KwikNet"

Porting Kit

User's Guide

First Printing: July 15, 1999
Last Printing: September 15, 2002

Manual Order Number: PN713-9

Copyright © 1999-2002

KADAK Products Ltd.
206 - 1847 West Broadway Avenue
Vancouver, BC, Canada, V6J 1Y5

Phone: (604) 734-2796
Fax: (604) 734-8114

TECHNICAL SUPPORT

KADAK Products Ltd. is committed to technical support for its software products. Our
programs are designed to be easily incorporated in your systems and every effort has
been made to eliminate errors.

Engineering Change Notices (ECNs) are provided periodically to repair faults or to
improve performance. You will automatically receive these updates for a period of one
year. After that period, you may purchase additional updates. Please keep us informed
of the primary user in your company to whom these update notices and other pertinent
information should be directed.

Should you require direct technical assistance in your use of this KADAK software
product, engineering support is available by telephone, fax or e-mail without charge.
KADAK reserves the right to charge for technical support services which it deems to be
beyond the normal scope of technical support.

We would be pleased to receive your comments and suggestions concerning this product
and its documentation. Y our feedback helpsin the continuing product evolution.

KADAK Products Ltd.
206 - 1847 West Broadway Avenue
Vancouver, BC, Canada, V6J 1Y5

Phone: (604) 734-2796
Fax: (604) 734-8114
e-mail: amxtech@kadak.com

KwikNet Porting Kit i KADAK

Copyright © 1999-2002 by KADAK ProductsLtd.
All rightsreserved.

No part of this publication may be reproduced, transmitted, transcribed,
stored in aretrieval system, or trandated into any language or computer
language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manua or otherwise, without the prior
written permission of KADAK Products Ltd., Vancouver, BC, CANADA.

DISCLAIMER

KADAK Products Ltd. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any implied
warranties or merchantability or fitness for any particular purpose.
Further, KADAK Products Ltd. reserves the right to revise this
publication and to make changes from time to time in the content
hereof without obligation of KADAK Products Ltd. to notify any
person of such revision or changes.

TRADEMARKS

AMX in the stylized form and KwikNet are registered trademarks of KADAK Products Ltd.
AMX, AMX/FS, InSight, KwikLook and KwikPeg are trademarks of KADAK Products Ltd.
UNIX isaregistered trademark of AT& T Bell Laboratories.

Microsoft, MS-DOS and Windows are registered trademarks of Microsoft Corporation.
All other trademarked names are the property of their respective owners.

K ADAK KwikNet Porting Kit

KwikNet Porting Kit

KwikNet Porting Kit User
Table of Contents

1. KwikNet Porting Kit Overview

1.1 INtroduCtion.........occveeeieciie e

The KwikNet Porting Interface....................
Adapting KwikNet to Y our Software Tools

1.2 Getting Startedccooceverereneneriereenens

Installing KWIKNEt........cccoveevevererirere e
ATrial RUN ..o,
Filesto be Editedcocooeeeevviriieeiee e

2. KwikNet RT/OS Interface

2.1 INtroduCtioN........coeevveieeeeieee e

Using a Multitasking RTOS............cccoeveeene
Using aSingle Threaded OS..........ccccccevenee

2.2 The Multitasking RTOS Interface................

Summary of RTOS Interface Services.........

KwikNet RTOS Resources........ccccoeeeveeunenne.
Resource LOCKIiNgccveeeeeereerienereeeeeseeneens
KwikNet Message Queueing............cccceeueee.
Memory Allocation Services.........ccvcevenene.
Application Blocking Services..........ccccun...
Interrupt Vector Manipulation.....................
Device Driver SUPPOrtcceeveveveerereesenne
KwikNet and RTOS Shutdown....................
Error Handlingcccoeeevevevevenie e

2.3 The Single Threaded OS Interface...............

Summary of OS Interface Services..............
KwikNet Startupccooeeereneneneneeee
KwikNet Task Operation...........ccoceeeeeeeenne
KwikNet Timer Operationc.ccceeeeeeueene.
Memory Allocation Services........cccvevvveeene.
Interrupt Vector Manipulation.....................
Device Driver SUPPOrtccceevereenereeieennes
KwikNet and OS Shutdown.............cccceeueee.
Error Handlingcccoeeeeeeninineiceeecee

2.4 RT/OS Interface Make File..........ccoovevnneee.
2.5 RT/OS Interface Procedures..........ccccoouveee...

'sGuide

Page

=

O~NOOP~NPE

KwikNet Porting Kit User's Guide
Table of Contents (continued)

Page

3. Target Processor and Compiler Use 51
130 A | i oo [0 1o o FO PSPPSRI 51
3.2 CCompiler Adaptationcccceeeerereresnse e 53
Standard C Header FileSccoviiieerieereeeeeee s 53
Parameter Passing CONVENLIONS.........ccovereienereeeeseesese e seeseeneeneens 53
Random NUmMber GENEIatorccoeereereneese e 53
Eliminating WarningS........cccooeeereeieierese s 55
Segmented MEmMOrY ACCESS.......cocierererereeeereesie e ses e seeseeseas 55
Interrupt Function DefiNitions...........ccoooiiieririeerie e 55

File 1/O DEfiNITIONS.coiiireeieeeeeee e e 55

3.3 LOW LEVE SEIVICES. .. cciuiiiiirie ettt b 56
Critical Section ProteCtioncocceeeieriene i 59
Using RTOS Critical Section Protection...........cccvveveeeeeeieereeieeseesieneens 59
Interrupt Priority Level Manipulation...........ceoeeveeveveniesieseseneceenens 60
End-for-End Byte SWapPiNgccovereeeereeriereeseseeeeseesesesseseeseenseseens 61

[P Checksum CalCUlELiON..........coeeirieiree e 62
Memory Mapped DeVICE /Occveeeeese e 63
DEVICE PO 1/O ..ttt e 64
ClOCK SEIVICES ..ottt s st 65
Reading Clock TiCk COUNL.........cooiiireiiee e 65
Clock Tick Difference COMPULALiON...........cceoerererieerienienese e 66

3.4 Code Fragment Implementation.............ccoeverereeneene e 67
3.4.1 CMacro Using In-Line Assembly Language...........cccocererererennnnee 68
EXAMPIE 3.4.1-A ..o e 68
EXAMPIE 3.4.1-B ..o 69
EXAMPIE 3.4.1-C ..ot 70
3.4.2 CFunctions Coded in Assembly Languagecccecvevvrvreeeeeeieeneens 71
EXAMPIE 3.4.2-A ... e 71
EXAMPIE 3.4.2-B ..ot 73
3.4.3 SIMPIE CIMACIOS.....ccuiiiiriiieiieeieeieie ettt s ee e 75
EXAMPIE 3.4.3-A e e 75
EXaMPIE 3.4.3-B ... 76
3.4.4 CRUNCLiONS COAE IN Ceeeiieeeee et e 77
EXGMPIE 3.4.4-A .o e 77

4. KwikNet Library Construction 79
v/ R 1< o= - 1o o U 79
KwikNet Directories and Files..........cccoovvevnineiinennesereeeseeee e 80

4.2 Software DevelOpment TOOIS.........coe e 81
MBKE ULIHTITY ... 81

L @] 010 1] = 81
Object Module Librarian.........cccceeeeveveneseeeereesesese e e seesseeeeseeees 82

4.3 The KwikNet Taloring File........cocoirinieee e 83
Editing the KwikNet Talloring File........ccocveveeevecesise e 85
The C Compilation Implicit RUIE.........cceieverere s 86
The Library Build Implicit RUIE ... 86
4.4 Making the KWIKNet Libraryccccooereienenenenieereee e 90
Network Library Make Fileccoeevereiececeeeeeseese s 90
Gathering FIlES.....ccve e 90
Creating the KWikNet Libraries.........ccocovviierierieenenene e 91
Generated KwikNet Library MOdUI€s...........ccoceriiriineneiineneceeeee, 92

K ADAK KwikNet Porting Kit

KwikNet Porting Kit

KwikNet Porting Kit User's Guide
Table of Contents (continued)

5. KwikNet Application Construction

51
52

54

55

Figure 1.1-1 KwikNet Application Block Diagram..........c.cceeeeenen.
Figure 1.1-2 KwikNet Library Construction..........ccccccvcvvvvvrvsnnnens
Figure 2.4-1 KwikNet OS Interface Make File.......c..cccovvevevvecvennnnen.

Building an AppliCationcocooeiiierenieee e
KwikNet Sample Programs........cccoeveveeeeseereneseseseseesseeeenes
Sample Program Directories and Files.........cccoooieveniriiennnne
The Application OS INtErfacecvoveeeveevere v
Editing the Application OS Interface.........ccoovvvvvereeeierenenieinnns
RTOS Servicesin the Application OS Interface........cc.cceevvvnnene
(D= 7= W == o0) £ 1o [
CoNns0le DEVICE USE.......ocviiriieereerree e
5.3 Tailoring File Enhancements
Editing the KwikNet Tailoring Fileccoccooiinninininieee
The C Compilation Implicit RUIE.........cccoeivvvieiiie e
The Implicit Rule for Assembly........cooooiiiiiiiieee
The Implicit Rule for Linking........ocooevoeroiieniniiieeeeeeienne
Making the Sample Program...........ccoceeeveieieneneneneeeeeee e
KwikNet Parameter Files..........cooereonnerrcieneesesenenas
Building the KwikNet Libraries..........ccooeoevenenenenencncceieene
Gathering FIlES... ..o
The Sample Program Make ProCess..........cccoeverenenenenceeiienens
RT/OS EXAMPIES.....cuiieiieieiieieierie st
5.5.1 Using a Custom RTOS
5.5.2 Using MS-DOS
5.5.3 Using the DOS/4GW DOS Extender with MS-DOS
5.5.4 Using KwikNet Without an OS

KwikNet Porting Kit User's Guide
Table of Figures

Figure 3.1-1 Compiler Configuration Header File Examples

Figure 3.2-1 C Compiler Adaptations.........c.cccoeevererenerieesienenseenees
Figure 3.3-1 Specifying Low Level Services.......ccovvvvvvieeveerenennn,
Figure 4.3-1 KwikNet Tailoring File (Part 1)ccccoevvvveeveeceenennn,
Figure 4.3-2 KwikNet Tailoring File (Part 2)ccocvvevveeeveereneenn,
Figure 4.3-3 KwikNet Tailoring File (Part 3)ccccvevvvveeceerierennn,
Figure 5.3-1 Sample Program Tailoring File Enhancements...........

Page
93

93
94
94
95
95
96
96
97
98
98
99
99
99
101
101
101
102
103
104
104
105
106
107

Page

32
52
54
57
87
88
89
100

rev2 v

Vi

This page left blank intentionally.

Copyright © 1999-2000 KADAK Products L td. IEKADAK

KwikNet Porting Kit

1. KwikNet Porting Kit Overview

1.1 Introduction

The KwikNet® TCP/IP Stack is a compact, reliable, high performance TCP/IP stack, well
suited for use in embedded networking applications. KwikNet is best used with areal-time
operating system (RTOS) such as KADAK's AMX " Real-Time Multitasking Kernel.

However, KwikNet can be used in single threaded systems without an RTOS. Designing
and implementing an application which requires a TCP/IP stack will aways be easier if
you start with some form of underlying operating system, evenif it is of the crudest form.

This manual describes how to port KwikNet to the operating environment of your choice.
You pick the target processor, the software development tools and the multitasking
RTOS or single threaded OS.

Although porting KwikNet to your environment is a fairly straight-forward process, it is
gtill not trivial. KADAK has used its extensive knowledge of target processors and
software development tools and their quirks to ssmplify the steps which must be followed
for a successful port. Since KwikNet is already available for use with KADAK's AMX
kernel, you know that KwikNet has been tested on many target processors with a number
of different compilers.

It is assumed that you are familiar with the architecture of the target processor and its
interrupt structure. It is further assumed that you are familiar with the rudiments of
microprocessor programming including the concepts of code, data and stack separation.
Of course, you must also have an intimate knowledge of your multitasking RTOS or
single threaded OS. Finally, it is assumed that you have a detailed knowledge of your
software development tools, including C compiler, assembler (if needed), object librarian,
linker/locator and program loader or debugger.

KwikNet is provided in C source format to ensure that regardiess of your development
environment, your ability to use and support KwikNet is uninhibited. As will be
explained, the source code can easily be adapted to include code fragments programmed
in the assembly language of the target processor to improve execution speed.

This manual will not tell you how the KwikNet TCP/IP Stack and its options operate or
how to use KwikNet in your application. That information is provided in the KwikNet
TCP/IP Stack User's Guide and in the manuals provided with each optional KwikNet
component. Before starting the porting process, you should read these manuals to
become familiar with KwikNet and the terminology used in this guide.

Note

Throughout this manual the term RT/OS is used to refer to
any operating system (OS), be it a multitasking RTOS or a
single threaded OS.

KwikNet Porting Kit Overview IEKADAK rev2 1

The KwikNet Porting Interface

The KwikNet TCP/IP Stack and your application operate together as illustrated in Figure
1.1-1. The shaded blocks indicate modules which require modification to adapt KwikNet
for use with your application. Asyou can see, very few modules require adaptation.

The KwikNet TCP/IP Stack consists of one or more KwikNet libraries built according to
your specifications to meet your particular needs. The stack interacts directly with one or
more KwikNet device drivers, each of which connects KwikNet to a particular network.
Each network and its associated device driver is described in the KwikNet Network
Configuration Module.

Your custom KwikNet Libraries and the KwikNet Network Configuration Module are
derived from parameter files generated by the KwikNet Configuration Builder as described
in Chapter 2 of the KwikNet TCP/IP Stack User's Guide. The actua modules are
constructed using your software development tools as described in Chapter 4 of this
manual.

KwikNet is connected to your RT/OS by an OS Interface Module, a C file containing
procedures which provide access to the services of your particular RT/OS. This module
is incorporated into the KwikNet IP Library so that it is aways available for use by your
application. A separate board driver connects KwikNet, its device drivers and your OS
Interface Module to your target hardware in an RT/OS independent manner. Y ou must
edit these modules to meet the requirements of your particular RT/OS and target
hardware.

Figure 1.1-1 also shows an application OS interface, a C module used by KADAK to
provide a standard interface between your RT/OS and the sample programs (applications)
provided with KwikNet and its options. If you port the KwikNet sample programs (and it is
recommended that you do so), you will have to edit this module to adapt it for use with
your RT/OS. You will probably find that portions of the code in this module can, with
very little adaptation, be used by your own application.

Finally, your RT/OS must provide a timing source. Although the RT/OS clock driver is
shown as a separate component, it is often implemented as an interrupt service routine
which resides in the OS Interface Module or in the application OS interface.

Porting Tip

The separation of the portable KwikNet components into the
OS Interface Module, the application OS interface and the
board driver will meet most porting needs. However, you
are free to adapt these interfaces to meet your RT/OS needs
and to accommodate the constraints imposed by your
software development tools. As long as the functional
requirements are met, the services can be provided in any
module of your choice.

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet Porting Kit Overview

Application
|
Application
OS Interface
KNSAMOS. C
KNSAMOS. H
|
KwikNet OSI\/II n':jerlface
TCP/IP odule
Stack KN_OSI F. C RT/OS
KN_OSI F. H
Network
Configuration
Module RT/OS
Clock Driver
KwikNet _ i
Device Board Driver i
Driver(s) KN_BOARD. C i
Target Hardware

Figure 1.1-1 KwikNet Application Block Diagram

KwikNet Porting Kit Overview IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

Adapting KwikNet to Your Software Tools

To adapt KwikNet for your use, you will need a make utility capable of running your C
compiler, object librarian (archiver) and link/locate utility. The KwikNet library
construction process is illustrated in Figure 1.1-2. The shaded blocks indicate modules
which require modification to adapt the make process to accommodate your software
development tools. Asyou can see, very few modules require adaptation.

Y our custom KwikNet Libraries are created from the KwikNet Library Parameter File, atext
file describing the TCP/IP features and options which your application requires. Thisfile
is created and edited using the KwikNet Configuration Builder as described in Chapter 2 of
the KwikNet TCP/IP Stack User's Guide.

The KwikNet Configuration Builder uses the information in your Library Parameter File to
generate a Network Library Make File. This make file is suitable for use with either
Borland's MAKE or Microsoft's NMAKE utility. The make file purposely avoids constructs
and directives that tend to vary among make utilities. Hence, you should have little
difficulty using this make file with your own make utility if you so choose.

The make utility uses your C compiler and object librarian to generate the KwikNet
Libraries from the KwikNet source modules and your OS Interface Module.

There are several custom adaptations which must be made for the construction process to
succeed. All KwikNet C files include a KwikNet compiler configuration header file
KNzzzcc. H. This file must be edited to identify the characteristics of your C compiler.
This file is aso used to optimize code sequences within KwikNet modules by taking
advantage of compiler specific features such as in-line code, assembly language functions
and C library macros or functions. Details are provided in Chapter 3. Fortunately, a
number of variants of this module are provided with KwikNet ready for use with popular
compilers on avariety of target processors.

Your custom OS Interface Module is included in the kwikNet IP Library. This is the
module (see Figure 1.1-1) which connects KwikNet to your RT/OS. Y ou must specify the
make dependencies and rules which control the compilation of its source file KN_CsI F. C.
These make specifications are provided in the OS Interface Make File KN_OSI F. I NC
which the make process automatically includes. You must edit this file as described in
Chapter 2 to meet your requirements.

As you would probably expect, the make file does not know how to run your C compiler
and object librarian. You must provide this information in a file called KNzzzCC. | NC
which the make process automatically includes. Thisfile, called atailoring file, is used
to tailor the library construction process to accommodate your make utility's syntax for
implicit rules. It also provides the command sequences necessary to invoke your C
compiler and object librarian. KwikNet is shipped with a number of tailoring files ready
for use with many popular compilers using either Borland's MAKE or Microsoft's NVAKE
utility.

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet Porting Kit Overview

Library KwikNet
Parameter [&—» Configuration
File Builder
Network
Library
MakeFile
KwikNet
Source
Code OS Interface
Module
KN_CSI F. C
Comp”er MAKE KN_CSI F. H
Header — P Utility
KNzZzCC. H
— <«—| OSlnterface
— MakeFile
Tailoring KN_GOSI F. | NC
File
KNZZZCC. | NC C Compiler
Object Librarian
KwikNet
Libraries

KwikNet Porting Kit Overview

Figure 1.1-2 KwikNet Library Construction

IEKADAK Copyright © 1999-2000 KADAK Products L td.

1.2 Getting Sarted

Installing KwikNet

The kwikNet Porting Kit is installed as described in the Installation Guide which is
packaged with the KwikNet product disks. You will observe a number of directories,
many of which will contain the source modules for the KwikNet libraries. File
MANI FEST. TXT in the root of the installation directory is the product manifest containing
alist of all KwikNet installed files. Y ou can use thistext file to find the location of any of
the installed KwikNet files.

Fortunately, there are few KwikNet files which will require modification. The files of
interest are located in directory EXAMPLES. The following sets of files are provided, each
set offering a complete KwikNet port using a particular RT/OS, target processor and
software toolset. The file sets are located in the following subdirectories within directory
EXAMPLES.

MSDOS MS-DOS, PC hardware, Microsoft tools

DOS4GW DOS/AGW, PC hardware, WATCOM tools

XRTOS Custom RTOS, 68xxx hardware, Mentor Graphics (Microtec) tools
XOS Custom single threaded OS, 68xxx hardware,

Mentor Graphics (Microtec) tools

The MS-DOS example illustrates the use of KwikNet with stand-alone MS-DOS operating
in real mode on PC compatible hardware. This single threaded example is ready to use
with MS-DOS with very little change.

The DOS/AGW example illustrates the use of KwikNet with stand-alone MS-DOS
operating in protected mode on PC compatible hardware with the Tenberry DOS4GW
DOS Extender. This single threaded example is ready to use with MS-DOS and
DOS/AGW with very little change.

The last two examples are for use with custom KwikNet ports.

If you are using a commercial multitasking RTOS (not KADAK's AMX kernel) or your
own in-house RTOS, start with the files from directory XRTOS. This example assumes
that your RTOS includes the task, semaphore and timing features required by KwikNet for
multitasking operation.

If you are using your own single threaded OS or if you are operating without an OS of
any kind, start with the files from directory Xcs.

ZEKADAK KwikNet Porting Kit Overview

A Trial Run

Once you have installed the kwikNet Porting Kit, you can build and test a single threaded
version of KwikNet for use with MS-DOS without modifying any of theinstalled files. To
do so, you will need Microsoft 16-bit software devel opment tools.

Asinstalled, KwikNet is ready for use with MS-DOS using Microsoft tools and the NVAKE
make utility. A copy of the MS-DOS porting example from directory EXAMPLES\ MSDOS
isinstaled in the KwikNet toolset directory TOOLUU, ready for use.

If you would rather use the Borland MAKE utility, you will have to replace file
KNzzzcCc. I NC in the TOoLUU directory. Copy tailoring file B__86Mc. 15 from directory
EXAVPLES\ TF_BORLD to directory TOOLUU, renaming it KNzZzzCC. | NC.

To build the KwikNet Libraries for the TCP/IP Sample Program, skip to Chapter 4.4 and
follow the directions. Build the libraries using the Library Parameter File KNSAM.I B. UP
from directory TOOLUW SAM TCP. Just replace references to NETLI B with KNSAMLI B.

With the kwikNet Libraries in place, you are ready to build the TCP/IP Sample Program
executable file KNSAMPLE. EXE which you will be able to load and run under MS-DOS.
Skip to Chapter 5.4 and follow the directions. There is no need to gather the files; they
are already in place. Simply run the Microsoft make utility as instructed.

Porting Tip

When the KwikNet Porting Kit is installed, it is ready to
build the MS-DOS porting example. To build any of the
other examples, go to the KwikNet installation directory
KNT713 and run batch file TOOLUU. BAT without parameters.
Follow the instructions which it presents to copy the
porting example of interest to toolset directory TOOLUU.

Y ou will need the software tools listed on the previous page
to build the particular example which you sel ected.

Porting Tip

If you use the Borland MAKE utility, you will have to use the
Borland tailoring file for the example of interest. Copy the
Borland tailoring file for the compiler and target processor
from directory EXAMPLES\ TF_BORLD to directory TOOLUU
and rename it KNzzzCC. | NC as described in Chapter 4.3.

KwikNet Porting Kit Overview ;K ADAK revz. 7

Filesto be Edited

Once you have selected the KwikNet porting example which most closely matches your
application requirements, copy the entire subdirectory from the EXAMPLES directory to a
working directory in which the files can be edited. The following files will require
modification as described in the chapter indicated.

Module Chapter Purpose

KN_CSI F. C 2 OSInterface Module for your RT/OS

KN_OSI F. H 2 OSInterface Header File for your RT/OS

KN_OSI F. I NC 2 OS Interface Make Specification for your RT/OS
KN_BQARD. C Board driver for your target hardware

KNzzzCC. H 3 Compiler Configuration Header File

KNZZZCC. | NC 4 Tailoring File (for use with your make utility)

KN7131 P. LBM 4 KwikNet IP Library Specification File

KN713TCP. LBM 4 KwikNet TCP Library Specification File

KN713*. LBM 4 Library Specification Files for optional KwikNet Libraries
KNSAMOS. C 5 Sample Program OS Interface for your RT/OS

KNSAMOS. H 5 Sample Program OS Interface Header File for your RT/OS

The number 713 in some of the filenamesisthe KADAK part number used to identify the
KwikNet Porting Kit.

