_setvarrange knsa_setvarrange

Purpose Specify the Valid Range of Values for an SNMP Variable

Used by � MIB Finder Procedure � MIB Set Procedure

Setup Prototype is in file KN_SNMP.H.
#include "KN_LIB.H"
#include "KN_SNMP.H"
int knsa_setvarrange(long lovalue, long hivalue);

Description Lovalue is the smallest acceptable value for the SNMP variable which the
MIB Finder Procedure has located for the SNMP agent.

Hivalue is the largest acceptable value for the SNMP variable which the
MIB Finder Procedure has located for the SNMP agent.

If lovalue is 0 and hivalue is -1, then any range previously specified by
the MIB Finder Procedure is discarded. This feature can be used by the
MIB Finder Procedure to cancel an erroneous range specification.

If the MIB variable located by the MIB Finder Procedure has a numeric
value, then the value of the MIB variable must be in the range
lovalue ≤ value ≤ hivalue. The following ASN.1 types defined in
header file KN_SNMP.H specify numeric MIB variables.

ASN_INTEGER, SMI_COUNTER, SMI_GAUGE, SMI_TIMETICKS

If the MIB variable located by the MIB Finder Procedure has a variable
length value, then the length of the value of the MIB variable must be in
the range lovalue ≤ length ≤ hivalue. The following ASN.1 types
defined in header file KN_SNMP.H specify variable length MIB variables.

ASN_OBJECT_ID, ASN_OCTET_STR, SMI_IPADDRESS, SMI_OPAQUE

Returns If the range is accepted, a value of 0 is returned.

On failure, the error status -1 is returned.
Failure indicates that lovalue is greater than hivalue.

Note The SNMP agent always cancels range checking prior to calling a MIB
Finder Procedure to locate a MIB variable. Hence any use of procedure
knsa_setvarrange() by the MIB Finder Procedure can only affect writes
to the MIB variable which it successfully locates for the agent.

If a range check is specified with knsa_setvarrange() and a MIB Set
Procedure is installed with knsa_setvarfunc(), then the range check will
be performed by the SNMP agent upon return from the MIB Finder
Procedure prior to calling the MIB Set Procedure.

See Also knsa_setvarfunc(), knsa_asndecode()

68 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Services

knsa_trap knsa_trap

Purpose Send an SNMP Trap Message to All Trap Targets

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure
� MIB Finder Procedure � MIB Set Procedure

Setup Prototype is in file KN_SNMP.H.
#include "KN_LIB.H"
#include "KN_SNMP.H"
int knsa_trap(int trapType,

int specificType,
const knsa_subid *objId,
int objLen,
int varCount,
const struct knsa_trapvar *vars);

Description TrapType specifies the SNMP trap type to be used in the trap message.
Trap types are defined and described in RFC-1157. The following trap
types are defined in header file KN_SNMP.H:

 KNSA_TRAP_COLDSTART
KNSA_TRAP_WARMSTART
KNSA_TRAP_LINKDOWN
KNSA_TRAP_LINKUP
KNSA_TRAP_AUTHFAIL
KNSA_TRAP_EGPNEIGHBORLOSS
KNSA_TRAP_ENTERPRISESPECIFIC

SpecificType is a specific code which you must provide when you
generate a trap of type KNSA_TRAP_ENTERPRISESPECIFIC. Specific
codes are defined in an enterprise specific manner which is not defined
in the RFCs. If you are not generating such a trap, this parameter will
be ignored.

ObjId is a pointer to a subid array which contains an object identifier
which uniquely indicates the managed device which is generating the
trap. If this parameter is NULL, then the SNMP agent's system object
identifier (as specified by MIB variable sysObjectID) will be used.
Note that you can use procedure knsa_config() to adjust this SNMP
agent configuration parameter.

ObjLen is the number of sub-identifiers in the subid array referenced by
parameter ObjId. If ObjId is NULL, this parameter is ignored.

VarCount is the number of MIB variables which are to be included in the
SNMP trap message sent to each trap target. This parameter therefore
specifies the number of entries in the array of trap variables referenced
by parameter vars. If no MIB variables are to be included in the
SNMP trap message, set this parameter to 0.