The KwikNet board driver KN_BQOARD. C is described in Chapter 3 of the KwikNet Device
Driver Technical Reference Manual.

The compiler configuration header file KNzzzcc. H and the tailoring file KNzzzcc. | NC
provided with each example are ready for use with Microsoft NMAKE and one particular
software toolset. Other files are available for use with other tools.

Installation directory EXAMPLES\ CC_H contains a number of compiler configuration
header files ready for use with different compilers and target processors. All of these
files have been derived from the equivalent files used by KADAK with AMX. Pick the
file which you think most closely matches your C compiler's characteristics and copy that
file to your working directory, renaming it KNzzzCC. H.

Installation directory EXAMPLES also contains a number of tailoring files ready for use
with different compilers. Directory EXAMPLES\ TF_BORLD contains tailoring files ready
for use with the Borland MAKE utility. Directory EXAMPLES\ TF_MSOFT contains equivalent
tailoring files ready for use with Microsoft NMAKE. All of these tailoring files have been
derived from the equivalent files used by KADAK with AMX. Pick the tailoring file
which you think most closely matches the requirements of your make utility and software
tools and copy that file to your working directory, renaming it KNzzzCC. | NC.

ZEKADAK KwikNet Porting Kit Overview

2. KwikNet RT/OSInterface

2.1 Introduction

The KwikNet TCP/IP Stack requires access to services provided by your multitasking
RTOS or single threaded OS. All such access is done through a collection of procedures
in your OS Interface Module KN_CsI F. C. It is the purpose of this chapter to define the
OS interface and provide detailed descriptions of each of the procedures which you must
provide.

Start by selecting the OS interface files from one of the examples provided in installation
directory EXAMPLES. The following files make up the OS interface.

KN _OSIF. C OS Interface Module
KN _COSI F. H OS Interface Header File
KN_OSI F. I NC OS Interface Make File

The OS Interface Header File KN_OSI F. His ready for use. It identifies the particular OS
interface example which you have chosen and specifies whether it is a multitasking
RTOS or a single threaded OS. In general, there should be no need to edit this file.
However, should you decide to add your own RT/OS specific definitions to the file,
follow the edit instructions provided in thefile.

Your OS Interface Module KN_asI F. C must be compiled and installed in the KwikNet 1P
Library as described in Chapter 4. The OS Interface Make File KN_0sI F. | NC, described
in Chapter 2.4, provides your make utility with the information necessary to compile
module KN_OSI F. C.

Using a Multitasking RTOS

If you are using a multitasking RTOS, pick your OS interface files from the example in
directory XrRTOS. The OS Interface Module KN_osI F. ¢ will contain al of the interface
procedures which you require. Follow the directionsin Chapter 2.2 and skip Chapter 2.3.

Using a Single Threaded OS

If you are using MS-DOS in real mode, pick your OS interface files from the example in
directory MsDOS. |If you plan to use MS-DOS in protected mode, pick files from example
directory bosaGw Otherwise, pick files from example directory xos. The OS Interface
Module KN_csI F. c will contain all of the interface procedures which you require. Skip
Chapter 2.2 and follow the directions in Chapter 2.3.

KwikNet RT/OS Interface sxKADAK rev2 9

10

2.2 The Multitasking RTOS Interface

The general operation of KwikNet is described in the KwikNet TCP/IP Stack User's Guide.
When used with a multitasking RTOS, KwikNet makes use of services provided by the
RTOS to enhance its operational characteristics.

The KwikNet OS Interface includes all of the interface procedures necessary to use
KwikNet with your RTOS. It is simply a question of adapting the examples for use with
your RTOS. Most of the procedures require only a few lines of code. Although you
may choose to wade in and start editing, you should first take a few moments to read this
chapter for an overview of the requirements and the recommended methods of
implementation.

Your RTOS interface must provide a task, called the KwikNet Task, which operates at a
priority above all other tasks wishing to make use of KwikNet and its network services.
This task controls the KwikNet startup process. Once started, the task operates
asynchronoudly, servicing the KwikNet events for which it is responsible. If your
application chooses to stop KwikNet, the KwikNet Task supervises the orderly shut down
and then ceases to operate.

KwikNet must be able to dynamically allocate and free blocks of memory as it executes.
These memory services must be thread-safe so that the integrity of KwikNet iS not
compromised by the effects of task switching by your RTOS. If your RTOS provides its
own memory allocation services, you should adapt the KwikNet OS interface to make use
of them. Otherwise, you must provide a semaphore which KwikNet can use to protect its
access to your custom memory allocation services or to those available in the standard C
library.

KwikNet also needs a timing source, a periodic tickle at the frequency specified by your
KwikNet Library Parameter File. KwikNet also expects to be able to initiate a delay,
measured in milliseconds, during which the task using some KwikNet service will be
forced to relinquish control of the processor in favour of lower priority tasks.

The KwikNet Task provides its own event message queue, thereby eliminating any
dependence on the queueing services which your RTOS might provide. However, the
KwikNet Task must be able to block itself (slegp) and resume execution (wakeup) at will.
Y our RTOS interface must provide these services in the most efficient manner possible.

From time to time, KwikNet will have to block the currently executing task pending a
particular KwikNet event. The OS interface procedures which provide this blocking and
unblocking service are critical to the successful operation of KwikNet.

In order to protect some of its network data structures, KwikNet uses a resource lock to
prevent concurrent access by multiple tasks. The resource lock must be provided in the
OS interface, usually using a resource semaphore which permits nested ownership of the
resource.

KwikNet device drivers must be able to hook their interrupt handlers into the interrupt
system of the target processor. The manner in which this is accomplished is both target
processor and RTOS dependent. The KwikNet board driver KN_BOARD. C resolves the
target issues. The OS interface must resolve the RTOS issues.

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet RT/OS Interface

Summary of RTOS Interface Services

The KwikNet TCP/IP Stack gains access to your RTOS services via the procedures in your
OS Interface Module KN_OsI F. C. These procedures are summarized below. Detailed
specifications are provided in Chapter 2.5.

kn_osprep
kn_osr eady
kn_osfini sh

kn_osenter
kn_osexit

kn_osf at al
kn_ost aski d

kn_osnem ni t
kn_osnenget
kn_osnenrls

kn_oscl ki ni t
kn_oscl kexi t
kn_osdel ay

kn_osfl agwai t
kn_osfl agup
kn_osbl ock
kn_osunbl ock

kn_osl ocknet

kn_osunl ocknet

kn_osl ocknem

kn_osunl ocknmem

kn_osl ockfs
kn_osunl ockfs

kn_osvi nst al
kn_osvaccess

KwikNet RT/OS Interface

Prepare for use of the RTOS
Declare the RTOS ready for use
Finished using the RTOS

Entering KwikNet; setup RTOS resources accordingly
Leaving KwikNet; relinquish RTOS resources accordingly

Handle afatal error condition
Get the task identifier of the currently executing task

Initialize memory allocator for use by KwikNet
Get a block of memory
Release (free) a block of memory

Create/start a periodic timer (clock) for KwikNet use
Stop the KwikNet timer
Block the current task for an interval measured in milliseconds

Block the kwikNet Task until the signal flag is raised

Unblock the KwikNet Task by raising the signal flag

Block the current task until a particular event of interest occurs
Unblock atask waiting for an event which just occurred

Lock the network resource for exclusive use by the caller
Unlock the network resource

Lock memory allocation services for use by the caller
Unlock memory allocation services

Lock file access servicesfor use by the caller
Unlock file access services

Install an interrupt service routine
Read from and/or write to a processor exception vector

IEKADAK Copyright © 1999-2000 KADAK Products L td.

11

12

rev2

RTOS and KwikNet Startup

The KwikNet OS interface must be initialized with a call to procedure kn_osprep()
before your RTOS begins operation. Note that this procedure must be called by your
application; it is not called by KwikNet. It is recommended that the call be made from
your mai n() function.

Procedure kn_osprep() must cal KwikNet procedure kn_l ogbufinit() to prepare the
KwikNet data logger so that KwikNet procedure kn_dprintf() can be used for data
recording even when KwikNet iS not running.

Procedure kn_ospr ep() cantheninitialize al variables, if any, associated with the RTOS
interface. Although rarely necessary, any non-RTOS resources upon which your OS
interface depends should also be allocated and initialized.

Once the OS interface is ready for use, your RTOS can be started. Thereafter, the
progression of execution will depend upon the way your RTOS works. Y our RTOS may
automatically create one or more tasks which it then executes. Others may require that
you initialize the RTOS, create atask and then start the RTOS to execute that task.

Regardless of how it is done, the RTOS will finally execute some procedure which is part
of your application. Your application must call procedure kn_osready() in the OS
interface to declare the RTOS ready for use. This procedure will usualy afford the first
opportunity to use the RTOS to create things like tasks, timers and semaphores. It is
recommended that procedure kn_osr eady() allocate the RTOS resources which your OS
interface must provide for use by KwikNet. Finally, procedure kn_osr eady() must call
KwikNet procedure kn_menpr ep() to prepare the KwikNet memory allocation system.

At some point during this startup process, your application must start KwikNet with a call
tokn_enter (). Thiscal isusually made from atask, be it an RTOS startup task or one
of your own application tasks. KwikNet immediately calls your OS interface procedure
kn_osenter (). If you have not already done so, you must allocate al of the RTOS
resources which your OS interface must provide for use by KwikNet. These resource
requirements will be described shortly.

Finally, the OS interface procedure kn_osenter () must create and start the KwikNet
Task. However the task comes into existence, the KwikNet Task must begin execution in
response to this start request. Starting the KwikNet Task must be the last action performed
by procedurekn_osent er ().

Once the KwikNet Task has been started, the execution sequence will depend upon several
factors. If your call to kn_enter () to start KwikNet was made in some kind of RTOS
startup procedure, the KwikNet Task will not begin execution until your RTOS permits. If
an application task called kn_enter () and that task is of higher priority than your
KwikNet Task, then the KwikNet Task will not execute until your other higher priority tasks
block for some reason. If an application task called kn_ent er () and that task is of lower
priority than your KwikNet Task, then the KwikNet Task may execute as soon asit is started
from within procedure kn_osenter (). In other cases, your RTOS may not alow the
KwikNet Task to execute, even though it is of higher priority, until a time slice tick or
other task rescheduling signal occurs.

All subsequent KwikNet startup processing occurs in the context of the KwikNet Task.

IEKADAK KwikNet RT/OS Interface

KwikNet Task Operation

Your OS interface must provide an application task which will act as the KwikNet Task.
The task is created and started as the fina action of OS interface procedure
kn_osenter().

If your RTOS does not alow the dynamic creation of atask, you will have to ensure that
the KwikNet Task exists before your RTOS is started. Even if tasks can be created
dynamically, you may still prefer to let your RTOS automatically create your KwikNet
Task from a description which you provide as part of your RTOS configuration.
However the task comes into existence, the KwikNet Task must begin execution in
response to the trigger (start request) from procedure kn_osent er () .

The KwikNet Task must meet your RTOS specifications. It is recommended that 1024
bytes of stack be allocated for use on most target processors. More stack may be needed
on complex RISC processors or to satisfy your RTOS demands.

Note

The KwikNet Task must execute at a priority above that of
al application tasks which make use of KwikNet services.

Special consideration may be required if your RTOS does not alow tasks to be
dynamically created and/or started. If your RTOS automatically creates and starts a task
when the RTOS begins, then your KwikNet Task will have to block (wait) until KwikNet iS
allowed to actually start. How you do this will be RTOS dependent. For example, your
KwikNet Task could wait on a semaphore or event flag until signalled from OS interface
procedurekn_osenter ().

Once your task is permitted to actually perform as the KwikNet Task, it must call KwikNet
procedure kn_t ask(). There will be no return from this procedure until KwikNet is
ordered by your application to shut down.

The KwikNet Task calls OS interface procedure kn_osmeninit() to initialize your
memory allocator for use by KwikNet. Once your memory alocation services are
available, KwikNet can use OS interface procedures kn_osnenget () and kn_osmenr | s()
to acquire and release variable sized blocks of memory.

After the KwikNet Task has initialized its network interfaces, it calls OS interface
procedure kn_oscl ki nit () to create and/or start a periodic software timer for KwikNet
use. Operation of the KwikNet timer will be described shortly.

Once the KwikNet Task completes its initialization, it calls OS interface procedure
kn_osflagwait() to wait for a message to arrive on its private message queue.
Messages are generated by KwikNet services invoked by your application tasks, by
KwikNet timer ticks and by KwikNet device drivers. All use KwikNet's message posting
service which calls OS interface procedure kn_osf | agup() to force the KwikNet Task to
resume servicing its message queue.

The KwikNet Task will continue to execute until ordered to shut down by your
application's cal, if any, to KwikNet procedure kn_exi t () .

KwikNet RT/OS Interface sxKADAK Copyright © 1999-2000 K ADAK ProductsLtd.

13

14

KwikNet Timer Operation

The KwikNet TCP/IP Stack operates at the clock frequency defined in your KwikNet
Library Parameter File which you created using the KwikNet Configuration Builder. The
frequency is provided as a parameter on the Target property page. All KwikNet timing
intervals are based upon this frequency.

The minimum frequency is 2 Hz. A frequency of 10 or 20 Hz is recommended. Any
frequency above 50 Hz will simply introduce unnecessary execution overhead with little
noticeable improvement in network throughput.

The KwikNet timer procedure kn_ti mer () must be caled by your OS interface at the
defined frequency. For example, if the KwikNet frequency is declared to be 20 Hz, you
must ensure that procedure kn_ti mer () is executed once every 50 ms. This procedure
can be called from an interrupt service routine (ISR), provided the ISR preserves all
processor registers which your C compiler considers to be alterable.

Your RTOS will probably give you a mechanism for implementing a software timer to
meet this requirement. If software timers are resources created by your RTOS, then you
should create the KwikNet timer at the same time as all other RTOS related resources are
allocated, usually in OS interface procedure kn_osent er () . Alternatively, you can defer
creating the timer until the KwikNet Task calls procedure kn_oscl ki ni t () to start it.

If your RTOS does not provide timers, then you will have to create such a software timer
and hook it to your fundamental hardware clock. In most cases, you will aready have
such ahook in place for use by your RTOS. In rare cases, you may have to create a task
which repetitively delays for the required interval before calling kn_ti mer () .

No matter how the software timer is created or initialized, the timer must not cal
kn_ti mer () until the KwikNet Task calls OS interface procedure kn_oscl ki ni t () to start
KwikNet timing. The examples provided with the KwikNet Porting Kit illustrate this point.

If your software timer executes at a frequency greater than the KwikNet frequency, you
will have to use a software counter to derive the slower KwikNet tick. When the KwikNet
Task calls procedure kn_oscl ki ni t () to start the KwikNet timer, it provides the timer
period, measured in milliseconds, as a parameter. Y ou can use this parameter to derive
the number of actual timer ticks which constitute a KwikNet tick. For example, if the
KwikNet clock frequency is 20 Hz (period of 50 ms) but your software timer operates at
100 Hz (period of 10 ms), your timer procedure must only call kn_ti ner () once every
5ticks.

When KwikNet shuts down the TCP/IP stack, it calls OS interface procedure
kn_oscl kexit () to stop the KwikNet timer. This procedure must ensure that your
software timer stops calling the KwikNet timer procedure kn_t i mer () .

If procedure kn_cl kinit() created and started your timer procedure, then procedure
kn_cl kexi t () should delete it. If your timer procedure was created by procedure
kn_osenter (), then it should be deleted by procedure kn_osexi t ().

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet RT/OS Interface

Task Delays

KwikNet calls OS interface procedure kn_osdel ay() to force the currently executing task
to delay (block) for an interval measured in milliseconds. The KwikNet Task never calls
this procedure. It isonly called by KwikNet services which are executing in the context of
an application task. Some of the server and client tasks provided with optional KwikNet
components also call kn_osdel ay() to delay briefly.

Task Identification

KwikNet calls OS interface procedure kn_ost aski d() to fetch the identity of the currently
executing task. The procedure must return the task identifier as a 32-bit unsigned long
value. ThevalueOisreserved asan invalid task identifier.

KwikNet RTOS Resour ces

Your OS interface must provide the following RTOS resources for use by KwikNet. The
KwikNet Task and the KwikNet timer requirements have aready been described. The
resource semaphores must be created by your OS interface procedure kn_osr eady() or
kn_osent er () unlessthey already exist by the time the latter procedure is executed.

RTOS resources which are created or initialized by procedure kn_osenter () must be
released or destroyed by procedure kn_osexit(). This requirement must be met if
KwikNet can be shut down and restarted by your application.

RTOS resources which are created or initidized by OS interface procedure
kn_osready() may have to be released or destroyed by your application before the
RTOS is shut down. This requirement will be dictated by your RTOS. In some cases,
you may be able to relinquish these RTOS resources in procedure kn_osf i ni sh() which
is called after the RTOS has returned to mai n() .

» A task to operate as the KwikNet Task
* A periodic timing tick to activate the KwikNet timer
* A resource semaphore to guard access to KwikNet networks

* A resource semaphore to guard memory allocation services
(Only required if C symbol KN_MEM_OCK has a hon-zero value.)

* A resource semaphore to guard file system access
(Only required if C symbol KN_FS_LOCK has a non-zero value.)

KwikNet RT/OS Interface sxKADAK Copyright © 1999-2000 K ADAK ProductsLtd.

15

16

rev2

Resource L ocking

KwikNet uses a lock to guard access to its network resources. Without the lock,
application tasks making use of KwikNet services could generate serious conflicts between
themselves and the higher priority KwikNet Task.

A similar lock can be used to guard access to memory allocation services and file system
services which are otherwise not thread-safe. These particular locks are optional and are
only required if needed to support your memory allocator or file system.

KwikNet calls OS interface procedures kn_osl ockXXX() and kn_osunl ockXXX() to
reserve and release network (Xxx is net), memory alocation (XxX is mrem) and file system
(Xxx isfs) services. In most cases, an RTOS resource semaphore is used to implement
thelock. A resource semaphore is a semaphore with a task ownership attribute.

Procedure kn_osl ockXXX() must ensure that the task making the request is blocked until
ownership of the resource has been granted to that task. If the calling task aready owns
the resource, the caller is not blocked and retains nested ownership of the resource.

Procedure kn_osunl ockXxX() relinquishes the resource, provided it is owned by the
calling task. The task owning a resource must call kn_osunl ockXXX() once for every
call to kn_osl ockXxX() which it made to reserve the resource. Only when the task's
ownership is no longer nested is the resource released and granted to another task, if any,
waiting for its use.

The resource semaphore required by KwikNet is sometimes called a mutex. If your RTOS
provides a mutex, be sure that it supports the concept of task ownership and allows
nesting of atask's ownership.

Porting Tip

The XRTOs example in the KwikNet Porting Kit can be
configured to use a resource semaphore or to derive a
resource semaphore from a binary semaphore. Y ou can use
the latter implementation if your RTOS does not offer a
resource semaphore with nested task ownership.

IEKADAK KwikNet RT/OS Interface

KwikNet M essage Queueing

KwikNet does not depend on the message passing capabilities of your RTOS. Instead, it
provides its own message queue and depends only on an RTOS signalling service which
most reasonable RTOS implementations offer.

The KwikNet Task calls OS interface procedure kn_osf | agwai t () to wait for a message
to arrive on its private message queue. Messages are generated by KwikNet services
invoked by your application tasks, by KwikNet timer ticks and by KwikNet device drivers.
All use KwikNet's message posting service which calls OS interface procedure
kn_osf 1l agup() to force the KwikNet Task to resume servicing its message queue.

The signalling method relies on an RTOS flag of some kind. Initialy the flag is down.
The KwikNet Task callskn_osf | agwai t () to wait for the flag to go up. If theflagisup at
the time of the call, the flag is dropped and the KwikNet Task is allowed to continue
executing. If the flag is down at the time of the call, the KwikNet Task is forced to block
(wait) in procedure kn_osf | agwai t () .

Eventually some task, timer or device driver will force KwikNet to call kn_osf | agup() to
raise the flag. If the flag is up at the time of the cal, it stays up and no further action is
required. If theflagisdown at thetime of the call, the flag is raised and the KwikNet Task
is forced to resume excution if it was blocked waiting for the flag. When the KwikNet
Task resumes execution in procedure kn_osf | agwai t () , the flag is dropped.

In some cases, the flag may be an inherent part of some RTOS services such as sl eep()
or wake() . However, be careful. A wake() call must generate a pending wake (raise the
flag) so that a subsequent s| eep() request does not inadvertently block the KwikNet Task.

Your RTOS may provide a message gqueuing service which can be used to implement this
feature. Whether called a queue, mailbox or exchange, create a queue which can hold
only one element. Procedure kn_osflagwait() waits at the queue. Procedure
kn_osfl agup() adds an arbitrary element to the queue (flag goes up). If the queue
aready has an element in it, an error may be reported but the error can safely be ignored.
When the element is retrieved from the queue by procedure kn_osf | agwai t (), the queue
goes empty (flag is down).

Another common RTOS feature that can be used effectively is the mailbox which can
hold a single non-zero numeric message. Procedure kn_osfl agwai t () waits at the
mailbox. Procedure kn_osf | agup() adds an arbitrary non-zero message to the mailbox
(flag goes up). If the mailbox aready has a message in it, an error may be reported but
the error can safely be ignored. When the message is retrieved from the mailbox by
procedure kn_osf | agwai t (), the mailbox is zeroed (flag is down).

KwikNet RT/OS Interface sxKADAK Copyright © 1999-2000 K ADAK ProductsLtd.

17

18

Memory Allocation Services

KwikNet must be able to dynamically allocate and free blocks of memory of varying sizes.
KwikNet uses the memory allocation servicesin the OS Interface Module.

The KwikNet Task calls OS interface procedure kn_osmeninit() to initialize your
memory alocator. Thereafter, KwikNet calls kn_osnenget () to get a block of memory.
Some time later, it callskn_osmenr | s() to free the block. In many cases, the block will
not be freed until KwikNet shuts down.

The KwikNet Library can be configured to support severa different memory allocation
strategies. The strategy is defined by the parametersin your Library Parameter File. The
choices, summarized below, are made on the OS property page using the KwikNet
Configuration Builder.

» Usestandard C memory allocation functions
e Use RTOS memory alocator

* Use RTOS dlocation services to manage allocation from a fixed region of
memory provided by the application from one of the following sources:
(1) astatic array in the KwikNet Configuration Module,
(2) an absolute address in memory or
(3) amemory region provided by your custom kn_memacqui re() procedure.

The KwikNet library configuration file KN LI B. H specifies the strategy which you
selected. C symbol KN_MEVSRC will be defined to have value KN_Ms_STDC if standard C is
to be used. Otherwise, an RTOS dependent allocation method is to be used.

The examples provided with the KwikNet Porting Kit support the use of standard C. If
standard C is selected, the examples conditionally compile code to use standard C
functions cal l oc() and free() to alocate and free memory. No specific memory
initialization actions are required since standard C is assumed to manage its own heap.

If you use an RTOS memory management scheme, you must edit OS interface
proqedures kn_osmeminit (), kn_osnmenget () and kn_osnmenr|s() to use your RTOS
services.

Procedure kn_osneninit () receives two parameters. a pointer to a fixed region of
memory to be used for allocation and the size of that region. If your RTOS has its own
memory alocator, procedure kn_osneni nit () can safely ignore these parameters since
the RTOS is assumed to have its own memory resources. However, if you chose to use
RTOS memory management services to control alocation from a fixed memory region,
then procedure kn_osmeni ni t () must give control of the memory region to your RTOS.

Porting Tip

If your standard C or RTOS memory allocation services are
not thread-safe, configure your KwikNet Library to enable
KwikNet locking for memory allocation. Your OS interface
can then use the memory resource semaphore to protect
memory access as shown in the porting examples.

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet RT/OS Interface

Application Blocking Services

From time to time, a task will use a KwikNet service which will force KwikNet to block
(suspend) the task until a particular event occurs. KwikNet depends on two procedures in
the OS interface to meet this requirement: kn_osbl ock() and ks_osunbl ock() .

KwikNet calls OS interface procedure kn_osbl ock() to block the currently executing task.
The procedure is given a pointer to a callback function and a parameter which must be
passed to that function. Procedure kn_osbl ock() must inhibit task preemption, execute
the callback function (passing it its parameter) and then block the currently executing
task. KwikNet gives the procedure a 32 byte block of storage which can be used to
preserve information needed by your RTOS interface to meet the blocking requirements.

When the event of interest occurs, KwikNet calls procedure kn_osunbl ock() to unblock
the task waiting for the event. KwikNet passes to the procedure a pointer to the same 32
byte block of storage which procedure kn_osbl ock() used when it blocked the task.

Of particular importance is the need to temporarily inhibit task preemption. Procedure
kn_osbl ock() must ensure that the calling task cannot be preempted while it executes
the callback function and blocks itself from further execution. Task switching must be
disabled until the task is blocked, at which point task switching must again be enabled.

If your RTOS permits task preemption to be enabled and disabled for a specific task,
implementing procedure kn_osbl ock() will be ssimple. Be careful if your RTOS only
allows the unconditional enabling or disabling of task switching. For such an RTOS, if
you disable task switching and then block (wait, sleep, etc), you may find that task
switching remains disabled forever, thereby totally crippling your system.

The following technique can be used if your RTOS supports the dynamic alteration of a
task's execution priority. The private storage block can be used to save the task's current
execution priority. The task can then raise itself to a priority above that of the KwikNet
Task. It then calls the callback function and finally blocks itself. When the event of
interest occurs, procedure kn_osunbl ock() unblocks the task which then restores its
original execution priority.

Another technique requiring an additional task and an associated message queue can be
used. The extra task, caled a dleep task, and its message queue must be created when
your RTOS resources are first alocated, usualy in OS interface procedure
kn_osenter (). The sleep task must execute at a priority above the KwikNet Task. It
starts and waits on its message queue. Procedure kn_osbl ock() saves the callback
function pointer, its parameter and the calling task's identifier in the storage block
provided by KwikNet. The pointer to the storage block is then added to the sleep task's
message queue, causing the higher priority sleep task to preempt the task being blocked.
The sleep task calls the callback function and finally suspends the task which sent it the
message. When the event of interest occurs, procedure kn_osunbl ock() removes the
suspension, allowing the blocked task to resume execution.

The latter technique has a nasty side effect. Since the callback function is executed by
the sleep task, it cannot manipulate resources owned by the task being blocked. Hence,
the KwikNet callback function cannot unlock the network resource owned by the task
being blocked. To overcome this constraint, procedure kn_osunl ocknet () must alow
the sleep task to release network resources owned by other tasks.

KwikNet RT/OS Interface sxKADAK rev2 19

20

Interrupt Vector Manipulation

KwikNet device drivers must be able to connect their interrupt handlers to the underlying
interrupt architecture of the target processor. Unfortunately, there are amost as many
architectures as there are processors.

The simplest interrupt systems are found in processors like the Motorola MC68000 and
the Intel 80x86 families, in which a single, linear vector table is used to dispatch both
processor exceptions and device interrupts to an appropriate software handler. Entriesin
the vector table are simply pointers to the supporting software function.

Protected mode Intel 80x86 systems still use a linear table, but the table entries are
anything but simple. Instead, each entry is an 8 byte descriptor which leads through an
exception specific gate to an appropriate software handler.

RISC processors such as the PowerPC, ARM and MIPS can be even more difficult to
use. In most cases, the R in RISC means that most of the interrupt source decoding has
been Removed. Frequently all device interrupts funnel through one or two entriesin a
processor exception table and a software procedure must identify the interrupt source and
branch to the appropriate device interrupt handler. For such processors, it will help if
your RTOS, like AMX, provides a linear interrupt vector table through which all device
interrupts can be dispatched.

Entries in the processor or RTOS vector table are identified by a vector number which,
for simple architectures, is usually just the processor vector number. For complex
architectures, the vector number will be an interrupt source identifier dictated by your
RTOS or your own low level RTOS interface.

The KwikNet OS interface procedure kn_osvaccess() helps shield KwikNet from the
complexity of the processor's interrupt architecture. This procedure is used to access the
processor or RTOS vector table in order to attach software handlers to specific exceptions
and interrupts.

Procedure kn_osvaccess() isused to read and/or write a specific entry in your processor
or RTOS vector table. The entry is identified by its vector number. The procedure can
be used to read and save the current vector content and then install new content, all in one
operation. The procedure must ensure that device interrupts are inhibited while the
vector content is being manipulated.

Porting Tip

The KwikNet IRQ identifier assigned to a KwikNet device
driver should be the vector number for the actual processor
or RTOS vector through which the device interrupt is
serviced.

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet RT/OS Interface

Device Driver Support

KwikNet device drivers are implemented as described in the KwikNet Device Driver
Technical Reference Manual. Most network device interfaces use the processor's
interrupt facility to enhance operation of the network connected to the interface. The
device driver is then responsible for handling one or more interrupts generated by the
deviceinterface.

Unfortunately, severa factors complicate interrupt handling. To begin with, the target
processor dictates how it responds to interrupts generated by internal and externa
devices. In some cases, extra hardware is added to prioritize the interrupt sources. The
interrupt prioritization logic may be internal to the processor or external in the form of an
interrupt controller. Finaly, your RTOS will superimpose its own rules for the handling
of interrupts by your software.

To meet such diverse requirements, KwikNet separates board level interrupt support and
RTOS interrupt support. KwikNet device drivers install interrupt handlers and manipulate
interrupts using services provided in the KwikNet board driver KN_BOARD. C. The board
driver uses services provided in the OS Interface Module to ensure compliance with your
RTOS and its support for the underlying processor interrupt structure.

The KwikNet board driver KN_BOARD. C is described in Chapter 1.8 of the KwikNet Device
Driver Technical Reference Manual. It provides support for up to KN_I NTSRCVAX unique
interrupt sources. Unless altered by you, KN_I NTSRCVAX is defined to be 4. A KwikNet
device driver provides an interrupt handler for each of the interrupts which the associated
device can generate. Do not lose sight of the fact that most network devices can only
generate asingle interrupt, albeit for a great many different reasons.

The device driver calls board driver procedure kn_brdi ntsve() to install a device
interrupt handler into a specific interrupt vector. The vector is determined by the KwikNet
IRQ identifier which you assigned via the device driver parameters entered in your
KwikNet Network Parameter File.

Procedure kn_br di nt sve() assigns a handle to the device. The handle is a number from
1 to KN_I NTSRCMAX which KwikNet uses to identify the interrupt handler. Procedure
kn_brdi ntsvc() then cals the OS interface procedure kn_osvi nstal | () passing it the
device handle and vector number.

Procedure kn_osvi nst al | () must provide an RTOS compatible interrupt service routine
(ISR) for the device. The ISR must call KwikNet procedure kn_i sphandl er () passing it
the device handle for the device being serviced. The examples provided with the KwikNet
Porting Kit implement one such ISR for each of the KN_I NTSRCMAX KwikNet interrupt
Sources.

Procedure kn_osvi nst al | () must modify the specified vector in the processor or RTOS
vector table so that subsequent interrupts from the device in question are handled by its
ISR. It can do so using OS interface procedure kn_osvaccess().

KwikNet RT/OS Interface sxKADAK Copyright © 1999-2000 K ADAK ProductsLtd.

21

22

KwikNet and RT OS Shutdown

Once KwikNet is started, it executes forever unless requested by your application to shut
down. To stop KwikNet, an application shutdown task of lower priority than KwikNet must
call KwikNet procedure kn_exi t (). Most of theinitial termination processing by KwikNet
will occur in the context of the shutdown task. Once most stack operations have ceased,
OS interface procedure kn_oscl kexi t () will be called to stop the KwikNet timer.

The shutdown task is then blocked until the KwikNet Task can complete the shutdown.
The shutdown task resumes periodically to monitor progress as it waits for the shutdown
process to compl ete.

Once the kKwikNet Task has been stopped, procedure kn_exi t (), executing in the context
of the shutdown task, calls OS interface procedure kn_osexi t () to relinquish all of the
RTOS resources previously allocated by procedure kn_osent er ().

Most applications which shutdown KwikNet do so in preparation for a fina termination.
However, once kn_exi t () returns to your shutdown task, your application can start
KwikNet again with a call to procedurekn_ent er () .

When your application is done and your RTOS has stopped, control returns to your
mai n() function. At this point, procedure kn_osfi ni sh() must be called to relinquish
al C, C+t or hardware resources, if any, allocated by procedure kn_osprep() when your
mai n() function started. As its last operation, kn_osfini sh() must call KwikNet
procedure kn_nmemyui t () to close down the KwikNet memory allocation system.

If your KwikNet application can never be stopped, procedures kn_osexit() and
kn_osfini sh() can be empty stubs.

Error Handling

Whenever KwikNet detects an error condition from which recovery is not possible, it calls
itsfatal error handler kn_f at al () with one of the KwikNet fatal error codes KN_FERXxxxxXx.
It is recommended that your OS interface procedures adopt this same strategy.

The KwikNet fatal error handler calls your OS interface procedure kn_osf at al () giving
you one last chance to take whatever abortive action your RTOS may allow.

If your fatal handler kn_osfat al () returns, KwikNet will enter a software loop, forever
calling its debug breakpoint procedure kn_bphi t () .

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet RT/OS Interface

2.3 The Single Threaded OS Interface

The general operation of KwikNet is described in the KwikNet TCP/IP Stack User's Guide.
KwikNet is ready for use with single threaded operating systems including MS-DOS or
your own stand-alone application. In the latter case, although a formal operating system
may not be present, some piece of your application code can still be loosely referred to as
your OS, eveniif it isjust that endless software loop that keeps the application humming.

The KwikNet OS Interface includes all of the interface procedures necessary to use
KwikNet with your OS. It issimply a question of adapting the examples for use with your
OS. Few of the procedures will require any modification. Although you may choose to
wade in and start editing, you should first take a few moments to read this chapter for an
overview of the requirements and the recommended methods of implementation.

The main part of KwikNet is a body of code which, for lack of a better term, is called the
KwikNet Task through which your application gains access to KwikNet and its network
services. This task controls the KwikNet startup process. If your application chooses to
stop KwikNet, the task supervises the orderly shut down and then ceases to operate.

Once KwikNet has been started, the KwikNet Task can only execute when given the
opportunity by your application. The KwikNet Task executes when you call kn_yi el d()
giving KwikNet control of the processor. The KwikNet Task will then execute as long as it
has work to do. You must call kn_yi el d() frequently enough to ensure that the KwikNet
Task can meet its fundamental timing obligations.

KwikNet must be able to dynamically allocate and free blocks of memory as it executes.
These memory services are inherently thread-safe in a single threaded system. Usualy
standard C memory allocation services will be adequate. However, if you have your own
memory allocator, you should adapt the KwikNet OS interface to useit.

KwikNet also needs a timing source, a periodic tickle at the frequency specified by your
KwikNet Library Parameter File. KwikNet also expects to be able to initiate a delay,
measured in milliseconds, during which the KwikNet Task will execute but your
application will be blocked.

From time to time, KwikNet will have to block your application pending a particular
KwikNet event. The OS interface procedures which provide this blocking and unblocking
service are critical to the successful operation of KwikNet.

KwikNet device drivers must be able to hook their interrupt handlers into the interrupt
system of the target processor. The manner in which this is accomplished is both target
processor and OS dependent. The KwikNet board driver KN_BOARD. C resolves the target
issues. The OS interface must resolve the OS issues.

KwikNet RT/OS Interface sxKADAK Copyright © 1999-2000 K ADAK ProductsLtd.

23

24

Summary of OS Interface Services

The kKwikNet TCP/IP Stack gains access to your OS services via the procedures in your
OS Interface Module KN_OsI F. C. These procedures are summarized below. Detailed

specifications are provided in Chapter 2.5.

kn_osprep
kn_osr eady
kn_osfini sh

kn_osenter
kn_osexit

kn_osf at al
kn_osneninit
kn_osnenget

kn_osnenrls

kn_oscl kinit
kn_oscl kexi t

kn_osvi nst al
kn_osvaccess

Copyright © 1999-2000 KADAK Products L td. IEKADAK

Prepare for use of the OS
Declare the OS ready for use
Finished using the OS

Entering KwikNet; setup OS resources accordingly
Leaving KwikNet; relinquish OS resources accordingly

Handle afatal error condition

Initialize memory allocator for use by KwikNet
Get ablock of memory

Release (free) a block of memory

Create/start a periodic timer (clock) for KwikNet use
Stop the KwikNet timer

Install an interrupt service routine
Read from and/or write to a processor exception vector

KwikNet RT/OS Interface

KwikNet Startup

The KwikNet OS interface must be initialized with a call to procedure kn_ospr ep() when
your application first begins. Note that this procedure must be called by your application;
it is not called by KwikNet. It is recommended that the call be made from your mai n()
function.

Procedure kn_osprep() must cal KwikNet procedure kn_l ogbufinit() to prepare the
KwikNet data logger so that KwikNet procedure kn_dprintf() can be used for data
recording even when KwikNet iS not running.

Procedure kn_osprep() can then initialize al variables, if any, associated with the OS
interface. Although rarely necessary, any resources upon which your OS interface
depends should also be alocated and initialized. As alast step, kn_osprep() must call
OS interface procedure kn_osr eady() to declare the OS ready for use. Asthefina step,
procedure kn_osready() must call KwikNet procedure kn_menprep() to prepare the
KwikNet memory allocation system.

Once the OS interface is ready for use, your application can be started. At some point,
your application must start KwikNet with acall tokn_enter (). KwikNet immediately calls
your OS interface procedure kn_osent er () . 'You must allocate the OS resources, if any,
which your OS interface needs to support its operation with KwikNet.

Finally, the OS interface procedure kn_osent er () must call kn_yi el d() to alow the
KwikNet Task to start and complete the initialization sequence. Starting the KwikNet Task
must be the last action performed by procedure kn_osenter ().

The KwikNet Task calls OS interface procedure kn_osmeninit() to initiaize your
memory allocator for use by KwikNet. Once your memory alocation services are
available, KwikNet can use OS interface procedures kn_osnenget () and kn_osment | s()
to acquire and release variable sized blocks of memory.

After the KwikNet Task has initialized its network interfaces, it cals OS interface
procedure kn_oscl ki ni t () to start a periodic software timer for KwikNet use. Operation
of the KwikNet timer will be described shortly.

Once the KwikNet Task completes its initialization, execution resumes following the
kn_yield() cal in procedure kn_osenter(). KwikNet is ready for use and your
application resumes execution following itscall tokn_ent er ().

KwikNet Task Operation

Your OS interface must periodically call kn_yi el d() to let the KwikNet Task execute.
Thetask isinitially started as the final action of OS interface procedurekn_osenter ().

The KwikNet Task will resume execution whenever you call kn_yi el d(). It checks for
the arrival of a message on its private message queue. Messages are generated by
KwikNet services invoked by your application, by KwikNet timer ticks and by KwikNet
device drivers. Each message is decoded and serviced as required. When the message
gueue is empty the KwikNet Task returns to your application and awaits your next call.

The KwikNet Task will continue to execute in this fashion until ordered to shut down by
your application's call, if any, to KwikNet procedure kn_exi t () .

KwikNet RT/OS Interface sxKADAK Copyright © 1999-2000 K ADAK ProductsLtd.

25

26

KwikNet Timer Operation

The KwikNet TCP/IP Stack operates at the clock frequency defined in your KwikNet
Library Parameter File which you created using the KwikNet Configuration Builder. The
frequency is provided as a parameter on the Target property page. All KwikNet timing
intervals are based upon this frequency.

The minimum frequency is 2 Hz. A frequency of 10 or 20 Hz is recommended. Any
frequency above 50 Hz will simply introduce unnecessary execution overhead with little
noticeable improvement in network throughput.

The KwikNet timer procedure kn_ti mer () must be caled by your OS interface at the
defined frequency. For example, if the KwikNet frequency is declared to be 20 Hz, you
must ensure that procedure kn_ti mer () is executed once every 50 ms. This procedure
can be called from an interrupt service routine (ISR), provided the ISR preserves all
processor registers which your C compiler considers to be alterable.

If your OS does not provide timer services, then you will have to create such a software
timer and hook it to your fundamental hardware clock. You may already have such a
hook in place for use by your application.

The software timer can be initialized in procedure kn_osprep() Or kn_osenter ().
Alternatively, you can defer installation of the timer until the KwikNet Task calls
procedure kn_oscl ki ni t () to startit.

No matter when the software timer is created or initialized, the timer must not call
kn_ti mer () until the KwikNet Task calls OS interface procedure kn_oscl ki ni t () to start
KwikNet timing. The examples provided with the kwikNet Porting Kit illustrate this point.

If your software timer executes at a frequency greater than the KwikNet frequency, you
will have to use a software counter to derive the slower KwikNet tick. When the KwikNet
Task calls procedure kn_oscl ki ni t () to start the KwikNet timer, it provides the timer
period, measured in milliseconds, as a parameter. Y ou can use this parameter to derive
the number of actua timer ticks which constitute a KwikNet tick. For example, if the
KwikNet clock frequency is 20 Hz (period of 50 ms) but your software timer operates at
100 Hz (period of 10 ms), your timer procedure must only call kn_ti mer () once every
5ticks.

When KwikNet shuts down the TCP/IP stack, it calls OS interface procedure
kn_oscl kexi t () to stop the KwikNet timer. This procedure must ensure that your
software timer stops calling the KwikNet timer procedure kn_t i mer () .

If procedure kn_cl kinit() created and started your software timer, then procedure
kn_cl kexi t () should remove it. If your software timer was initialized by procedure
kn_osenter (), then it should be removed by procedure kn_osexi t (). If your software
timer was initialized by procedure kn_osprep(), then it should be removed by procedure
kn_osfinish().

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet RT/OS Interface

Memory Allocation Services

KwikNet must be able to dynamically allocate and free blocks of memory of varying sizes.
KwikNet uses the memory allocation services in the OS Interface Module.

The KwikNet Task calls OS interface procedure kn_osmeninit() to initialize your
memory alocator. Thereafter, KwikNet calls kn_osnenget () to get a block of memory.
Some time later, it callskn_osmenr | s() to free the block. In many cases, the block will
not be freed until KwikNet shuts down.

The KwikNet Library can be configured to support severa different memory allocation
strategies. The strategy is defined by the parametersin your Library Parameter File. The
choices, summarized below, are made on the OS property page using the KwikNet
Configuration Builder.

» Usestandard C memory allocation functions
* Use OS memory alocator

* Use custom allocation services to manage allocation from afixed region of
memory provided by the application from one of the following sources:
(1) astatic array in the KwikNet Configuration Module,
(2) an absolute address in memory or
(3) amemory region provided by your custom kn_memacqui re() procedure.

The KwikNet library configuration file KN LI B. H specifies the strategy which you
selected. C symbol KN_MEVSRC will be defined to have value KN_Ms_STDC if standard C is
to beused. Otherwise, an OS allocator or custom allocation method is to be used.

The examples provided with the KwikNet Porting Kit support the use of standard C. If
standard C is selected, the examples conditionally compile code to use standard C
functions cal l oc() and free() to alocate and free memory. No specific memory
initialization actions are required since standard C is assumed to manage its own heap.

If you use an OS allocator or a custom memory management scheme, you must edit OS
interface procedures kn_osneni nit (), kn_osmenget () and kn_osment | s() .

Procedure kn_osneni nit () receives two parameters. a pointer to a fixed region of
memory to be used for alocation and the size of that region. If your OS has its own
memory alocator, procedure kn_osneni nit () can safely ignore these parameters since
your OS is assumed to have its own memory resources.

However, if you choose to provide custom services to control allocation from a fixed
memory region, then procedure kn_osnemi nit() must accept the specified memory
region and prepare it for use. Procedure kn_osmenyget () must alocate memory from this
region. Procedure kn_osmenr|s() must free memory previously allocated from the
region.

KwikNet RT/OS Interface sxKADAK Copyright © 1999-2000 K ADAK ProductsLtd.

27

28

Interrupt Vector Manipulation

KwikNet device drivers must be able to connect their interrupt handlers to the underlying
interrupt architecture of the target processor. Unfortunately, there are amost as many
architectures as there are processors.

The simplest interrupt systems are found in processors like the Motorola MC68000 and
the Intel 80x86 families, in which a single, linear vector table is used to dispatch both
processor exceptions and device interrupts to an appropriate software handler. Entriesin
the vector table are simply pointers to the supporting software function.

Protected mode Intel 80x86 systems still use a linear table, but the table entries are
anything but simple. Instead, each entry is an 8 byte descriptor which leads through an
exception specific gate to an appropriate software handler.

RISC processors such as the PowerPC, ARM and MIPS can be even more difficult to
use. In most cases, the R in RISC means that most of the interrupt source decoding has
been Removed. Frequently all device interrupts funnel through one or two entriesin a
processor exception table and a software procedure must identify the interrupt source and
branch to the appropriate device interrupt handler. For such processors, it will help if
your OS provides alinear interrupt vector table through which all device interrupts can be
dispatched.

Entries in the processor or OS vector table are identified by a vector number which, for
simple architectures, is usualy just the processor vector number. For complex
architectures, the vector number will be an interrupt source identifier dictated by your OS
or your own low level interrupt interface.

The KwikNet OS interface procedure kn_osvaccess() helps shield KwikNet from the
complexity of the processor's interrupt architecture. This procedure is used to access the
processor or OS vector table in order to attach software handlers to specific exceptions
and interrupts.

Procedure kn_osvaccess() isused to read and/or write a specific entry in your processor
or OS vector table. The entry is identified by its vector number. The procedure can be
used to read and save the current vector content and then install new content, all in one
operation. The procedure must ensure that device interrupts are inhibited while the
vector content is being manipulated.

Porting Tip

The KwikNet IRQ identifier assigned to a KwikNet device
driver should be the vector number for the actual processor
or OS vector through which the device interrupt is serviced.