...more

KwikNet SNMP Services KADAK Copyright © 1997-2000 KADAK Products Ltd. 69

Description …continued

Vars is a pointer to an array of trap variables. Each trap variable describes
a MIB variable which is to be embedded in the SNMP trap message. If
no MIB variables are to be included in the SNMP trap message, set this
parameter to NULL.

Each trap variable is described in a structure of type knsa_trapvar
which is defined in header file KN_SNMP.H as follows:

struct knsa_trapvar {
/* ObjectId of variable */

knsa_subid varName[KN_SNMP_SUBIDS];
unsigned int varNameLen; /* Sub-ids in varName */
unsigned int varValLen; /* Octets in variable data */
unsigned char varType; /* ASN.1 type of variable */
char rsv1, rsv2, rsv3; /* Reserved for alignment */
const unsigned char *varBuf; /* A(actual variable data) */
};

Member varName is a subid array which provides the object identifier
of the MIB variable. The number of sub-identifiers in the object
identifier is specified by member varNameLen.

Member varBuf is a pointer to the actual value of the MIB variable.
The length of the MIB variable value, in bytes, is specified by member
varValLen.

Member varType specifies the MIB variable type. This parameter
must be one of the following ASN.1 or SMI types which are defined in
header file KN_SNMP.H:

ASN_BOOLEAN SMI_IPADDRESS
ASN_INTEGER SMI_COUNTER
ASN_OCTET_STR SMI_GAUGE
ASN_NULL SMI_TIMETICKS
ASN_OBJECT_ID SMI_OPAQUE

Returns If successful, a value of 0 is returned.

The SNMP trap message will have been sent to all trap targets currently
known to the SNMP agent.

On failure, the error status -n is returned where n indicates the number of
errors which occurred while sending the SNMP trap message to all trap
targets.

See Also knsa_config(), knsa_traptarget()

70 Copyright © 1997-2000 KADAK Products Ltd. KADAK KwikNet SNMP Services

knsa_traptarget knsa_traptarget

Purpose Add/Remove a Trap Target to/from the Trap Target List

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure
� MIB Finder Procedure � MIB Set Procedure

Setup Prototype is in file KN_SNMP.H.
#include "KN_LIB.H"
#include "KN_SNMP.H"
int knsa_traptarget(const char *community,

const struct in_addr *inadrp, int oper);

Description Community is a pointer to a text string which specifies the name of the
SNMP community which is to be embedded in any SNMP trap
message sent to this trap target. If this parameter is NULL, then the
SNMP agent's default trap community will be used. Note that you can
use procedure knsa_config() to adjust SNMP agent's default trap
community.

Inadrp is a pointer to a structure which contains the IP address, in net
endian form, to which the SNMP agent will send SNMP trap messages.
The BSD structure in_addr is defined in file KN_API.H as follows:

struct in_addr {
unsigned long s_addr; /* IP address (net endian) */
};

Oper is one of the following constants which determine the action to be
taken. These constants are defined in header file KN_SNMP.H.

KNSA_ADD Add the trap target
KNSA_DELETE Delete the trap target

Returns If successful, a value of 0 is returned. The trap target is added or deleted
to the SNMP agents's list of trap targets.

On failure, the error status -1 is returned. Reasons for failure include:

The community string is too long or is of zero length.
The IP address is 0.0.0.0.
The trap target cannot be added because the trap target list is full.
The trap target cannot be deleted because it is not on the trap target list.

Note The maximum length of a community name string and the maximum
number of trap targets to which the SNMP agent can send traps is
specified in your KwikNet Library Parameter File (see Chapter 1.3).

To change the definition of a trap target, you must delete the trap target
and then add it with the revised definitions.

See Also knsa_config(), knsa_trap()

	Cover
	Table of Contents
	1. KwikNet SNMP Agent Overview
	Introduction
	General Operation
	SNMP Library Configuration
	SNMP Agent Operation
	SNMP Traps
	MIB Data Organization
	SNMP Error and Statistics Logging
	Adding the SNMP Agent

	2. KwikNet MIB Construction
	Introduction
	MIB Definition Files
	MIB Finder Procedures
	MIB Finder Procedure Specification
	MIB Set Procedure Specification

	Using the MIB Compiler
	Compiling and Linking a MIB

	3. KwikNet SNMP Services
	Introduction to SNMP Services
	SNMP Service Procedures