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet RT/OS Interface

Device Driver Support

KwikNet device drivers are implemented as described in the KwikNet Device Driver
Technical Reference Manual. Most network device interfaces use the processor's
interrupt facility to enhance operation of the network connected to the interface. The
device driver is then responsible for handling one or more interrupts generated by the
deviceinterface.

Unfortunately, severa factors complicate interrupt handling. To begin with, the target
processor dictates how it responds to interrupts generated by internal and externa
devices. In some cases, extra hardware is added to prioritize the interrupt sources. The
interrupt prioritization logic may be internal to the processor or external in the form of an
interrupt controller. Finaly, your OS may superimpose its own rules for the handling of
interrupts by your software.

To meet such diverse requirements, KwikNet separates board level interrupt support and
OS interrupt support. KwikNet device drivers install interrupt handlers and manipulate
interrupts using services provided in the KwikNet board driver KN_BOARD. C. The board
driver uses services provided in the OS Interface Module to ensure compliance with your
OS and its support for the underlying processor interrupt structure.

The KwikNet board driver KN_BOARD. C is described in Chapter 1.8 of the KwikNet Device
Driver Technical Reference Manual. It provides support for up to KN_I NTSRCVAX unique
interrupt sources. Unless altered by you, KN_I NTSRCVAX is defined to be 4. A KwikNet
device driver provides an interrupt handler for each of the interrupts which the associated
device can generate. Do not lose sight of the fact that most network devices can only
generate asingle interrupt, albeit for a great many different reasons.

The device driver calls board driver procedure kn_brdi ntsve() to install a device
interrupt handler into a specific interrupt vector. The vector is determined by the KwikNet
IRQ identifier which you assigned via the device driver parameters entered in your
KwikNet Network Parameter File.

Procedure kn_br di nt sve() assigns a handle to the device. The handle is a number from
1 to KN_I NTSRCMAX which KwikNet uses to identify the interrupt handler. Procedure
kn_brdi ntsvc() then cals the OS interface procedure kn_osvi nstal | () passing it the
device handle and vector number.

Procedure kn_osvinstal | () must provide an interrupt service routine (ISR) for the
device. The ISR must call KwikNet procedure kn_i sphandl er () passing it the device
handle for the device being serviced. The examples provided with the KwikNet Porting
Kit implement one such ISR for each of the KN_I NTSRCVAX KwikNet interrupt sources.

Procedure kn_osvi nstal | () must modify the specified vector in the processor or OS
vector table so that subsequent interrupts from the device in question are handled by its
ISR. It can do so using OS interface procedure kn_osvaccess().

KwikNet RT/OS Interface sxKADAK Copyright © 1999-2000 K ADAK ProductsLtd.

29

30

KwikNet and OS Shutdown

Once KwikNet is started, it executes forever unless requested by your application to shut
down. To stop KwikNet, your application must call KwikNet procedure kn_exit(). The
function in which the call is made will be referred to as the shutdown function. All of the
termination processing by KwikNet will occur in the context of the shutdown function.
Once most stack operations have ceased, OS interface procedure kn_oscl kexi t () will
be called to stop the KwikNet timer.

The KwikNet Task is then executed to complete the shutdown process. Then OS interface
procedure kn_osexit() is caled to relinquish al of the OS resources previously
allocated by procedure kn_osenter ().

Most applications which shutdown KwikNet do so in preparation for a fina termination.
However, once kn_exi t () returnsto your shutdown function, your application can start
KwikNet again with a call to procedurekn_ent er () .

When your application is finished, control returnsto your mai n() function. At this point,
procedure kn_osf i ni sh() must be called to relinquish all C, C++ or hardware resources,
if any, allocated by procedure kn_osprep() when your mai n() function started. Asits
last operation, kn_osfi ni sh() must call KwikNet procedure kn_mermqui t () to close down
the KwikNet memory allocation system.

If your KwikNet application can never be stopped, procedures kn_osexit() and
kn_osfi ni sh() can be empty stubs.

Error Handling

Whenever KwikNet detects an error condition from which recovery is not possible, it calls
itsfatal error handler kn_f at al () with one of the KwikNet fatal error codes KN_FERXxxxxXx.
It is recommended that your OS interface procedures adopt this same strategy.

The KwikNet fatal error handler calls your OS interface procedure kn_osf at al () giving
you one last chance to take whatever abortive action your OS may allow.

If your fatal handler kn_osfat al () returns, KwikNet will enter a software loop, forever
calling its debug breakpoint procedure kn_bphi t () .

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet RT/OS Interface

2.4 RT/OSInterface MakeFile

The OS Interface Make File KN_0sI F. | NC contains all of the make specifications which
you must edit to define how your OS Interface Module is to be compiled. This module
also provides access to the RT/OS object modules and/or libraries which must be linked
with the KwikNet sample programs.

Figure 2.4-1 shows a listing of a typical OS Interface Make File KN_OSI F. INC. This
example is taken directly from the EXAMPLES\ XRTCS directory. You should examine the
other examples as well to see how they differ in ways that might apply to your RT/OS.

The specification begins with a set of macro definitions which are only used within the
OS Interface Make File itself. In this example, macros osHDRP and OSLI BP have been
defined as the paths to the RTOS header and library files. Note that global macro
$(OSPATH) is the path to your RT/OS instalation directory. It is defined on the
command line used to invoke your make utility when building the KwikNet Libraries.

Macro Hosl F must be defined, even if it is an empty (blank) macro. It must identify all
of the RT/OS header files upon which file KN_0sI F. C and its header file KN_OSI F. H
depend. Note that the header file KN_osI F. H will not include any other header files
unless you have explicitly edited it to do so.

If you port the KwikNet Sample Program, then your application OS interface module
KNSAMOS. € and its header file KNsaMOS. H may depend on RT/OS header files not already
identified by macro HoSI F. If so, be sure to add those RT/OS header files to the HosI F
definition.

Target 0SHDR must be defined. It must list the file names of all header files identified by
macro HosI F. The file names must not include path information.

For each file listed in target OSHDR, there must be a rule provided which copies the header
file from its source directory to the current directory.

If you port the KwikNet Sample Program, you must identify the RT/OS object modules
and/or library files with which the samples must be linked. These modules must be
identified in a dependency list defined by macro osLI B. An empty list is permissible.

Target osLI BGET must be defined without any dependencies. Its purpose isto copy all of
the files identified by macro osLI B from their source directory to the directory identified
by global macro $(ULI NK) . An empty command list is permissible.

Target osLI BDEL must also be defined with no dependencies. Its purpose is to delete all
of the files copied when target OSLI BGET was resolved. It must delete al of the files
identified by macro osLI B from the destination directory identified by $(ULINK). An
empty command list is permissible.

Porting Tip

For portability of the make process, it is recommended that
you use the global macros $(cvbcoPy) and $(CVDDEL) to
invoke the copy and delete (erase) commands of the
operating system which is executing your make utility.

KwikNet RT/OS Interface sxKADAK Copyright © 1999-2000 K ADAK ProductsLtd.

31

32

The following macros are used only in this include file.

OSHDRP = full path to the directory containing the RTOS header file(s)
OSLIBP = full path to the directory containing the RTOS library file(s)
OSHDRP = $(OSPATH) \ | NCLUDE

CSLI BP = $(OSPATH)\ LI B

3

Define HOSIF to identify the OS dependent header files that
are included by your custom Kwi kNet OS Interface nodul es

KN_OSIF.C and KN_OSIF. H and by the Kwi kNet Sanpl e Program
OS interface nmodul es KNSAMOS. C and KNSAMOS. H.

HOSI F = $(OSHDRP) \ U_RTOS. H \
$(OSHDRP) \ U_CFG. H

Define rules to copy the OS header file(s) to the MAKE directory
in order to conpile the Kwi kNet OS Interface nodule KN OSIF. C

and the Kw kNet sanple progranms. Be sure to copy all of the

OS header files identified by nacro HOSIF.

OSHDR: \
U RTCS. H \
U CFG H

no commands required

U_RTCS. H: $(OSHDRP) \ U_RTOS. H
$(CVMDCOPY) $(OSHDRP) \ U_RTOS. H U_RTOCS. H

U_CFG H: $(OSHDRP) \ U_CFG. H
$(CVMDCOPY) $(OSHDRP)\ U CFG. H U_CFG H

Define OSLIB to identify the OS library and/or object files that mnust
be linked with the Kwi kNet sanple prograns to satisfy the needs of
your Kwi kNet OS interface.

OSLIB = $(OSLI BP)\ U_RTOS. LI B \
$(OSLI BP)\ U_CFG OBJ

Define a target to copy the OGS library and/or object file(s) to the
$(ULINK) directory in order to link the Kwi kNet sanple prograns.
Be sure to copy all of the files identified by macro OSLIB.

OSLI BGET:
$(CVDCOPY) $(CsLIBP)\ U_RTCS. LIB $(ULINK)\ U _RTCS. LI B
$(CVDCOPY) $(CsLI BP)\ U_CFG OBJ $(ULI NK)\ U_CFG OBJ

Define another target to delete the OS library and/or object file(s)
copi ed by OSLI BCET.

OSLI BDEL:
$(CVDDEL) $(ULINK)\ U_RTCS. LI B
$(CVDDEL) $(ULI NK)\ U_CFG OBJ
#ommm o End of INCLUDE file -------------------------------

Figure 2.4-1 KwikNet OS Interface Make File

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet RT/OS Interface

2.5 RT/OS Interface Procedures

The kwikNet TCP/IP Stack gains access to your RT/OS services via the procedures in
your OS Interface Module KN_OSI F. C. A detailed specification for each procedure is
provided in this chapter. The specifications are presented in the order in which they
appear in the following summary.

Multitasking RTOS or Single Threaded OS Interface:

kn_osprep Prepare for use of the RT/OS

kn_osr eady Declare the RT/OS ready for use

kn_osfini sh Finished using the RT/OS

kn_osent er Entering KwikNet; setup RT/OS resources accordingly
kn_osexi t Leaving KwikNet; relinquish RT/OS resources accordingly
kn_osf at al Handle afatal error condition

kn_osnemni nit Initialize memory allocator for use by KwikNet
kn_osnenget Get ablock of memory
kn_osmenr| s Release (free) ablock of memory

kn_oscl kinit Create/start aperiodic timer (clock) for KwikNet use
kn_oscl kexit Stop the KwikNet timer

kn_osvinstal | Install aninterrupt service routine
kn_osvaccess Read from and/or write to a processor exception vector

Multitasking RTOS Interface Only:
kn_ost aski d Get the task identifier of the currently executing task

kn_osfl agwait Block the KwikNet Task until the signal flag israised
kn_osf 1 agup Unblock the KwikNet Task by raising the signal flag

kn_osdel ay Block the current task for an interval measured in milliseconds
kn_osbl ock Block the current task until a particular event of interest occurs
kn_osunbl ock Unblock atask waiting for an event which just occurred

kn_osl ocknet Lock the network resource for exclusive use by the caller
kn_osunl ocknet Unlock the network resource

kn_osl ockmem Lock memory allocation services for use by the caller
kn_osunl ockmem Unlock memory alocation services

kn_osl ockf s Lock file access services for use by the caller
kn_osunl ockfs Unlock file access services

KwikNet RT/OS Interface sxKADAK Copyright © 1999-2000 K ADAK ProductsLtd.

34

kn_osprep kn_osprep
kn_osready kn_osready
kn_osfinish kn_osfinish

Purpose Begin and End Use of the RT/OS

Caller Procedures kn_osprep() and kn_osfi ni sh() should be called from your
mai n() function asillustrated in the KwikNet Sample Program OS interface
module KNSAMOS. C. Procedure kn_osready() must be caled by your
application once the RT/OS is ready for use.

Setup Prototypeisin file KN_API . H.
#include "KN LI B. H'
voi d kn_osprep(void);
voi d kn_osready(void);
voi d kn_osfinish(void);

Description Procedurekn_osprep() must be called prior to first use of your RT/OS by
your application. It must call KwikNet procedure kn_l ogbufinit() to
prepare the KwikNet data logger so that KwikNet procedure kn_dprint f ()
can be used for data recording even if KwikNet iS not running.

Procedure kn_osprep() must initialize al variables, if any, associated
with the RT/OS interface. It can then alocate the C, C++ or hardware
resources, if any, which your OS interface requires for its operation.

Procedure kn_osready() must be called by your application once the
RT/OSisready for use. It must conclude with a call to KwikNet procedure
kn_nenpr ep() to prepare the KwikNet memory allocation system.

Procedure kn_osfi ni sh() must be called after your application has shut
down and no longer requires the use of your RT/OS. Its purpose is to
relinquish all C, C++ or hardware resources, if any, allocated by procedure
kn_osprep(). It must conclude with a call to KwikNet procedure
kn_nmenqui t () to shut down the KwikNet memory allocation system. If the
RT/OS cannot be shut down once started, procedure kn_osfi ni sh() can
be an empty stub which will never be executed.

Returns Nothing

Multitasking Operation

Procedure kn_osprep() must be called before the RTOS is started. It cannot use any
RTOS services. Procedure kn_osr eady() must be called as soon as the RTOS is ready
for use. Procedure kn_osfini sh() must not be called until the RTOS has stopped
operating. It cannot use any RTOS services.

Single Threaded Operation

Except for the mandatory calls to KwikNet procedures kn_I ogbufi nit (), kn_menprep()
and kn_memqui t () , these procedures rarely have much to do in a single threaded OS.

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet RT/OS Interface

kn_osenter kn_osenter

kn_osexit kn_osexit
Purpose Allocate/Release RT/OS Resour ces on Entry to/Exit from KwikNet
Caller These procedures are called by KwikNet as it starts up and shuts down the

KwikNet TCP/IP Stack.

Setup Prototypeisin file KN_API . H.
#include "KN LI B. H'
voi d kn_osenter(void);
voi d kn_osexit(void);

Description Procedure kn_osenter () is the first OS interface procedure called by
KwikNet after your application starts KwikNet with a call to kn_enter ().
Its purpose is to alocate al of the RT/OS resources which your OS
interface must provide for the proper operation of KwikNet.

Procedure kn_osexit () is the last OS interface procedure called by
KwikNet as it shuts down in response to your application's call to
kn_exit(). Its purpose is to relinquish all RT/OS resources, if any,
allocated by procedure kn_osent er (). If KwikNet will not be shut down
once started, procedure kn_osexit () can be an empty stub which will
never be executed.

Returns Nothing

Multitasking Operation

Procedure kn_osent er () must create and/or initialize the RTOS resources required by
KwikNet. [If the task(s), timer(s) and resource semaphore(s) which you must provide do
not already exist, they must be created. In particular, the KwikNet Task and the network
locking semaphore must exist. You may choose to leave creation of the KwikNet timer to
OS interface procedure kn_oscl ki nit (). The final operation of this procedure must be
to start the KwikNet Task.

KwikNet is usualy only shut down as a prelude to stopping your RTOS. Procedure
kn_osexit () must release all of the RTOS resources allocated by kn_osenter (). This
requirement must be met if KwikNet is to be subsequently restarted by your application.
However, if your application is terminating and your RTOS can be shut down with
resources left allocated but no longer in use, then procedure kn_osexi t () will not have
to release the allocated resources.

Single Threaded Operation

KwikNet makes no demands on a single threaded OS. Consequently, these procedures
rarely have any OS dependent operations to perform. The final operation of procedure
kn_osenter () must be to cal kn_yield() to start the KwikNet Task. Procedure
kn_osexi t () must release any OS resources allocated by kn_osenter ().

KwikNet RT/OS Interface sxKADAK Copyright © 1999-2000 K ADAK ProductsLtd.

35

36

kn_osfatal kn_osfatal

Purpose Handle a Fatal Error Condition

Caller Called from the KwikNet fatal error procedure kn_f at al () upon detection
of an unrecoverable error condition.

Setup Prototypeisin file KN_API . H.
#i ncl ude "KN_LI B. H'
void kn_osfatal (int fatalerr);

Parameters Parameter fatal err is one of the KwikNet fatal error codes listed in
Appendix B of the KwikNet TCP/IP Stack User's Guide. Fatal error code
KN_FERPORT can be used to identify fatal conditions detected by your OS
interface.

Description Procedurekn_osf at al () isgiven the opportunity to handle afatal error in
an RT/OS dependent fashion.

The examples provided with the KwikNet Porting Kit call data logging
procedure kn_dpri ntf () to record an error message and then generate a
debug trap by calling the KwikNet breakpoint procedure kn_bphi t ().

Returns Nothing

Procedure kn_osf at al () need not return to KwikNet. However, if it does,
KwikNet will enter a software loop, repetitively calling its breakpoint
procedure kn_bphi t ().

Multitasking Operation

If your RTOS allows an application to abort or restart in some manner, you may be able
to initiate that action within procedure kn_osf at al () .

If the procedure returns to KwikNet, the task which was executing when the fatal error
condition was detected will become compute bound, preventing all lower priority tasks
from executing.

Single Threaded Operation

If your OS alows an application to abort or restart in some manner, you may be able to
initiate that action within procedurekn_osf at al () .

If the procedure returns to KwikNet, your application will appear to hang.

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet RT/OS Interface

kn_osmeminit kn_osmeminit

Purpose
Caller

Setup

Parameters

Description

Returns

Initialize the RT/OS Memory Allocator
Called by the KwikNet Task asit starts up.

Prototypeisin file KN_API . H.
#include "KN LI B. H'
void kn_osnem nit(char *nenp, unsigned |ong nmensz);

Menp IS a pointer to a region of memory which your OS interface can
manage for memory allocation purposes. Menp references the memory
region specified by you in your KwikNet Network Parameter File.

If your KwikNet network configuration indicates that you are using
standard C for memory allocation or that your RT/OS memory allocator
does not require afixed block of memory for its use, menp will be NULL.

Mensz IS the size, in bytes, of the memory region referenced by nenp. If
menp iSNULL, the value of mermsz will be undefined.

If your KwikNet network configuration indicates that you are using
standard C for memory allocation or that your RT/OS memory allocator
does not require a fixed block of memory for its use, then procedure
kn_osmemi ni t () does nothing. Otherwise it must prepare the memory
region for subsequent use by memory alocation procedures
kn_osnenget () andkn_osment | s().

Nothing

Multitasking Operation

If standard C memory alocation is used or if your RTOS provides its own memory
(heap) for allocation, leave procedure kn_osmemi nit () unatered. Otherwise, edit this
procedure to match your RTOS requirements.

Single Threaded Operation

If standard C memory allocation is used, leave procedure kn_osmemi ni t () unaltered.
Otherwise, edit this procedure only if you wish to use or implement your own memory
allocation services.

KwikNet RT/OS Interface

IEKADAK Copyright © 1999-2000 KADAK Products L td.

37

38

kn_osmemget kn_osmemget
kn_osmemrls kn_osmemrls

Purpose Get a Zero Filled Block of Memory / Release a Block of Memory

Caller Called by KwikNet procedures executing in the context of the KwikNet Task
or the currently executing application or task.

Setup Prototypeisin file KN_API . H.
#include "KN LI B. H'
voi d *kn_osnenget (unsi gned int nensi ze);
void kn_osmenrls(void *bl ockp);

Parameters Mensi ze isthe number of bytes of memory required by the caller.

Bl ockp is a pointer to a block of memory previously allocated by
procedure kn_osnmenyget () .

Description If standard C memory alocation is used, leave procedure kn_osnenyget ()
unaltered. Otherwise, edit the procedure to use your RT/OS memory
allocation services to acquire a block of mensi ze bytes of memory. If
necessary, zero fill the block of memory which it provides.

If standard C memory allocation is used, leave procedure kn_osnent | s()
unaltered. Otherwise, edit the procedure to use your RT/OS memory
allocation services to release the block of memory referenced by bl ockp.

Returns Kn_osnent | s() returns nothing.
Kn_osnenget () returns apointer to azero filled region of nensi ze bytes
of memory. If enough memory is not available, NULL is returned.

Multitasking Operation

If your RTOS has its own memory alocator, use it to get and free memory.
Alternatively, if your RTOS has a general purpose heap manager, you can use it to
control access to the memory region (heap) presented to procedure kn_osmeminit ().
Otherwise, edit procedure kn_osnenget () to allocate memory from the memory region.

If your standard C or RTOS memory allocation services are not thread-safe, be sure to
configure KwikNet to provide memory access locking and implement OS interface
procedures kn_osl ocknen() and kn_osunl ockmen(). Your allocation operations must
be bracketed by calls to these locking procedures as illustrated in the examples provided
with the KwikNet Porting Kit.

Single Threaded Operation

The memory allocation procedures provided with the examples in the KwikNet Porting Kit
are ready to use with standard C. There is no need to edit these procedures unless you
intend to use the memory management services provided by your OS or prefer to
implement your own.

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet RT/OS Interface

kn_osclkinit kn_osclkinit
kn_osclkexit kn_osclkexit

Purpose Start and Stop the RT/OS Timer Providing the KwikNet Clock Source

Caller Procedure kn_oscl ki nit () is caled by the KwikNet Task as it prepares
the TCP/IP stack for use. Procedure kn_oscl kexit () is caled in the
context of the shutdown task/function which called kn_exit() to stop
KwikNet.

Setup Prototypeisinfile KN_API . H.
#i ncl ude "KN_LIB. H'
voi d kn_oscl ki ni t (unsi gned [ong ns);
voi d kn_oscl kexi t (voi d);

Parameters Parameter ns is the period of the KwikNet clock measured in milliseconds.
For example, if the KwikNet clock frequency is configured to be 20 Hz, ns
will have the value 50 specifying a 50 ms clock period.

Description Procedure kn_oscl ki nit() must start an OS interface software timer
which forces KwikNet timer procedure kn_t i mer () to be called once every
ms milliseconds. Note that it is acceptable to call procedure kn_ti mer ()
from within an interrupt service routine.

Procedure kn_oscl kexi t () must stop the OS interface software timer. At
the very least it must inhibit the software timer from making subsequent
callsto procedurekn_ti mer ().

Returns Nothing

Multitasking Operation

If your RTOS alows a software timer to be dynamically created and/or started, create
such a timer and start it. Otherwise, add such a software timer as a hook within your
RTOS timer support module or your hardware clock interrupt service routine.

You may prefer to create your software timer within your OS interface procedure
kn_osent er () when all other RTOS resources required by KwikNet are allocated. If you
do so, be sure that your software timer inhibits calls to kn_timer () until procedure
kn_oscl ki ni t () iscaled by the KwikNet Task to start the KwikNet timer.

Single Threaded Operation

Add your software timer as a hook within your OS timer support module or your
hardware clock interrupt service routine.

If your clock hook is installed by OS interface procedure kn_osprep() or
kn_osenter (), be sure that it inhibits calls to kn_timer() until procedure
kn_oscl ki ni t () iscalled by the KwikNet Task to start the KwikNet timer.

KwikNet RT/OS Interface sxKADAK Copyright © 1999-2000 K ADAK ProductsLtd.

39

40

kn_osvinstall kn_osvinstall

Purpose

Caller

Setup

Parameters

Description

Returns

Copyright © 1999-2000 KADAK Products L td. IEKADAK

Make and/or Install an RT/OS Compatible Interrupt Service Routine

Called by KwikNet device drivers to add their interrupt handler to the
processor or RT/OS interrupt system.

Prototypeisinfile KN_API . H.
#i ncl ude "KN_LIB. H'
void kn_osvinstall (int vector, int handle);

Parameter vect or identifies an entry in the processor or RTOS exception
table or interrupt vector table. For most simple interrupt architectures,
vect or IS the interrupt vector number. For complex architectures, the
vector number may be dictated by your RT/OS or by your custom
exception handling software.

See the topics "Interrupt Vector Manipulation” and "Device Driver
Support” in Chapter 2.2 or 2.3 for a full discussion of interrupt vector
identification.

Parameter handl e is a number ranging in value from 1 to KN_|I NTSRCVAX.
This parameter identifies the particular KwikNet device driver which
services interrupts generated via the specified interrupt vector. Constant
KN_I NTSRCMAX, defined in the KwikNet board driver KN_BOARD. C, specifies
the maximum number of KwikNet device driver interrupt sources that this
modul e can support.

This procedure must install an RT/OS compatible interrupt service routine
(ISR) into the processor or RT/OS interrupt vector table. It can do so
using OS interface procedure kn_osvaccess() .

The ISR must call KwikNet procedure kn_i sphandl er (), passing it the
device handle for the device being serviced. The examples provided with
the KwikNet Porting Kit implement one such ISR for each of the
KN_I NTSRCMAX KwikNet interrupt sources. Procedure kn_i sphandl er () is
prototyped in the OS Interface header file KN_0OSI F. Has follows:

voi d kn_i sphandl er (i nt handl e);
Nothing

...more

KwikNet RT/OS Interface

...continued
Multitasking Operation

The XrRTOs example provided with the KwikNet Porting Kit uses the following technique
for implementing procedure kn_osvi nstal | ().

This simple approach can be adopted if your RTOS and C compiler permit an interrupt
service routine (ISR) to be coded in C. Suppose that the following ISR (with
modification) can service interrupts from the device with a KwikNet device handle of 1.
When procedurekn_osvi nst al | () iscalled with ahandl e value of 1, it simply modifies
the entry in the interrupt vector table (per parameter vector) to force procedure
os_i spsrcl() tobeusedfor interrupt service.

void _interrupt os_ispsrcl(void)

{

rtos_isrenter();
kn_i sphandl er (1) ;
rtos_isrleave();

}

Single Threaded Operation

The examples provided with the KwikNet Porting Kit assume that your C compiler permits
an interrupt service routine (ISR) to be coded in C. Suppose that the following ISR (with
modification) can service interrupts from the device with a KwikNet device handle of 2.
When procedurekn_osvi nst al | () iscalled with ahandl e value of 2, it simply modifies
the entry in the interrupt vector table (per parameter vector) to force procedure
os_i spsrc2() tobe used for interrupt service.

void _interrupt os_ispsrc2(void)

{
kn_i sphandl er (2);

}

KwikNet RT/OS Interface sxKADAK rev2 41

42

kn_osvaccess kn_osvaccess

Purpose

Caller

Setup

Parameters

Description

Copyright © 1999-2000 KADAK Products L td. IEKADAK

Read from/Writeto the Processor or RT/OS Interrupt Vector Table

Called by procedures in the KwikNet board driver KN_BOARD. C, the sample
program OS interface module KNSAMOS. C and the OS Interface Module
KN_CSI F. C.

Prototypeisinfile KN_API . H.
#i ncl ude "KN_LIB. H'
voi d kn_osvaccess(int vector, void *vectp, void *ol dvectp);

Parameter vect or identifies an entry in the processor or RTOS exception
table or interrupt vector table. For most simple interrupt architectures,
vect or is the interrupt vector number. For complex architectures, the
vector number may be dictated by your RT/OS or by your custom
exception handling software.

See the topics "Interrupt Vector Manipulation” and "Device Driver
Support” in Chapter 2.2 or 2.3 for a full discussion of interrupt vector
identification.

Parameter vect p is a pointer to storage containing the description of the
interrupt service routine (ISR) to be installed. If vect p iSNULL, the vector
table must not be altered.

Parameter ol dvectp is a pointer to storage for a description of the
interrupt service routine (ISR) in use at the time this procedure was called.
If ol dvect p iISNULL, the parameter isignored.

By default, an ISR description is just a pointer to the actual ISR. Hence,
vect p and ol dvect p are actualy pointers to an ISR pointer. This ISR
description is used by all of the examples provided with the KwikNet
Porting Kit. However, for more complex interrupt architectures, you may
have to change the ISR description to match your RT/OS or processor
requirements. If the ISR description is changed, be sure to modify all
source modules which reference procedure kn_osvaccess() .

If parameter ol dvectp iS not NULL, procedure kn_osvaccess() must
extract the ISR description from the entry in the processor or RT/OS
interrupt vector table specified by parameter vector and store it in
memory at * ol dvect p.

Then, if parameter vect p isnot NULL, the procedure must modify the entry
in the interrupt vector table to match the ISR description found in memory
a *vect p.

Device interrupts must be disabled while the vector table entry is being
read and modified to ensure that read/write operations are indivisible.

...more

KwikNet RT/OS Interface

...continued

Returns Nothing

Multitasking Operation

If your RTOS provides services for modifying the processor or RTOS interrupt vector
table, modify procedure kn_osvaccess() to make use of them. Otherwise, adapt the
XRTOS example provided with the KwikNet Porting Kit for use with your target processor
and RTOS.

Single Threaded Operation

The MS-DOS example provided with the kwikNet Porting Kit is ready for use, without
modification, with MS-DOS operating in real mode on an 80x86 processor.

The DOS/AGW example provided with the KwikNet Porting Kit is ready for use with
MS-DOS and the Tenberry DOS/4GW DOS Extender operating in protected mode on an
80386, 80486 or Pentium processor. However, without modification, it is restricted for
use with interrupt vectors 8 to 15 (IRQO to IRQY7).

If your OS provides services for modifying the processor's interrupt vector table, modify
procedure kn_osvaccess() from the Xos example to make use of them. Otherwise,
adapt one of the MsDOS, DOs4GWor XOs examples provided with the KwikNet Porting Kit
for use with your target processor.

KwikNet RT/OS Interface sxKADAK rev2 43

kn_ostaskid kn_ostaskid

Purpose Get the Task Identifier of the Currently Executing Task
Caller Called by the KwikNet Task.

Setup Prototypeisin file KN_API . H.
#include "KN LI B. H'
KNP_OS | D kn_ost aski d(voi d);

Description KwikNet uses a 32-bit task identifier declared as type KNP_OS_ID. The
value (KNP_0s | D) 0 isreserved as an invalid task identifier.

If the task identifier used by your RTOS can be represented in 32 bits or
less, then procedure kn_ost aski d() can fetch the task identifier for the
currently executing task from your RTOS and cast it to be a KwikNet task
identifier.

Otherwise, this procedure must convert your RTOS task identifiers into a
form that can be represented in 32 bits.

Returns The RTOS identifier for the currently executing task, cast to be a KwikNet
task identifier of type KNP_OS_I D.

If this function is called while not executing in the context of a task, it
should return (KNP_OS_I D) 0, the KwikNet representation for an invalid task
identifier.

Multitasking Operation

This procedure must be implemented as described.

Single Threaded Operation
This procedure is not present in the single threaded OS Interface Module.

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet RT/OS Interface

kn_osflagwait kn_osflagwait
kn_osflagup kn_osflagup

Purpose

Caller

Setup

Description

Returns

Block/Unblock the KwikNet Task using a Signal Flag

The KwikNet Task calls procedure kn_osf | agwai t () to wait for the next
occurrence of a significant KwikNet event. The KwikNet message posting
service calls procedure kn_osf | agup() to signal such an event.

Callsto kn_osf | agup() can originate in the KwikNet Task, in the KwikNet
timer procedure or in an application task or device interrupt handler
making use of KwikNet Services.

Prototypeisin file KN_API . H.
#include "KN LI B. H'

voi d kn_osfl agwai t (voi d);
voi d kn_osfl agup(void);

A detailed description of the operation of these two procedures is provided
in Chapter 2.2 under the topic "KwikNet Message Queueing”. Severa
different RTOS strategies for implementing these procedures are explored.

Nothing

Multitasking Operation

These procedures must be implemented as described in Chapter 2.2 under the topic
"KwikNet Message Queueing".

Single Threaded Operation

These procedures are not present in the single threaded OS Interface Module.

KwikNet RT/OS Interface

IEKADAK Copyright © 1999-2000 KADAK Products L td.

45

46

kn_osdelay kn_osdelay

Purpose Suspend (Delay) the Currently Executing Task for a Timed Interval

Caller Called by any task which has requested a KwikNet operation which requires
that the task pause briefly to alow lower priority tasks an opportunity to
execute. Most KwikNet server and client tasks will call this procedure.

The KwikNet Task never calls this procedure.

Setup Prototypeisin file KN_API . H.
#include "KN LI B. H'
voi d kn_osdel ay(unsi gned | ong ns);

Parameters Parameter ns specifies the required delay interval, measured in
milliseconds.

Description The currently executing task must be forced to pause for ms milliseconds.

If the minimum timing resolution provided by your RTOS is greater than
ms milliseconds, the task must pause, at the very least, until the next RTOS
tick. The examples provided with the KwikNet Porting Kit meet this
reguirement.

Returns Nothing

Multitasking Operation

This procedure must be implemented as described.

Single Threaded Operation

Although this procedure must be present in the single threaded OS Interface Module, you
will observe that the examples provided with the KwikNet Porting Kit require no
modification.

The procedure is included in the OS interface so that you can adapt it to perform other
essential, application dependent operations which must continue, even while KwikNet is
spinning waiting for the delay interval to expire.

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet RT/OS Interface

kn_osblock kn_osblock
kn_osunblock kn_osunblock

Purpose Block/Unblock a Task Waiting for an Event

Caller KwikNet calls procedure kn_osbl ock() to block the currently executing
task pending a particular KwikNet event. \When KwikNet detects the event, it
callskn_osunbl ock() to unblock the task waiting for the event.

Setup Prototypeisin file KN_API . H.
#include "KN LI B. H'
voi d kn_osbl ock(void (*func)(void *),
void *param void *infop);
voi d kn_osunbl ock(voi d *infop);

Parameters Parameter f unc is apointer to a KwikNet function which must be called by
procedure kn_osbl ock() .

Par amis a pointer which must be passed to function f unc as a parameter.

Infop is a pointer to a block of 32 bytes of memory storage which
procedure kn_osbl ock() can use, if necessary, to save information for
subsequent use by procedure kn_osunbl ock() .

Description Procedure kn_osbl ock() must inhibit task preemption, call function f unc
passing it the parameter par amand then block the currently executing task
to await some KwikNet event.

A detailed description of the operation of these two proceduresis provided
in Chapter 2.2 under the topic "Application Blocking Services'. Severa
different RTOS strategies for implementing these procedures are explored.

Returns Nothing

Multitasking Operation

These procedures must be implemented as described in Chapter 2.2 under the topic
"Application Blocking Services'.

Single Threaded Operation

Although these procedures must be present in the single threaded OS Interface Module,
you will observe that the examples provided with the kKwikNet Porting Kit require no
modification. Procedure kn_osbl ock() spinsin the KwikNet Task waiting for a software
flag to be set by kn_osbl ock() , indicating that the event of interest has occurred.

The procedures are included in the OS interface so that you can adapt procedure
kn_osbl ock() to perform other essential, application dependent operations which must
continue, even while KwikNet is spinning waiting for the event.

KwikNet RT/OS Interface sxKADAK Copyright © 1999-2000 K ADAK ProductsLtd.

47

48

kn_oslock XXX kn_oslock XXX
kn_osunlock XXX kn_osunlock XXX

Purpose

Caller

Setup

Description

Copyright © 1999-2000 KADAK Products L td. IEKADAK

kn_[un] | ocknet () - Lock/Unlock a Network Resource
kn_[un] | ockmen() - Lock/Unlock Memory Allocation Services
kn_[un]l ockfs() -Lock/Unlock File System Access

These procedures are only called in the context of a task, either by the
KwikNet Task or by another task which has invoked some KwikNet service.

KwikNet calls procedure kn_osl ocknet () to reserve network resources for
the exclusive use of the currently executing task while critical network
operations are performed. When the operations are complete, KwikNet
calls procedure kn_osunl ocknet () to release the network resources.

Memory allocation procedures kn_osmenget () and kn_osnenr|s() can
call procedure kn_osl ocknmen() to ensure exclusive use of these
procedures by the currently executing task. When the memory block is
allocated or freed, procedure kn_osunl ocknmen() must be called to release
the lock.

The KwikNet Universal File System (UFS) file system interface calls
procedure kn_osl ockf s(), when necessary, to ensure exclusive use of a
particular file system service by the currently executing task. Note that
only file services accessed through the UFS are locked in this manner.
When the file system operation is complete, the UFS calls procedure
kn_osunl ockf s() to release the lock.

Prototypeisinfile KN_API . H.
#include "KN_LIB. H'

voi d kn_osl ocknet (voi d); voi d kn_osunl ocknet (voi d);
voi d kn_osl ocknen(voi d); voi d kn_osunl ocknmen(voi d);
voi d kn_osl ockfs(void); voi d kn_osunl ockfs(void);

A detailed description of the operation of these resource locking
proceduresis provided in Chapter 2.2 under the topic "Resource Locking".

Network resource locking must always be supported.

Memory locking is only required if your memory allocation services are
not thread-safe. To enable memory locking, use the KwikNet Configuration
Builder to edit your KwikNet Library Parameter File and check the box
labelled "Protect memory get/free operations” on the OS property page.

Symbol KN _MEMLOCK is defined in KwikNet header file KN LIB.H to
indicate that memory locking is disabled (0) or enabled (non-zero).
Memory locking procedureskn_osl ockmen() and kn_osunl ocknen() are
conditionally compiled so that they exist only if memory locking is
required (KN_MEMLOCK iS noN-zero).

...Mmore

KwikNet RT/OS Interface

Description

Returns

...continued

File access locking is only required if you are using a file system with file
services that are not thread-safe. To enable file access locking, use the
KwikNet Configuration Builder to edit your KwikNet Library Parameter File
and check the box labelled "Protect file system services" on the File System

property page.

Symbol KN _FS LOcK is defined in KwikNet header file KN LIB.H to
indicate that file access locking is disabled (0) or enabled (non-zero). File
access locking procedures kn_osl ockfs() and kn_osunl ockfs() are
conditionally compiled so that they exist only if file access locking is
required (KN_FS_LOCK iS non-zero).

Nothing

Multitasking Operation

These procedures must be implemented as described in Chapter 2.2 under the topic
"Resource Locking".

Single Threaded Operation

These procedures are not present in the single threaded OS Interface Modul e.

KwikNet RT/OS Interface

IEKADAK Copyright © 1999-2000 KADAK Products L td.

49

50

This page left blank intentionally.

Copyright © 1999-2000 KADAK Products L td. IEKADAK

KwikNet RT/OS Interface

3. Target Processor and Compiler Use

3.1 Introduction

KwikNet C source files include header file KN_LI B. H, your KwikNet Library Configuration
Module which defines the subset of KwikNet features required by your application. Any
of your C source files which access KwikNet services must also include this header file.

KwikNet header file KN_LI B. H includes another header file which is both target processor
and C compiler dependent. This file is the compiler header file KNzzzcc. H first
introduced in Chapter 1.1 (see Figure 1.1-2). File KNzzzcc. His referred to as the KwikNet
compiler configuration header file.

Porting Tip

This long chapter provides a complete specification for the
content of the KwikNet compiler header file KNzzzcc. H.

Pick the file for your target processor and C compiler from
the examples in ingtalation directory EXAMPLES\ CC H.
Little, if any, editing will be required. For other targets or
compilers, pick the architecturally closest example as a
starting point.

Compiler header file KNzzzcc. H serves severa purposes. It identifies the specific
features which your C compiler supports and, if necessary, provides aternatives to
standard C usage. It also determines how critical section protection, device /O
operations, interrupt level manipulations and clock services are to be performed. Thefile
can aso include C or assembly language code fragments to optimize the execution speed
of certain time-critical or frequently occurring KwikNet operations.

So how can this header file generate code fragments? The answer liesin the fact that the
compiler configuration header file KNzzzcc. H is included more than once by some
KwikNet C source modules. For example, KwikNet module KN _UTI L. C includes file
KNzzzCC. H once (viaKN_LI B. H) to get the usual kind of definitions which you expect to
see in a header file. It then defines a symbol, such as KN_CCNEED _swaP, and includes file
KNzzzCC. H again. This time, the definitions within the file are ignored since they have
already been included once. However, because symbol KN _CCNEED SWAP has been
defined, the fragment of code which implements a fast swapping function will be inserted
into the compiled copy of module KN_UTI L. C. This technique permits the KwikNet
fragments requiring customization to be collected into a single file which can be edited
by you without a detailed understanding of the KwikNet framework.

The remainder of this chapter will describe how to edit the compiler configuration header
file KNzzzcc. H to meet your requirements. Chapter 3.2 describes the edits required to
specify features supported by your C compiler. Chapter 3.3 summarizes the processor
and compiler dependent low level services which KwikNet requires and suggests methods
for their implementation. Actual implementation examples are provided in Chapter 3.4.

Target Processor and Compiler Use IEKADAK rev2 51

The KwikNet compiler configuration header files H_ttt XXX. vvv listed in Figure 3.1-1,
although created and tested for use with KwikNet and the AMX Real-Time Multitasking
Kernel, are but a few of those provided with the KwikNet Porting Kit as examples. The
fileswill be found in installation directory EXAMPLES\ CC_H.

The mnemonic ttt identifies the target processor family. The mnemonic XxX identifies
the compiler vendor. The file extension vvv indicates the revision of the compiler with
which the header file was first tested.

When using any of these files, copy the file and rename it KNzzzcc. H.

File Target Compiler

H 86MC. 15 80x86 (real mode) Microsoft 16-bit Visual C/C++v1.5, v1.52
H_86PD. 50 80x86 (real mode) Paradigm 16-bit C/C++v5.0, v6.0

H 86TC. 50 80x86 (real mode) Borland 16-bit C/C++v5.0

H _86WC. 110 80x86 (rea mode) WATCOM (Sybase) 16-hit C/C++v11.0

H 386BCB. 50 80x86 (protected mode) Borland 32-bit C/C+t v5.0

H 386MCB. 42 80x86 (protected mode) Microsoft 32-hit Visual C/C+ v4.2 and up
H 386MAB. 331 80x86 (protected mode) MetaWare High C/C++v3.31 and up

H 386PD. 60 80x86 (protected mode) Paradigm 32-bit C/C++v6.0

H 386WC. 110 80x86 (protected mode) WATCOM (Sybase) 32-bit C/C++v11.0

H 68KDA. 42 68000 Diab-SDS C/C++v4.2 and up

H 68KI M 842 68000 TASKING (Intermetrics) C/C++v8.4.2
H 68KME. 20 68000 Metrowerks C/C++v2.0 and up

H 68KMR. 45 68000 Mentor Graphics (Microtec) C/C++ v4.5G
H_CFDA. 42 ColdFire Diab-SDS C/C+t v4.2 and up

H CFME. 25 ColdFire Metrowerks C/C++v2.5

H_PPCDA. 41 PowerPC Diab-SDS C/C++v4.1 and up
H_PPCME. 42 PowerPC Metrowerks C/C++ v4.2 and up
H_PPCMW 41 PowerPC MetaWare High C/C++v4.1 and up

H ARVMRM 211 ARM (ARM mode) ARM Ltd. C/C++ SDK v2.11 and up

H ARMMN 410 ARM (ARM mode) MetaWare High C/C++v4.1 and up

H ARBRM 211 ARM (Thumb mode) ARM Ltd. C/C++ SDK v2.11 and up
H ARBMW 410 ARM (Thumb mode) MetaWare High C/C++v4.1 and up

H MB2MA 430 MIPS32 MetaWare High C/C++v4.3e

H_BFAD. 30 Blackfin Anaog Devices C/C++v3.0

Figure 3.1-1 Compiler Configuration Header File Examples

52 rev2 sxKADAK Target Processor and Compiler Use

3.2 C Compiler Adaptation

The KwikNet compiler configuration header file KNzzzcc. H must identify the specific
features which your C compiler supports. Figure 3.2-1 illustrates such a specification for
atypical, ANSI compliant C compiler.

Standard C Header Files

KwikNet assumes that a subset of the following standard C header files will be provided
with your C compiler. Unless otherwise specified, KwikNet assumes that all of the
standard C definitions needed for argument passing, string and memory manipulation and
memory alocation will be available in the subset marked with the * character.

KN_HSTDARG stdarg. h * Standard arguments
KN_HSTDLI B stdlib.h * Standard library
KN_HSTRI NG string.h * String manipulation
KN_HVEMORY menory. h Memory manipulation
KN_HVEM mem h Memory manipulation
KN_HVALLOC mal | oc. h Memory allocation
KN_HSTDI O stdio.h Standard 1/0O

Y ou can override KwikNet's choice of C header files by defining symbol KN_CCHDRTYPE to
identify the specific set of header files to be used. For example, if your C compiler does
not provide file st darg. h and puts its memory manipulation definitions in file mem h,
you must define KN_CCHDRTYPE as follows.

#define KN_CCHDRTYPE (KN _HSTDLIB | KN _HSTRING | KN_HVEM

Parameter Passing Conventions

Some C compilers use a keyword such as __cdecl to define the parameter passing
conventions which a C function must follow when interfacing with modules coded in
other languages such as assembly language. If your C compiler uses such a keyword,
define symbol KN_ccPP to be that keyword. Otherwise define KN_CCPP to be an empty
string asin Figure 3.2-1.

If your C compiler alows variable length argument lists in C function declarations (using
"... "), define symbol KN_ccDOTS to be 1. Otherwise define KN_CCDOTS to be 0.

Random Number Gener ator

If your C library includes the random number functions rand() and srand(), define
symbol KN_CCRAND to be 1. Otherwise define KN_CCRAND to be 0. If KN_CCRAND is 0,
KwikNet will use its own primitive pseudo-random number generator.

Target Processor and Compiler Use IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

53

#i fndef KN_CCHDR H

#define KN CCHDR H 1
/* Conpiler has nenory functions in string.h */
/* Malloc is in stdlib.h. */
/* Stdarg.h is avail abl e. */
/* Therefore, use the default definition of avail abl e header types */
/* and DO NOT defi ne KN _CCHDRTYPE. */
#def i ne KN_CCPP /* Uses standard C paraneter */
/* passing convention */
#def i ne KN_CCDOTS 1 /* Can use "..." in prototypes */
#defi ne KN_CCRAND 1 /* rand(), srand(seed) ARE available */

/* Macro to get rid of "unused argunent" warni ngs.
/* Wth conpilers that can suppress these warnings,

/* #define USE_ARG x) ((void)(x))

#def i ne USE_ARE x)

/* Turn off nonsensical warnings.
/* Because of the many supported configurations and options */
/* sonme warni ngs cannot be avoi ded.

/* --- none ---

/* Far and huge keywords not supported

#defi ne KN_CCFAR
#def i ne KN_CCHUGE

#endif /* KN_CCHDR H */

/* File I1/O Definitions

#i f def KN_CCNEEDFI LE

#i fndef KN _CCFILE H
#define KN CCFILE H 1
#i ncl ude <stdi o. h>

#endif /* KN_CCFILE H */
#endi f /* KN_CCNEEDFI LE */

Figure 3.2-1 C Compiler Adaptations

*/

define as empty. */

*/

*/
*/

*/

*/

Target Processor and Compiler Use

Eliminating War nings

Many C compilers generate warnings if C code is not absolutely pristine. Others produce
warnings because of shortcomings in the compiler. If possible, use your compiler's
command line switch to avoid such warnings. Alternatively, use the #pr agma statement,
if any, to eliminate the warning.

For example, the Borland (Inprise) C compiler generates a warning if a structure is
referenced before it is defined. Such references are common in structures which are
linked to each other. To avoid this warning, the following Borland specific statement can
be inserted into the compiler configuration header file KNzzzcc. H.

#pragma warn -stu

The most common warning is the reminder that a parameter passed to a function is not
actualy used by the function. There are times when such functions cannot be avoided
without paying an execution penalty that is otherwise unwarranted. If possible, use your
compiler's command line switch to avoid such warnings. Alternatively, insert the
#pr agma Sstatement, if any, which eliminates the warning. In either of these cases, define
macro USE_ARG to be an empty string. If neither of these solutions is possible, define the
macro USE_ARG as shown in Figure 3.2-1 to force all argumentsto actually be used.

Segmented Memory Access

When using the 16-bit Intel 80x86 processor with its segmented memory architecture,
there is difficulty alocating and accessing memory arrays which exceed 64K bytes.
Compilers overcome these hurdles by introducing keywords (such as_f ar and _huge) to
be used as modifiers for pointer references and array allocation.

If you are using KwikNet on the 16-bit Intel 80x86 processor operating in real mode,
define symbol KN_CCFAR and KN_CCHUGE to be the appropriate keyword used by your
compiler. Otherwise define both KN_CCFAR and KN_CCHUGE to be an empty string as
shown in Figure 3.2-1.

Interrupt Function Definitions

If your compiler permits an interrupt service routine (ISR) to be coded in C, then you
should provide compiler dependent definitions in header file KNzzzcc. H similar to those
illustrated below for use by your OS Interface Module KN_OSI F. C.

typedef void _interrupt (*KN_CCI NTFNP) (void);
#defi ne KN _CCI NTFUNC(i srnane) void _interrupt isrnanme(void)

File /O Definitions

If you are using a KwikNet option such as FTP which requires a file system, you may be
using the file services from your C library. If so, KwikNet will define symbol
KN_CCNEEDFI LE and include your compiler configuration header file KNzzzcc. H to gain
access to your C file I/O definitions, usually located in C header file st di 0. h. Note that
the inclusion of your file I/O definitions must be done outside the header definition
region bounded by the KN_CCHDR_H definition.

Target Processor and Compiler Use IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

55

56

3.3 Low Levd Services

The KwikNet compiler configuration header file KNzzzcc. H must specify how critical
section protection, device 1/0 operations, interrupt level manipulations and clock services
are to be performed. It can aso introduce C or assembly language code fragments to
optimize the execution speed of certain time-critical or frequently occurring KwikNet
operations.

The low level services can be implemented using any of the following techniques.
Examples of each technique are provided in Chapter 3.4.

* C macroswhich use in-line assembly language statements
e Cfunctions coded in C with in-line assembly language statements
» Cmacrosand equivaent C library macros or functions

» Cfunctions coded in C using only C language statements

Figure 3.3-1 illustrates one possible specification of the low level services required by
KwikNet. Control symbols of the form KN_FN_xxxx are defined in the definitions region
of the KwikNet compiler configuration header file KNzzzcc. H following the C compiler
adaptation parameters. Each control symbol definition specifies how a particular low
level service or set of servicesisto be implemented.

If a control symbol is defined to be KN_AS_KNVACRO, then the low level service will be
implemented for you by KwikNet using a C macro definition.

If a control symbol is defined to be KN_AS_KNFUNC, then the low level service will be
implemented for you by KwikNet as a C function coded entirely in C.

If a control symbol is defined to be KN_AS_FNCC| KN_AS_FNPROTO, then the low level
service must be implemented by you as a function (or its equivalent) in header file
KNzzzCC. H using any of the techniques listed above and described in this chapter. The
function prototype will be provided for you by KwikNet.

Some C compilers allow you to declare an in-line assembly language macro which looks
like a function, feels like a function but is not actually a function. The definition of such
a macro provides the prototype and the function, al in one. When declaring such a
function, the control symbol must be defined as KN_AS_FNCC. Since the constant
KN_AS_FNPROTO is omitted from the definition, KwikNet will not generate a function
prototype, thereby avoiding any possible conflict with your in-line definition.

If you provide your own implementation of a low level service as a macro or as a
function complete with its own prototype, the associated control symbol must be defined
to have the value 0. Example 3.4.1-A illustrates this requirement.

Note

The definition of the critical section control symbol
KN FN CRIT must be done outside the usua header
definition region bounded by the KN_CCHDR_H definition.
Note that the definition is only required if symbol
KN_CCNEED_CRI TDEF has been defined by KwikNet.

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK Target Processor and Compiler Use

#i f ndef KN _CCHDR H

#define KN CCHDR H 1

[* */
/* . Conmpiler definitions (see Figure 3.2-1) */
[* */
/* __ */
/* Low Level Services */
/* Endi an swappi ng */
#defi ne KN_FN_SWAP (KN_AS FNCC | KN_AS FNPROTO

/* 1P checksum generation */
#defi ne KN_FN_CKSUM (KN_AS_FNCC | KN_AS_FNPROTO

/* Interrupt |evel manipul ation */
#define KN_FN_I NTSUPP (KN_AS FNCC | KN_AS_FNPROTO

/* Device I/O operations */
#defi ne KN_FN_MEM O KN_AS_KNMACRO

#defi ne KN_FN_MEMREP KN_AS_KNMACRO

/* O ock read must be atonmic */
#define KN_FN_CLKRD (KN_AS_FNCC | KN_AS_FNPROTO

#endi f /* KN_CCHDR H */

/* __ */
/* Critical Section Services */
#i f def KN_CCNEED_CRI TDEF

#i fndef KN_CCCRI TDEF_H

#define KN _CCCRI TDEF_H 1

/* Define critical section protection mechani sm */

#define KN.FN CRI T

(KN_AS _FNCC | KN_AS_FNPROTO)

#endi f /* KN_CCCRI TDEF_H */
#endi f /* KN_CCNEED CRI TDEF */

Target Processor and Compiler Use

Figure 3.3-1 Specifying Low Level Services

IEKADAK Copyright © 1999-2000 KADAK Products L td.

57

58

The following low level KwikNet services are governed by control symbols KN_FN_CRI T
and KN_FN_I NTSUPP. Since these services are target dependent, you must provide them.
There are no defaults provided by KwikNet. However, examples are provided for several
different target processors and compilers.

KN FN CRI T kn_csenter () Enter into acritical section
KN FN CRI T kn_csexit() Exit from acritical section
KN_FN_I NTSUPP kn_brdintlvl () Changeinterrupt priority level

The following low level KwikNet services are optional. You only need to provide them if
you wish to optimize their performance. They are governed by control symbols
KN_FN_SWAP and KN_FN_CKSUM The KwikNet defaults for these services can be used.

KN_FN_SWAP kn_swap16() Reverse byte order in a 16-bit unsigned integer
KN_FN_SWAP kn_swap32() Reverse byte order in a 32-hit unsigned integer
KN_FN_CKSUM kn_cksum() Compute IP datagram checksum

The following low level KwikNet device I/O services must be provided. However, you
may be able to use the default services provided by KwikNet. The services are governed
by control symbols KN_FN_MEMkxx and KN_FN_DVCxxx.

If you are using a processor which uses memory mapped 1/0O addressing, you must
provide the memory mapped input/output services governed by control symbols
KN_FN_MEM O and KN_FN_MEMREP. You can leave control symbols KN_FN_DvcCl O and
KN_FN_DVCREP undefined or defined aso.

KN_FN_MEM O kn_i nNN() 8, 16 and 32-bit read from device memory
KN_FN_MEM O kn_out mNN() 8, 16 and 32-bit write to device memory

KN_FN MEMREP kn_i nmsNN() 8, 16 and 32-bit block read from device memory
KN _FN_ MEMREP kn_out nsNN() 8, 16 and 32-bit block write to device memory

If you are using a processor like the Intel 80x86 which uses 1/O ports for device
addressing, you must provide the port input/output services governed by control symbols
KN_FN_DVvCl Oand KN_FN_DVCREP. It isrecommended that these services be implemented
as shown in the example files H__86xxx. vvv or H 386xxx. vvv listed in Figure 3.1-1.
You can leave control symbols KN_FN_MEM O and KN_FN_MEMREP undefined or defined
aso.

KN_FN_DVCl O kn_i npNN() 8, 16 and 32-bit read from device I/O port
KN_FN_DVCl O kn_out pNN() 8, 16 and 32-bit write to device 1/O port
KN_FN_DVCREP kn_i npsNN() 8, 16 and 32-bit block read from device I/O port
KN_FN_DVCREP kn_out psNN() 8, 16 and 32-bit block write to device I/O port

The following low level KwikNet clock services may have to be provided to handle the
atomic (indivisible) manipulation of 32-bit clock tick counts. They are governed by
control symbols KN_FN_CLKRD and KN_FN_CLKDI FF. The KwikNet defaults for these
services can be used on most 32-bit processors.

KN_FN_CLKRD kn_tickrd() Read a 32-bit clock tick count
KN_FN_CLKDI FF kn_tickdiff() Computea32-bit clock tick difference

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK Target Processor and Compiler Use

Critical Section Protection

From time to time, KwikNet must perform a sequence of operations which must appear to
be done as one indivisible operation. Such asequenceis called a critical section. KwikNet
invokesthe low level servicekn_csent er () asit entersacritical section. It then invokes
kn_csexit () asitleavesthe region.

These low level services must allow recursion so that KwikNet can enter one critical
section from another and remain critical until it finally exits from the first region. On
most target processors, this requirement can be most easily met by disabling interrupts on
entry to the critical section and restoring interrupts to their previous state upon exit.

These low level services can be implemented as macros or functions. If possible, they
should be implemented as in-line assembly language macros for best performance. |If
implemented as C functions, they would be prototyped as follows:

unsi gned int kn_csenter(void);
voi d kn_csexit(unsigned int);

Service kn_csenter () aways returns a parameter which is subsequently passed to
kn_csexit(). Usualy the parameter is the previous state of the interrupt system.
However, the parameter and its purpose is up to you.

You must define symbol KN_FN_CRI T to specify which of the techniques described in
Chapter 3.4 was used to implement these services.

Using RTOS Critical Section Protection

If you are using an RTOS which provides critical section protection, you may be able to
use the RTOS services instead of implementing your own.

Y ou may have to implement the KwikNet critical section services as functions which make
the appropriate callsto your RTOS. In this case, define symbol KN_FN_CRI T asin Figure
3.3-1 and code the critical section services as functions using the technique illustrated in
Example 3.4.2-B (see Chapter 3.4).

In other cases, you may be able to map the KwikNet critical section services directly to
those of your RTOS as in the following example. Symbol KN_FN_CRI T must be defined
as 0 since low level service functions are not being implemented and KwikNet prototypes
are not required since the services have been defined using macros. The following
definitions should replace the definition of symbol KN_FN_CRI T in the critical section
definition region of header file KNzzzcc. H.

extern short rtos_critical (short);

#defi ne kn_csenter() ((unsigned int)rtos critical (0))
#define kn_csexit(prevstate) ((void)rtos critical (prevstate))
#define KN.FN CRIT 0

Target Processor and Compiler Use IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

59

60

Interrupt Priority Level Manipulation

From time to time, KwikNet must perform a sequence of operations which must be done as
one indivisible operation without the possibility of a specific device interrupt. For
example, the KwikNet board driver KN_BOARD. C includes a function which must install a
pointer to an interrupt service procedure into the processor's interrupt or exception vector
table. Such an installation must be done without an interrupt from the device.

KwikNet invokes the low level service kn_brdintlvl () as it enters and leaves one of
these protected interrupt regions. This service must allow recursion so that KwikNet can
enter one such region from another and remain uninterrupted until it finally exits from the
first region. On most target processors, this requirement can be most easily met by
disabling interrupts on entry to the region and restoring interrupts to their previous state
upon exit. On some target processors, such as the Motorola 68000 family, you can gain
even better control by inhibiting only device interrupts above a particular priority level.

This low level service can be implemented as a macro or function. If possible, it should
be implemented as an in-line assembly language macro for best performance. If
implemented as a C function, it would be prototyped as follows:

unsi gned long kn_brdintlvl (unsigned | ong p);

Service kn_brdintlvl () receives a single parameter p which specifies the required
interrupt state. If p is 0, the service must unconditionally disable interrupts from all
sources. If p is~0, the service must unconditionally enable interrupts from all sources. If
p isany other value, the service must restore interrupts to the state specified by p.

Service kn_brdintlvl () aways returns a parameter which specifies the state of the
interrupt system prior to its invocation. The parameter values 0 and ~0 are reserved for
use as described above. Any other values can be used by you to specify the prior state of
the interrupt system.

Y ou must define symbol KN_FN_I NTSUPP to specify which of the techniques described in
Chapter 3.4 was used to implement this service.

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK Target Processor and Compiler Use

End-for-End Byte Swapping

KwikNet must adjust 16-bit and 32-bit big endian network vaues to match the endian
characteristics of your target processor. Low level services must be provided to reverse
the order of the bytesin a 16-bit or 32-bit unsigned value.

These low level services can be implemented as macros or functions. To use the default
C macro versions defined by KwikNet in header file KN_API . H, simply define symbol
KN_FN_SWAP as follows:

#define KN_FN_ SWAP KN_AS_KNMACRO

If your C compiler cannot handle these simple KwikNet macros, you can use the default C
functions defined by KwikNet in header file KN_API.H and implemented in file
KN_UTI L. C. Simply define symbol KN_FN_SWAP as follows:

#define KN_FN_ SWAP KN_AS_KNFUNC

However, for best performance, the low level byte swapping services should be
implemented as in-line assembly language macros. If implemented as C functions, these
services would be prototyped as follows:

unsi gned short kn_swapl6(unsi gned short val);
unsi gned | ong kn_swap32(unsi gned | ong val);

Parameter val isthe 16-bit or 32-bit value which isto be end-for-end byte swapped.

The 16-bit parameter val is returned from kn_swap16() with val[0..7] and
val [8. . 15] interchanged.

The 32-bit parameter val is returned from kn_swap32() with val [0.. 7] interchanged
withval [24. . 31] andval [8. . 15] interchanged withval [16. . 23] .

You must define symbol KN_FN_sSwAP to specify which of the techniques described in
Chapter 3.4 was used to implement these services.

Target Processor and Compiler Use IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

61

62

| P Checksum Calculation

KwikNet must calculate the checksum for every IP datagram which it manipulates.
Optimization of the low level service which performs this operation can greatly enhance
performance.

This low level service can be implemented as a macro or function. Rarely is a macro
warranted, since the complexity of the agorithm and its frequency of use would
adversely affect code size. To use the default C function version defined by KwikNet in
header file KN_API.H and implemented in file KN_UTIL. C, simply define symbol
KN_FN_cksumas follows:

#define KN_FN_CKSUM KN_AS_KNFUNC

However, for best performance, thislow level 1P datagram checksum algorithm should be
implemented using in-line assembly language within a C function. See any of the
examples provided in the compiler configuration header files KNttt CC. xxx listed in
Figure 3.1-1. If implemented as a C function, it would be prototyped as follows:

unsi gned short kn_cksum(void *p, unsigned int n);

The checksum service kn_cksun() returns the 16-bit checksum of the n 16-bit integer
values from the memory array referenced by pointer p. The checksum is computed by
summing the n 16-bit integers from the memory array using one's complement arithmetic
and then returning the one's complement of the sum.

An interesting characteristic of this algorithm is that it is endian independent. This fact
can be used to advantage when implementing this low level service. Examine any of the
in-line assembly language implementations in the KNt t t CC. xxx header files or review
the C language implementation in file KN_UTI L. C.

You must define symbol KN_FN_CKSUM to specify which of the techniques described in
Chapter 3.4 was used to implement this service.

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK Target Processor and Compiler Use

Memory Mapped Device |/O

If you are using a processor which uses memory mapped 1/O addressing, you must
provide memory mapped versions of the low level KwikNet device I/O services. You can
leave the 1/0O device port symbols KN_FN_DvCl O and KN_FN_DVCREP undefined or defined
aso.

If your C compiler supports the keyword vol ati | e, you can use the default C macro
versions defined by KwikNet in header file KN_DvClO. H. Simply define symbols
KN_FN_MEM Oand KN_FN_MEMREP as follows:

#defi ne KN_MEM O KN_AS_KNMACRO
#define KN MEMREP KN_AS_KNMACRO

Alternatively, you can use the default C function versions defined by KwikNet in header
file KN.Dvcio H and implemented as C functions in the KwikNet board driver
KN_BOARD. C. Simply define symbols KN_FN_MEM Oand KN_FN_MEVREP as follows:

#define KN_MVEM O KN_AS_KNFUNC
#define KN MEVREP KN_AS_KNFUNC

When implemented as C functions, these low level services are prototyped as follows:
unsi gned char kn_i nnB(unsi gned | ong addr);

unsi gned short kn_inml6(unsi gned | ong addr);
unsi gned long kn_innB2(unsigned | ong addr);

voi d kn_out nB8(unsi gned | ong addr, unsigned char val);

voi d kn_out mi6(unsi gned | ong addr, unsigned short val);
voi d kn_out n82(unsi gned | ong addr, unsigned |ong val);
voi d kn_i nns8(unsi gned | ong addr, void *valp, int n);

voi d kn_i nns16(unsi gned | ong addr, void *valp, int n);
voi d kn_i nn832(unsi gned | ong addr, void *valp, int n);
voi d kn_out ms8(unsi gned | ong addr, void *valp, int n);
voi d kn_out ms16(unsi gned | ong addr, void *valp, int n);
voi d kn_out ns32(unsi gned | ong addr, void *valp, int n);

Parameter addr is the device's linear memory address. Parameter val is an unsigned 8,
16 or 32-bit value to be written to the device.

For the block read services, parameter val p is a pointer to storage for an array of n
unsigned 8, 16 or 32-bit values to be read from the device. For the block write services,
parameter val p is apointer to an array of n unsigned 8, 16 or 32-bit values to be written
to the device.

If you wish, you can implement these low level services as macros or functions which use
in-line assembly language for best performance. In this case, you must define symbols
KN_FN_MEM Oand KN_FN_MEMREP to specify which of the techniques described in Chapter
3.4 was used to implement the services.

Target Processor and Compiler Use IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

63

64

Device Port |/O

If you are using a processor like the Intel 80x86 which uses I/O ports for device
addressing, you must provide the low level port input/output services. You can leave
memory mapped device 1/0O symbols KN_FN_MEM O and KN_FN_MEMREP undefined or
defined as 0.

These low level services can be implemented as macros or functions. It is recommended
that you implement these services as shown in any of the 80x86 example files
H__86xxx. vvv Or H 386xxx. vvv listed in Figure 3.1-1.

If implemented as C functions, these low level services are prototyped as follows:
unsi gned char kn_i np8(unsigned int port);

unsi gned short kn_inpl6(unsigned int port);
unsi gned long kn_inp32(unsigned int port);

voi d kn_out p8(unsi gned int port, unsigned char val);

voi d kn_out p16(unsi gned int port, unsigned short val);
voi d kn_out p32(unsi gned int port, unsigned |ong val);
voi d kn_i nps8(unsi gned int port, void *valp, int n);

voi d kn_i nps16(unsigned int port, void *valp, int n);
voi d kn_i nps32(unsigned int port, void *valp, int n);
voi d kn_out ps8(unsigned int port, void *valp, int n);
voi d kn_out psl6(unsigned int port, void *valp, int n);
voi d kn_out ps32(unsigned int port, void *valp, int n);

Parameter port isthe device's I/O port address. Parameter val is an unsigned 8, 16 or
32-bit value to be written to the device port.

For the block read services, parameter val p is a pointer to storage for an array of n
unsigned 8, 16 or 32-bit values to be read from the device port. For the block write
services, parameter val p isapointer to an array of n unsigned 8, 16 or 32-bit values to be
written to the device port.

You must define symbols KN_FN_DvCl O and KN_FN_DVCREP to specify which of the
techniques described in Chapter 3.4 was used to implement the services.

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK Target Processor and Compiler Use

Clock Services

KwikNet maintains a clock tick counter which it uses for elapsed time monitoring. The
count is a 32-bit unsigned long integer value stored in public variable kn_t i cks. KwikNet
must be able to read this 32-bit value atomically, even on systems with a 16-bit memory
system or target processor. KwikNet must be also be able to compare this 32-bit value
with another 32-bit value.

Reading Clock Tick Count

If your C compiler can generate code to fetch the tick count from variable kn_t i cks
with a single, indivisible memory read, then KwikNet's tick access requirements will be
met. This will be the case for most 32-bit target processors. For such a C compiler,
simply leave symbol KN_FN_CLKRD undefined.

If your C compiler cannot gener ate code to fetch the tick count from variable kn_t i cks
with a single, indivisible memory read, then you must provide a low level service
kn_tickrd() to perform the operation. This will be the case for most 16-bit target
processors. The low level service can be implemented as a macro or function. To use the
default C function version defined by KwikNet in header file KN_API . H and implemented
infile KN_UTI L. C, simply define symbol KN_FN_CLKRD as follows:

#define KN_FN_ CLKRD KN_AS_KNFUNC

However, for best performance, the low level tick read service should be implemented as
an in-line assembly language macro. If implemented as a C function, the service would
be prototyped as follows:

unsi gned long kn_tickrd(void);

The service kn_t i ckrd() must return the 32-bit unsigned long integer from the KwikNet
public variable kn_ti cks. If the service guards the access to kn_ti cks by disabling
interrupts, it must not unconditionally enable interrupts upon exit. Instead, it must restore
interrupts to the state which existed prior to entry to the service.

You must define symbol KN_FN_CLKRD to specify which of the techniques described in
Chapter 3.4 was used to implement this service.

Target Processor and Compiler Use IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

65

66

Clock Tick Difference Computation

If your C compiler can correctly evaluate the following expression where x and y are
unsigned long values, then KwikNet's tick differencing requirements will be met. This will
be the case for most C compilers. For such a C compiler, ssimply leave symbol
KN_FN_CLKDI FF undefined.

(((long)(x - y)) <= OL)

If your C compiler cannot correctly evaluate the above expression, then you must
provide a low level service kn_ti ckdiff() to perform the tick differencing operation.
The low level service can be implemented as a macro or function. To use the default C
function version defined by KwikNet in header file KN_API . H and implemented in file
KN_UTI L. C, simply define symbol KN_FN_CLKDI FF as follows:

#define KN_FN CLKDI FF KN_AS_KNFUNC

However, for best performance, the low level tick difference service should be
implemented as an in-line assembly language macro. If implemented as a C function, the
service would be prototyped as follows:

I ong kn_tickdiff(unsigned | ong nticks);

The service kn_t i ckdi ff () must read the 32-bit unsigned long integer from the KwikNet
public variable kn_t i cks, subtract the unsigned long parameter value nt i cks and return
the difference as a signed, long integer value. If the service guards the access to
kn_ti cks by disabling interrupts, it must not unconditionally enable interrupts upon exit.
Instead, it must restore interrupts to the state which existed prior to entry to the service.

Y ou must define symbol KN_FN_CLKDI FF to specify which of the techniques described in
Chapter 3.4 was used to implement this service.

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK Target Processor and Compiler Use

3.4 Code Fragment I mplementation

The KwikNet compiler configuration header file KNzzzcc. H must specify how critical
section protection, device 1/0 operations, interrupt level manipulations and clock services
are to be performed. These services and their C function prototypes were introduced in
Chapter 3.3.

Thelow level services can be implemented using any of the following techniques.

C macros which use in-line assembly language statements

C functions coded in C with in-line assembly language statements
C macros and equivalent C library macros or functions

C functions coded in C using only C language statements

If performance is not an issue, the easiest solution is to use the default C macro or
function provided by KwikNet for the service. There are, however, a few services which
must be implemented by you. Even for these, you should follow the examples provided
in one of the compiler configuration header fileslisted in Figure 3.1-1.

The implementation technique to be used will be influenced by a number of factors. For
best performance, use in-line assembly language and implement the service as a macro or
function. Use amacro if the service involves very little in-line code. Use afunction for a
service such as the IP datagram checksum calculation which, although too long to be
suitable for in-line use, till warrants assembly language implementation for performance.

Unfortunately, your choice of implementation technique will ultimately depend on the
compilation features provided by your C compiler.

In the remainder of this chapter, the various techniques will be explored. For each
technique, one or more of the low level services described in Chapter 3.3 will be
implemented using the technique. 1n each case, the example will be based on a particular
C compiler and target processor.

Note

Each low level service can be implemented using the
technique best suited for that service. All services do not
have to be implemented using the same technique.

Target Processor and Compiler Use IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

67

68

3.4.1 C Macro UsingIn-Line Assembly Language

If your C compiler supports in-line assembly language code fragments, many of the
frequently used, low level services can benefit. This technique can only be used if your C
compiler allowsin-line functions to receive parameters and return val ues.

Example 3.4.1-A

The following example illustrates the implementation of the critical section services
using Diab-SDS C/C++ on a Motorola M68000 processor. Note that this code fragment
resides in its own definition region bounded by the KN_CCNEED CRI TDEF definition as
previoudly illustrated in Figure 3.3-1.

The compiler's asm directive is used to prototype the in-line function and to allow its
definition using assembly language. Because the prototype has been provided and an
instance of the function will not actually be generated, the KwikNet symbol KN_FN_CRI T is
defined to be 0. KwikNet will not generate a conflicting function prototype and will not
try to force an instance of the function.

Every reference to these low level services will yield an in-line expansion of the function.
Function kn_csent er () returns the previous interrupt state in register do as specified by
the Diab-SDS C to assembly language interface. Note that the function kn_csexi t () has
two specifications: one for use if parameter p isin aregister and one for use if parameter
p isamemory variable.

/* Exanpl e: Diab-SDS C conpiler for the Ms8000 processor */
2 * [
/* Low level critical section services * [

#i f def KN_CCNEED CRI TDEF
#i fndef KN_CCCRI TDEF_H
#define KN_CCCRI TDEF_H 1

asm unsi gned int kn_csenter(void)
{

nove. w sr,do

ori.w #0x0700, sr

}

asm voi d kn_csexit(unsigned int p)
{
%reg p;
nove. w p, sr
% mem p;
nmove. | p, dO
nove. w do, sr

}
#define KN FNCRT O

#endi f /* KN_CCCRI TDEF_H */
#endi f /* KN_CCNEED_CRI TDEF */

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK Target Processor and Compiler Use

Example 3.4.1-B

The following example illustrates the implementation of the low level services for clock
tick manipulation using WATCOM (Sybase) C/C+ on an Intel 80x86 processor
operating in real mode. Note that the macro definitions must reside within the definition
region of header file KNzzzccC. H.

The compiler's #pragma aux directive is used to prototype the in-line functions and to
allow their definition using assembly language. Because the prototype has been provided
and an instance of each function will not actually be generated, the KwikNet symbols
KN_FN_CLKRD and KN_FN_CLKDI FF are defined to be 0. KwikNet will not generate
conflicting function prototypes and will not try to force an instance of the functions.

Every reference to these low level services will yield an in-line expansion of the function.
Function kn_t i ckrd() returns the value of variable kn_ti cks in register pair DX: AX as
specified by the WATCOM C to assembly language interface. Function kn_ti ckdi ff ()
receives its parameter nti cks in register pair Cx: BX and subtracts it from the value of
variablekn_ti cks. Theresult isreturned in register pair DX: AX.

/* Exanpl e: WATCOM C conpiler for the real nbde 80x86 processor */
/ K o e */
#i fndef KN_CCHDR H

#def i ne KN_CCHDR H 1

[* */
/* . Conpiler definitions (see Figure 3.2-1) */
[* */
/* __ */
/* Low |l evel clock tick manipul ati on services */

extern unsigned | ong kn_ticks;
unsi gned long kn_tickrd(void);
I ong kn_tickdiff(unsigned |ong);

#pragma aux kn_tickrd = \
"pushf", \
"cli", \
" mov ax,word ptr kn_ticks", \
" mov dx,word ptr kn_ticks+2", \
"popf"; /* Return result in DX AX */

#pragma aux kn_tickdiff = \
"pushf", \
"cli", \
" mov ax,word ptr kn_ticks", \
" mov dx,word ptr kn_ticks+2", \
"popf", \
"sub ax, bx", \
"sbb dx, cx" \
parm [cx bx]; /* Return result in DX AX */

#defi ne KN_FN_CLKRD 0

#defi ne KN_FN_CLKDI FF 0

#endi f /* KN_CCHDR_H */

Target Processor and Compiler Use IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

69

70

Example 3.4.1-C

The following example illustrates the implementation of the low level service for
interrupt priority manipulation using WATCOM (Sybase) C/C+ on an Intel 80x86
processor operating in real mode.

The compiler's #pr agma aux directive is used to prototype the in-line function and to
allow its definition using assembly language. Because the prototype has been provided
and an instance of the function will not actually be generated, the KwikNet symbol
KN_FN_I NTSUPP is defined to be 0. KwikNet will not generate a conflicting function
prototype and will not try to force an instance of the function.

Every reference to this low level service will yield an in-line expansion of the function.
Function kn_br di nt | vl () receives its parameter p in register pair DX: AX. The result is
also returned in register pair Dx: AX as specified by the WATCOM C to assembly
language interface.

/* Exanpl e: WATCOM C conpiler for the real nbde 80x86 processor */
/* __ */
#i fndef KN_CCHDR H

#def i ne KN_CCHDR H 1

[* */
/* . Conpiler definitions (see Figure 3.2-1) */
[* */
/* __ */
/* Low level interrupt priority manipul ation service */

unsi gned | ong kn_brdintlvl (unsigned | ong);

#pragma aux kn_brdintlvl = \

" sub dx, dx", \
pushf", \
t est ah, 2", /* Test required IF state */ \
pop ax", /* DX: AX = previous PSW= result */ \
jz short 1dis", \
sti", /* Enable interrupts */ \
jmp short lexit", \

"ldis: cli", /* Disable interrupts */ \

"lexit:" \
parm [dx ax]; /* Return result in DX AX */

#define KN_FN_| NTSUPP 0

#endi f /* KN_CCHDR_H */

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK Target Processor and Compiler Use

3.4.2 C Functions Coded in Assembly Language

You can use this technique if your C compiler allows you to implement a C function
which, athough called from C, is actually coded in assembly language. For many
compilers, thisis the only technique you can use to create an assembly language function
which receives parameters and returns avalue.

Y ou can use this technique even if your C function will not use assembly language at all.
For example, the low level C function may be completely coded in C but make use of
non-standard C macros or functions provided with your C compiler to manipulate
registers within your target processor.

Example 3.4.2-A

The following example illustrates the implementation of the byte swapping services using
Borland (Inprise) C/C++ on an Intel 80x86 processor operating in protected mode.

There are two parts required: the definition of symbol KN_FN_swap and the assembly
language implementation of the C callable functions.

You must define the KwikNet symbol KN_FN_SwAP within the definition region of header
file KNzzzcc. Hasfollows:

/* Exanple: Borland C conpiler for the protected node 80x86 processor */
/* __ */
#i fndef KN_CCHDR H

#def i ne KN_CCHDR H 1

[* */
/* : Conpiler definitions (see Figure 3.2-1) */
[* */

| o o e */
/* Low | evel endi an swapping services */

#define KN_FN_ SWAP (KN_AS FNCC | KN_AS_FNPROTO)

#endi f /* KN_CCHDR_H */

The definition states that the swapping services are to be implemented in header file
KNzzzCC. H using assembly language code fragments. It also states that KwikNet must
provide its standard C function prototypes for these services. If you provide your own
custom compiler dependent prototypes for the low level service functions, be sure to omit
KN_AS_FNPROTO from your definition of KN_FN_SWAP so that the corresponding KwikNet
prototypes will be omitted, thereby avoiding possible conflicts.

Following the definition region in header file KNzzzcc. H you must implement the low
level services as C functions coded in assembly language.

Since your definition of KN_FN_SWAP indicates that your byte swapping services are
available in a code fragment, KwikNet defines symbol KN_CCNEED SwAP and includes
header file KNzzzCcC. H to generate one instance of the code fragment in the appropriate
KwikNet source module. In this example, the code fragment from header file KNzzzcc. H
is actualy inserted into the source file KN_UTI L. C.

Target Processor and Compiler Use IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

71

72

Example 3.4.2-A (continued)

Note that this code fragment must reside in its own definition region bounded by the

KwikNet KN_CCNEED_SWAP definition as shown in the example below.

The compiler's asmdirective is used to code the body of the C functions using assembly
language. Function kn_swap16() returns the 16-bit result in register AX as specified by
the Borland C to assembly language interface. Function kn_swap32() returns the 32-bit
result in register EAX. Note that the Borland compiler alows these functions to reference

parameter p from within the assembly language code fragment.

Also note that the

Borland pragmawar n has been used to avoid erroneous warnings that these functions fail

to return avalue.

/* Exanpl e: Borland C conpiler for the protected node 80x86 processor */
| ® o o ee e o * [
/* Low | evel endian swapping functions */
/* This code sequence is included once within nodule KN _UTIL.C */
#i f def KN_CCNEED_SWAP
#i f ndef KN_CCSWAP_H
#def i ne KN_CCSWAP_H 1
/* Prevent warning about function not returning a value */
#pragma warn -rvl
unsi gned short kn_swapl6(unsi gned short p)
{

asm {

novzx eax, p

xchg al , ah
} /* Return result in AX */
unsi gned | ong kn_swap32(unsi gned | ong p)
{

asm {

nov eax, p

xchg al , ah

ror eax, 16

xchg al , ah

}
} /* Return result in EAX */
/* Restore warning state to its previous condition */

#pragma warn .rvl

#endif /* KN_CCSWAP_H */
#endif /* KN_CCNEED_SWAP */

Copyright © 1999-2000 KADAK Products L td. IEKADAK

Target Processor and Compiler Use

Example 3.4.2-B

The following example illustrates the implementation of the critical section services
using Microsoft C/C++ on an Intel 80x86 processor operating in real mode.

There are two parts required: the definition of symbol KN_FN_CRI T and the assembly
language implementation of the C callable functions.

You must define the KwikNet symbol KN_FN_CRI T within the header file KNzzzccC. H as
shown below. Note that the definition must reside in its own definition region bounded
by the KN_CCNEED_CRI TDEF definition as previously illustrated in Figure 3.3-1.

/* Exanple: Mcrosoft C conpiler for the real nbde 80x86 processor */
2 * [
/* Low |l evel critical section services */

#i f def KN_CCNEED_CRI TDEF
#i fndef KN_CCCRI TDEF_H
#define KN_CCCRI TDEF_H 1

#define KN FN CR T (KN_AS FNCC | KN_AS_FNPROTO)

#endi f /* KN_CCCRI TDEF_H */
#endi f /* KN_CCNEED_CRI TDEF */

The definition states that the critical section services are to be implemented in header file
KNzzzCC. H using assembly language code fragments. It also states that KwikNet must
provide its standard C function prototypes for these services. If you provide your own
custom, compiler dependent prototypes for the low level service functions, be sure to
omit KN_AS_FNPROTO from your definition of KN_FN_CRI T so that the corresponding
KwikNet prototypes will be omitted, thereby avoiding possible conflicts.

Following the definition region in header file KNzzzcc. H you must implement the low
level services as C functions coded in assembly language.

Since your definition of KN_FN_CRI T indicates that your critical section services are
available in a code fragment, KwikNet defines symbol KN_CCNEED CRI T and includes
header file KNzzzCC. H to generate one instance of the code fragment in the appropriate
KwikNet source module. In this example, the code fragment from header file KNzzzcc. H
is actualy inserted into the source file KN_UTI L. C.

Target Processor and Compiler Use IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

73

74

Example 3.4.2-B (continued)

Note that this code fragment must reside in its own definition region bounded by the

KwikNet KN_CCNEED_CRI T definition as shown in the example below.

The compiler's __asm directive is used to code the body of the C functions using
assembly language. Function kn_csenter () returns the previous interrupt state in
register AX as specified by the Microsoft C to assembly language interface. Note that the
Microsoft compiler allows function kn_csexit() to reference its parameter p from

within the assembly language code fragment.

Also note that the Microsoft pragma

war ni ng has been used to avoid an erroneous warning that function kn_csent er () fails

to return avalue.

/* Exanple: Mcrosoft C conpiler for the real npde 80x86 processor */
/* __ */
/* Low |l evel critical section functions */
/* This code sequence is included once within nodule KN _UTIL.C */
#i f def KN_CCNEED CRI T

#i f ndef KN_CCCRI T_H

#def i ne KN.CCCRIT_H 1

/* Prevent warning about function not returning a val ue */

#pragnma war ni ng(disable : 4035)

unsi gned int kn_csenter(void)

{

__asm{
pushf
pop ax
cli
}
} /* Return result in AX */

voi d kn_csexit(unsigned int p)

{

__asm{

nov ax,word ptr p
push ax

popf

}
}

#endif /* KN_CCCRI T_H */
#endif /* KN_CCNEED CRIT */

Copyright © 1999-2000 KADAK Products L td. IEKADAK

Target Processor and Compiler Use

3.4.3 Simple C Macros

If you do not want to optimize a particular low level service using assembly language
techniques, you can use the KwikNet C macro for the service, if one is available.
Alternatively, you may be able to implement the service as a C macro of your own. This
technique is especially suitable for mapping KwikNet services to equivalent C macros
provided by your C compiler or to functions available in your C runtime library.

Example 3.4.3-A

The following KwikNet low level services are available as KwikNet macros. Note that
some of these services are also available as KwikNet functions (see Chapter 3.4.4). The
memory mapped device 1/0O services can only be used if your C compiler supports the
vol ati | e keyword. The 32-bit memory mapped device I/O services can only be used if
your C compiler and target processor support atomic (indivisible) access to 32-bit device
addresses.

Symbol Service Purpose

KN_FN_SWAP kn_swap16() Byte reverse 16-hit unsigned value
KN_FN_SWAP kn_swap32() Byte reverse 32-bit unsigned value
KN_FN_MEM O kn_i nmXX() 8, 16 and 32-bit memory mapped device read

KN_FN_MEM O kn_out mXX() 8, 16 and 32-bit memory mapped device write
KN_FN_MEMREP kn_i nmsXX() 8, 16 and 32-bit memory mapped device block read
KN_FN_MEMREP kn_out msXX() 8, 16 and 32-bit memory mapped device block write

KN_FN_CLKRD kn_tickrd() Read a 32-bit clock tick count
KN_FN_CLKDI FF kn_tickdiff() Computea32-bit clock tick difference

To use these services, smply define the associated KwikNet symbol to be KN_AS_KNVACRO
as illustrated in the example below. Note that the definition must reside within the
definition region of header file KNzzzcc. H.

/* Exanple: Modst C conpilers for npbst processors */
/* __ */
#i fndef KN_CCHDR H

#def i ne KN_CCHDR H 1

[* */

/* : Conpiler definitions (see Figure 3.2-1) */
[* */
/* __ */
/* Low | evel services inplemented by Kwi kNet as macros */
#define KN_FN SWAP KN_AS KNMACRO /* Endi an swappi ng services */
#define KN.FN_ MEM O KN_AS KNMACRO /* Menory napped device |1/ 0O services */

#defi ne KN_FN_MEMREP KN_AS KNMACRO /* Menory mapped device bl ock 1/ 0O services */

#endi f /* KN_CCHDR H */

Target Processor and Compiler Use IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

75

76

Example 3.4.3-B

The following example illustrates the implementation of the device 1/0O services using
MetaWare C/C++ on an Intel 80x86 processor operating in protected mode.

The low level device I/O services can be mapped directly to MetaWare services available
as macros or library functions. Note that the Metaware macros or function prototypes
must be available in the C header files included by KwikNet (see Chapter 3.2).

Because these services are being provided by MetaWare C, the KwikNet symbols
KN_FN_DVCl O and KN_FN DVCREP are defined to be 0. KwikNet will not generate
conflicting function prototypes and will not try to force an instance of equivaent
functions.

/* Exanple: MetaWare C conpiler for the protected node 80x86 processor */
/* __ */
#i fndef KN_CCHDR H

#def i ne KN_CCHDR H 1

[* */
/* : Conpiler definitions (see Figure 3.2-1) */
[* */
| ® o o eee e o * [
/* Low | evel device I/O services */
/* The following |ow | evel services can be napped directly to */
/* MetaWare services available as nmacros or library functions. */
#define kn_i np8(p) _inb((int)(p))

#define kn_i npl6(p) _inw((int)(p))

#define kn_i np32(p) _ind((int)(p))

#define kn_outp8(p, d) _outb((int)(p), (int)(d))

#define kn_out p16(p, d) _outw((int)(p), (int)(d))

#define kn_outp32(p, d) _outd((int)(p), (int)(d))

#define kn_inps8(p, b, ¢) _insb((int)(p), b, ©)

#define kn_inps16(p, b, c) _insw((int)(p), b, ¢)

#define kn_inps32(p, b, ¢) _insd((int)(p), b, ©)

#define kn_outps8(p, b, ¢) _outsb((int)(p), b, ©)

#define kn_outpsl6(p, b, c) _outsw((int)(p), b, ¢)

#define kn_outps32(p, b, c) _outsd((int)(p), b, ©)

#define KN.FN DVCIO O

#define KN_FN_DVCREP 0

#endi f /* KN_CCHDR H */

Copyright © 1999-2000 KADAK Products L td. IEKADAK

Target Processor and Compiler Use

3.4.4 C FunctionsCoded in C

If you do not want to optimize a particular low level service using assembly language
techniques, you can use the KwikNet C function for the service, if one is available.
Alternatively, you can implement the service as a C function of your own, although rarely
will you have to do so. The low level services that are not provided by KwikNet as either
macros or C functions are, by their very nature, target processor dependent and will most
likely have to be coded using the techniques described in Chapters 3.4.1 or 3.4.2.

Example 3.4.4-A

The following KwikNet low level services are available as KwikNet C functions. Note that
some of these services are also available as KwikNet macros (see Chapter 3.4.3). |If
possible, use the equivalent macro verson. The memory mapped device 1/0O services
should only be used if your C compiler does not support the vol at i | e keyword, thereby
preventing you from using the equivalent KwikNet macros. Furthermore, the 32-bit
memory mapped device 1/O services can only be used if your C compiler and target
processor support atomic (indivisible) access to 32-bit device addresses.

Symbol Service Purpose

KN_FN_SWAP kn_swap16() Byte reverse 16-hit unsigned value
KN_FN_SWAP kn_swap32() Byte reverse 32-bit unsigned value
KN_FN_CKSUM kn_cksum() |P datagram checksum computation
KN_FN_MEM O kn_i nmXX() 8, 16 and 32-bit memory mapped device read

KN_FN_MEM O kn_out mXX() 8, 16 and 32-bit memory mapped device write

KN_FN_CLKRD kn_tickrd() Read a 32-bit clock tick count
KN_FN_CLKDI FF kn_tickdiff() Computea32-bit clock tick difference

To use these services, smply define the associated KwikNet symbol as illustrated in the
example below. Note that the definition must reside within the definition region of
header file KNzzzcc. H.

/* Exanple: Modst C conpilers for npbst processors */
/* __ */
#i fndef KN_CCHDR H

#def i ne KN_CCHDR H 1

[* */

/* . Conpiler definitions (see Figure 3.2-1) */
[* */
| o o e */
/* Low | evel services inplenmented as Kwi kNet functions */
#defi ne KN_FN_CKSUM KN_AS KNFUNC /* | P datagram checksum service */

#endi f /* KN_CCHDR_H */

Target Processor and Compiler Use IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

7

78

This page left blank intentionally.

Copyright © 1999-2000 KADAK Products L td. IEKADAK

Target Processor and Compiler Use

4. KwikNet Library Construction

4.1 Preparation

KwikNet is provided in source form ready to create customized KwikNet Libraries which
meet your particular network needs.

The KwikNet Library construction process, described in Chapter 1, is illustrated in the
block diagram of Figure 1.1-2. The components shown in that figure will be referenced
throughout this chapter as the construction procedure is unveiled. Y ou should review that
material at thistime.

In Chapter 1.2, you were advised to select a KwikNet porting example from which to
derive your KwikNet implementation. The set of files from that example were to be
copied to a working directory and edited to meet the requirements of your RT/OS and
software development tools.

In particular, the RT/OS interface files KN_0OsI F. * were to have been edited as described
in Chapter 2. Your choice of C compiler header file KNzzzcc. H may also have required
modification to match your C compiler. Complete specifications were presented in
Chapter 3.

The remaining files from the porting example are used only for constructing the KwikNet
Libraries. They may have to be edited for use with your software devel opment tools.

If you are not using the object module librarian (archiver) used in one of the porting
examples, you will have to revise the Library Specification Files KN713*. LBMto operate
with your librarian as described in Chapter 4.2.

Y ou may also have to edit your choice of KwikNet tailoring file KNzzzcc. | NC so that your
make utility will be able to run your software development tools. Tailoring files are
described in Chapter 4.3.

Once these last few files are ready, you can proceed with the make by following the
directions presented in Chapter 4.4.

KwikNet Library Construction IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

79

80

rev2

KwikNet Directories and Files

The make process depends upon the structure of the KwikNet installation directory
KNT713. When KwikNet is installed, the following subdirectories are created within
directory KNT713.

| NET IP, UDP and related protocols, DHCP client; DNS client
Ethernet and SLIP Network Drivers, Modem Driver
Ethernet and Serial Loopback Drivers
Universa File System Interface; Administration Interface

TCP TCP protocol

MAKE KwikNet make directory

CFGBLDW KwikNet Configuration Builder; template files
ERR Construction error summary

TOOLWU Toolset specific files

TOOLUW LI B Toolset specific libraries will be built here

TOOLUW DRI VERS KwikNet Device Drivers

Other subdirectories such as PPP, FTP, HTTP, SNMP, TELNET or TFTP will aso be present if
you have purchased the corresponding optional KwikNet components.

Other directories containing example software and sample programs will also be present
but are not involved in the make process.

A single toolset specific directory TooLUU will be present. This directory will be used to
house modules which are specific to the software devel opment tools which you are using.
KADAK uses a two or three character mnemonic to identify each of the toolset
combinations which it supports. The software toolset for the KwikNet Porting Kit has
been assigned the mnemonic UU. Y ou can use some other mnemonic if you wish.

ZEKADAK KwikNet Library Construction

4.2 Software Development Tools

To construct the KwikNet Libraries you will need a make utility, a C compiler and an
object module librarian (archiver). The porting examples provided with the KwikNet
Porting Kit can be used with either Microsoft or Borland make utilities. Examples are
also provided for using severa different compilersfor different target processors.

Be aware that KADAK has observed that not all compilers operate correctly with every
version of the Microsoft or Borland make utilities. If the make process inexplicably fails,
it will most frequently be because of incompatibilities between these tools.

None of the modules provided with KwikNet are coded in assembly language. Hence, you
will not need an assembler to build the KwikNet Libraries. However, you will need an
assembler if your C compiler requires it for object module generation. You will also
require an assembler if your OS Interface Module KN_OSI F. C is complemented by one or
more assembly language modules.

Make Utility

To construct the KwikNet Libraries, you will require a make utility such as Microsoft
NMAKE or Borland MAKE. The construction process is initiated by executing your make
utility from within subdirectory MAKE in the KwikNet installation directory.

The make files provided with KwikNet purposely avoid the use of constructs which might
not be readily portable. The exception is the use of the !'i ncl ude, !ifdef, !ifndef,
el se and ! endi f constructs which are supported by both Microsoft and Borland. All
other potentially non-portable syntax has been isolated to the KwikNet tailoring file which
will be described in Chapter 4.3.

If your make utility rejects any of the KwikNet make files because of the syntax used, you
will have to edit that make file to adapt it for your use. Note that the KwikNet Network
Library Make File, say NETLI B. MAK, is actually generated by the KwikNet Configuration
Builder from the Network Library Template File KN713LI B. MT. It is the template file
which you may have to edit for compatibility with your make utility.

C Compiler

KwikNet is coded entirely in the C language. You must provide a C compiler which can
be invoked by your make utility using a command line directive. The command line
string used to run your C compiler must be defined in your KwikNet tailoring file (see
Chapter 4.3).

If you have not already done so, be sure to edit your KwikNet compiler configuration file
KNzzzCC. H as described in Chapter 3 to match your compiler's capabilities.

You must be aware of the conditions which will exist when your C compiler is invoked
by the make utility. When making KwikNet Libraries, the current directory will always be
one directory level below the KwikNet installation directory KNT713. For example, when a
KwikNet C source file in directory KNT713\ | NET is being compiled, that directory will be
the current directory when your C compiler is executed.

KwikNet Library Construction IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

81

82

rev2

Object ModuleLibrarian

To construct the KwikNet Libraries, you will require an object module librarian,
sometimes called an archiver. The librarian must be able to combine a set of object
modules produced by your C compiler into a single library module. The command used
to run your librarian must be defined in your kKwikNet tailoring file (see Chapter 4.3).

Object librarians expect you to provide a list of the object modules which are to be
collected together to form alibrary module. The object module list is often specified in a
text file which KADAK refers to as a Library Specification File. A separate Library
Specification Fileisrequired for each of the KwikNet Libraries.

KN7131 P. LBM KwikNet IP Library
KN713TCP. LBM KwikNet TCP Library

KN713PPP. LBM KwikNet PPP Library (optional)
KN713FTP. LBM KwikNet FTP Library (optional)
KN713WEB. LBM KwikNet HTTP Web Server Library (optional)
KN713SNM LBM KwikNet SNMP Agent Library (optional)
KN713TEL. LBM KwikNet TELNET Library (optional)
KN713TFT. LBM KwikNet TFTP Library (optional)

The following sets of sample Library Specification Files are included with the porting
examples in the KwikNet Porting Kit. The file sets are located in the following
subdirectories within directory KNT713\ EXAMPLES.

MBDOS Microsoft librarian for 16-bit, real mode 80x86

DOS4GW WATCOM librarian for 32-bit, protected mode 80386 and up
XRTOS Mentor Graphics (Microtec) 68000 librarian

X0s Mentor Graphics (Microtec) 68000 librarian

Y ou must be aware of the conditions which will exist when your librarian is invoked by
the make utility. When making KwikNet Libraries, the current directory will always be
one directory level below the KwikNet installation directory KNT713. For example when
the KwikNet TCP Library is being built, directory KNT713\TCP will be the current
directory when your librarian is executed.

ZEKADAK KwikNet Library Construction

4.3 TheKwikNet Tailoring File

The KwikNet Libraries are constructed using your make utility, C compiler and object
module librarian. The make process is guided by your Network Library Make File, say
NETLI B. MAK, which is generated by the KwikNet Configuration Builder.

A file which KADAK calls a tailoring file is used to tailor the library construction
process for the particular C compiler and object librarian which you are using. It is the
tailoring file which provides the make commands to compile a C module or to construct a
library module. Obviously, the tailoring file must use the make syntax which is
acceptable to your make utility.

Two sets of tailoring files are provided with the KwikNet Porting Kit, one for use with
Borland MAKE and one for use with Microsoft NMAKE. These tailoring files will be found
in instalation directory KNT713\ EXAMPLES. Borland compatible tailoring files will be
found in subdirectory TF_BORLD. Those for Microsoft are located in subdirectory
TF_MBOFT. If you are not using either of these make utilities, pick atailoring file suited to
one of them and edit it to match the syntax required by your particular make utility.

The following tailoring files provided with the KwikNet Porting Kit examples illustrate
proper usage with the following make utilities, target processors and C compilers.

Tailoring Make Target Compiler
File Utility Processor
Microsoft

M_86MC. 15 NVAKE 80x86 (real mode) Microsoft 16-bit Visual C/C++v1.5, v1.52
M 386WC. 110 NMAKE 80x86 (protected mode) WATCOM 32-bit C/C+v11.0
M 68KMR. 45 NVAKE 68000 Mentor Graphics (Microtec) C/C++v4.5G

Borland
B _86MC.15 MAKE 80x86 (real mode) Microsoft 16-bit Visual C/C++v1.5, v1.52
B 386WC. 110 MAKE 80x86 (protected mode) WATCOM 32-bit C/C++v11.0
B _68KMR 45 MAKE 68000 Mentor Graphics (Microtec) C/C++v4.5G

Pick the tailoring file which most closely matches your choice of make utility, target
processor and C compiler. Copy that file to your working directory and rename it
KNzzzcC. I NC. This is the talloring file which will be used to create your KwikNet
Libraries.

KwikNet Library Construction IEKADAK rev2 83

The following growing list of tailoring files, although created and tested for use with
KwikNet and the AMX Real-Time Multitasking Kernel, are provided with the KwikNet
Porting Kit. Replace m_in the filename with M_ for use with Microsoft NMAKE or B_ for
use with Borland MAKE.

Tailoring Target Compiler

File Pr ocessor

m__86MC. 15 80x86 (real mode) Microsoft 16-bit Visual C/C++v1.5, v1.52
m__86TC. 50 80x86 (real mode) Borland 16-bit C/C++v5.0

m_86PD.50 80x86 (real mode) Paradigm 16-bit C/C++ v5.0, v6.0
m_86WC. 110 80x86 (rea mode) WATCOM 16-bit C/C+ v11.0

m 386BCB. 50 80x86 (protected mode) Borland 32-bit C/C++v5.0

m 386MCB. 10 80x86 (protected mode) Microsoft 32-bit Visual C/C++v1.0
m 386MCB. 42 80x86 (protected mode) Microsoft 32-bit Visual C/C++v4.2
m 386MCB. 50 80x86 (protected mode) Microsoft 32-bit Visual C/C++v5.0
m 386MAB. 331 80x86 (protected mode) MetaWare High C/C+ v3.31

m 386MAB. 360 80x86 (protected mode) MetaWare High C/C+ v3.60

m 386WCB. 110 80x86 (protected mode) WATCOM 32-bit C/C+ v11.0

m 386PD. 60 80x86 (protected mode) Paradigm 32-bit C/C++v5.0, v6.0

m 68KDA. 42 68000 Diab-SDS C/C++v4.2, v4.3

m 68KI M 842 68000 TASKING (Intermetrics) C/C++v8.4.2

m 68KIM 92 68000 TASKING (Intermetrics) C/C++v9.2r0

m 68KME. 20 68000 Metrowerks C/C++v2.0

m 68KMR. 45 68000 Mentor Graphics (Microtec) C/C++ v4.5G
m 68KMR. 51 68000 Mentor Graphics (Microtec) C/C++v5.1
m CFDA. 42 ColdFire Diab-SDS C/C++v4.2, v4.3

m CFME. 25 ColdFire Metrowerks C/C++v2.5

m_PPCDA. 41 PowerPC Diab-SDS C/C++v4.1, v4.2, v4.3
m_PPCME. 42 PowerPC Metrowerks C/C++v4.2

m_PPCME. 50 PowerPC Metrowerks C/C++v5.0

m_PPCMW 41 PowerPC MetaWare High C/C++v4.1, v4.3

m ARMMV 410 ARM MetaWare High C/C++ v4.1

m ARVMMA 420 ARM MetaWare High C/C++v4.2

m ARVRM 211 ARM ARM Ltd. C/C+ SDK v2.11

m ARVRM 250 ARM ARM Ltd. C/C++ SDK v2.50

m ARVRM 10 ARM ARM Ltd. C/C+ADSv1.0,v1.1
m_ARBXXX. vvv Thumb (see vendors m ARMXXX. vvv shown above)
m MB2MA/ 430 MIPS32 MetaWare High C/C++ v4.3e

m_BFAD. 30 Blackfin Anaog Devices C/C++v3.0

84 rev2 sxKADAK KwikNet Library Construction

Editing the KwikNet Tailoring File

You must edit your KwikNet tailoring file KNzzzCc. | NC so that your make utility will be
able to run your software development tools.

Since you may be porting to a compiler and librarian with which KADAK has no
experience, it isimpossible to specify the command line switches which you will have to
use to compile KwikNet C source files or to make library modules.

Y ou should review the command line definitions used in the tailoring files provided with
the KwikNet Porting Kit. These examples illustrate proper usage of two different make
utilities and several target processors and C compilers.

Figures 4.3-1, 4.3-2 and 4.3-3 show alisting of thetailoring filem__86McC. 15 provided for
use with Microsoft NMAKE. It illustrates the use of the Microsoft 16-bit Visua C/C++
compiler (CL) to compile KwikNet C source files for use on a 16-bit 80x86 target
processor. It also shows how a KwikNet library is built using the Microsoft object
librarian (L1 B).

The tailoring file must define the filename extensions which your software development
tools use for different types of files. The extensions are defined as macros (see Figure
4.3-1). Other commonly encountered extensionsare. O,. Sand . A.

The make file must be able to copy a file, erase a file and change the current working
directory. Since some make utilities balk if they encounter an empty rule, the make file
must also be able to issue a command that does nothing. Macros CVDCOPY, CVDDEL,
CvDCD and CVDNOP (see Figure 4.3-1) define the operating system dependent commands
which the make utility can execute to perform these operations.

Some make utilities require that you specify the filename extensions which are permitted
in implicit rules. Microsoft and Borland both allow use of the . SUFFI XES directive for
this purpose.

Macro cccowpl LE is defined to be the command which the make utility can execute to
invoke your C compiler. The macro is used in the subsequent definition of the implicit
rule which the make utility must follow to compile a C source file. Several definitions of
macro CCCOVPI LE are provided (see Figure 4.3-2) to allow the C compilation rules to be
easily adjusted via the make command line. Since this macro is only used in the implicit
rule for running the compiler, you are free to revise this adaptation methodology to best
suit your own needs.

Another C compilation macro CSCOWPI LE (see Figure 4.3-2) is defined for use in the
construction of KwikNet sample programs. This macro gives the C compiler access to the
header files located in the sample program make directory SAM MAKE. The construction
of aKwikNet sample program is described in Chapter 5.

Finally, two implicit rules must be defined in the tailoring file (see Figure 4.3-3). The
first implicit rule provides the command(s) to be executed by the make utility to compile
a KwikNet C source file to generate an object module. The second implicit rule provides
the command(s) to be executed to generate a KwikNet Library module from a collection of
the compiled object modules.

KwikNet Library Construction IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

85

86

The C Compilation Implicit Rule

You must be aware of the conditions which will exist when your C compiler is invoked
by the implicit rule to compile a KwikNet module. When making KwikNet Libraries, the
current directory will aways be one directory level below the KwikNet installation
directory KNT713. For example, when a KwikNet C source file in directory KNT713\ | NET
is being compiled, that directory will be the current directory when your C compiler is
executed. In some cases, directory KNT713\ MAKE may be the current directory.

Your C compiler will require access to C header files from the then current directory and
from KwikNet directories. .\ I NET and . . \ TCP. It will also require access to the standard
C header files required by your C compiler. How you provide such access will depend
upon the operating environment in which you are doing your software development. In
the tailoring file example shown in Figure 4.3-2, access to the KwikNet directories is
provided using the compiler's/ I command line switch.

Since the current directory is aways one level below the KwikNet installation directory,
you may be able to redirect compiler warnings and error messages to the KwikNet error
directory at . . \ ERR asillustrated in the tailoring file example in Figure 4.3-3.

TheLibrary Build Implicit Rule

Y ou must be aware of the conditions which will exist when your librarian is invoked by
the implicit rule to create a KwikNet Library module. When making KwikNet Libraries, the
current directory will aways be one directory level below the KwikNet installation
directory KNT713. For example when the KwikNet TCP Library is being built, directory
KNT713\ TCP will be the current directory when your librarian is executed.

The object modules to be inserted into the library will be in the directory specified by the
make macro expansion $(KL) . It is recommended that the object modules be copied to
the current directory so that path information can be omitted from the object module list
in your Library Specification File. Be sure to delete the object modules from the current
directory after the library has been built.

If the library module is created in the current directory, be sure to copy it to the
destination directory with the correct library filename. Y ou may aso wish to save a copy
of the library summary report, if any, produced by the librarian. These operations are
illustrated in the example in Figure 4.3-3.

Since the current directory is always one level below the KwikNet installation directory,
you may be able to redirect librarian warnings and error messages to the KwikNet error
directory at . . \ ERR asillustrated in the tailoring file example in Figure 4.3-3.

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet Library Construction

T Make specific INCLUDE file ---------------------
These nake directives require Mcrosoft NMAKE v1.40 or conpati bl e.
The nmake command directives are valid for use under DOS or W ndows.

Define the file extensions required by your tools

AEXT is the file extension for assenbler source files

OEXT is the file extension for object files

LEXT is the file extension for library files

XEXT is the file extension for executable |oad nodule files
LNKS is the file extension for link specification files

LBMS is the file extension for library specification files
AEXT = ASM

OEXT = OBJ

LEXT = LIB

XEXT = EXE

LNKS = LKS

LBVS = LBM

Define the comands which the make utility can execute to
performthe foll ow ng operations:

Copy srcfile destfile
CVDCOPY = copy

Delete file X
CVDDEL = erase

Make path X the current directory
CMDCD = cd

No operation
CMDNOP = rem

To avoid conflicts with inplicit rules established by the nake utility
for its predefined list of suffixes, clear the suffixes list with an
enpty . SUFFI XES comand.

. SUFFI XES :

If required by the nake utility, define extensions which

can be used in inplicit rules.
. SUFFI XES : .$(LNKS) .c .$(AEXT) .$(LBMVS)

Figure 4.3-1 KwikNet Tailoring File (Part 1)

KwikNet Library Construction i KADAK rev2

87

Not e:

Def i ne

Def i ne
Def i ne

HHFHHFHF TR

Def i ne
unl ess

H H H*

The foll owi ng nake nacros can be defined by the user
on the nake command |ine when the nmake utility is invoked
to construct Kw kNet.

These nacros can al so be injected by providing the nacro
definitions in a file. The file nane nust be provided by
defining macro "CCCFlI LE=fil enane" on the nake comand | i ne.

"CCFLAGS=swi tches" if you wish to override the default
C conpile switches provided in this nodul e.

DBA NFO i f you wi sh nmodul es to be conpiled for debuggi ng.
" CCDEBUG=swi t ches" if you wish to override the default
C debug compile switches provided in this nodul e.

C conpilation sw tches and debug switches to be used
overidden by definitions on the make command |ine or

inthe file specified by macro CCCFI LE.

i fndef DBA NFO

Conpil e

W THOUT debug i nformati on

l'i f ndef CCFLAGS

CCCOWPI LE
CSCOWVPI LE
lel se
CCCOWPI LE
CSCOWPI LE
l'endif

lel se
Conpil e

CL/c /GL /G /G256 /AlIfw/Ze /WB /1..\INET /I..\TCP
CL/c /GL /G /G256 /AIfw/Ze /VWB /1..\SAM MAKE

CL $(CCFLAGS)
CL $(CCFLAGS) /1..\SAM MAKE

W TH debug i nfornation

l'i f ndef CCDEBUG

CCCOWPI LE
CSCOWPI LE
lel se
CCCOWPI LE
CSCOWPI LE
lendif
l'endif

CL/c /GL /G /G256 /AlIfw/Ze [Z7 /WB /1..\INET /I..\TCP
CL/c /GL /G /G256 /AIfw /Ze [Z7 VB /1..\SAM MAKE

CL $(CCDEBUQ)
CL $(CCDEBUG) /1..\SAM MAKE

Figure 4.3-2 KwikNet Tailoring File (Part 2)

88 Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet Library Construction

Note: Mcrosoft NMVAKE defines the followi ng filenanme macros which
are used in the inplicit rules defined in this nodule.

Macro $(@B) specifies the target filename with no path or extension.
Macro $@specifies the target filenanme including path and extension.

Create object file fromCfile in current source directory.
Move object file to the library directory specified by $(0O.
{.}.c{$(0O}. $(OEXT):

$(COCOWPI LE) / Fo$(@B) . $(CEXT) $(@).C >. .\ERR $(@) . E

copy $(@B).$(CEXT) $@

erase *.$(CEXT)

Create library file fromobject files and library command file
#in the library directory specified by $(KL).
. $(LBMS) . $(LEXT):

erase $@

erase $(@) . $(LEXT)

copy $(KL)\$(@B). $(LBM)

copy $(KL)*.$(OEXT)

LIB @(@).$(LBVMS) > .\ERR $(@B).LBE

copy $(@B).$(LEXT) $@

copy $(@B).RPT $(KL)\$(@B) . RPT

erase *.$(LBM)

erase *.$(CEXT)

erase *.$(LEXT)

erase *. RPT

Bomm - End of INCLUDE file ----------mmommmmimaema oo o

Figure 4.3-3 KwikNet Tailoring File (Part 3)

KwikNet Library Construction IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

90

4.4 Makingthe KwikNet Library

KwikNet is provided in source form ready to create customized KwikNet Libraries which
meet your particular network needs. The libraries are constructed using your make
utility, C compiler and object module librarian (archiver). The make utility takes as input
a make file, called the Network Library Make File, which specifies how the libraries are
to be built.

Network Library Make File

The KwikNet Configuration Builder is used to create and edit your Library Parameter File,
say NETLI B. UP. It is this file which describes the kKwikNet options and features which
your application requires. From this parameter file, the Configuration Builder generates
the Network Library Make File, say NETLI B. MAK. This process is described in Chapter
2.1 of the KwikNet TCP/IP Stack User's Guide.

The Network Library Make File NETLI B. MAK is a make file which can be used to create
the KwikNet Libraries tailored to your specifications. This make file is suitable for use
with either Borland's MAKE or Microsoft's NVAKE utility.

Gathering Files

The block diagram in Figure 1.1-2 summarizes the components which are required to
build the kKwikNet Libraries. Several of these components are the files which you have
edited to port KwikNet to your operating environment.

All of your updated porting files must be copied from your working directory to the
appropriate KwikNet installation directories prior to making the KwikNet Libraries. Each of
the following files must be moved to the indicated destination directory.

Source Destination File Purpose

File Directory

NETLI B. UP MAKE KwikNet Library Parameter File

NETLI B. MAK MAKE KwikNet Library Make File

KN_CSI F. C | NET OS Interface Module for your RT/OS

KN_OSI F. H | NET OS Interface Header File for your RT/OS
KN_OSIF. INC TOOLWU OS Interface Make Specification for your RT/OS
KNZZZCC. INC TOOLWU Tailoring File (for use with your make utility)
KNzzzCC. H TOOLWU Compiler Configuration Header File

KN7131 P. LBM TOOLUW LI B KwikNet IP Library Specification File
KN713TCP. LBM TOOLUW LI B KwikNet TCP Library Specification File
KN713*.LBM TOOLUW LI B Library Specification Files

(for optional KwikNet Libraries)

KN_BOARD. C ~ TOOLUUW DRI VERS Board driver for your target hardware

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet Library Construction

Creating the KwikNet Libraries

The KwikNet Libraries must be constructed from within directory MAKE in the KwikNet
installation directory. Your Library Parameter File, say NETLI B. UP, and your Network
Library Make File, say NETLI B. MAK, must be present in the KwikNet MAKE directory.

All of the compilers and librarians used at KADAK were tested under Windows® NT.
Most can aso be used with Windows 2000 and Windows XP.

To create the KwikNet Libraries, proceed as follows. From the Windows NT Start menu,
choose the MS-DOS Command Prompt from the Programs folder. From the Windows 2000
or XP start menu, choose the Command Prompt from the Programs (or All Programs) folder.
The Command Prompt may be located in the Accessories folder. Make the KwikNet
installation MAKE directory the current directory.

To use Microsoft's NMAKE utility, issue the following command.

NVAKE - f NETLI B. MAK " TOOLSET=UU" " OSPATH=your ospat h" "KPF=NETLI B. UP"

To use Borland's MAKE utility, issue the following command.

MAKE -f NETLI B. MAK - DTOOLSET=UU - DOSPATH=your ospat h - DKPF=NETLI B. UP

In each case, the make symbol TOOLSET is defined to be the toolset mnemonic uu. The
symbol OSPATH is defined to be the string your ospat h, the full path (or the path relative
to directory I NET) to the directory containing your RT/OS components (header files,
libraries and/or object modules).

The make symbol KPF is defined to identify the name of the Library Parameter File
NETLI B. UP from which the Network Library Make File NETLI B. MAK was generated.
Both of these files must be present in the KwikNet MAKE directory.

By default, the KwikNet Libraries will be created in toolset dependent directory
TOOLUW LI B. You can force the libraries to be created elsewhere by defining symbol
NETLI B=I i bpat h on the make command line. The string I i bpat h isthe full path (or the
path relative to directory | NET) to the directory in which you wish the libraries to be
created. You must copy al library specification files (. LBM) from toolset uu directory
TOOLUW\ LI B to your alternate library directory I i bpat h.

KwikNet Library Construction IEKADAK rev2 91

92

rev2

Generated KwikNet Library Modules

All KwikNet source files will be compiled and the resulting object modules will be placed
in directory TooOLUW LI B. The following KwikNet Libraries will be created from these
object files and placed in directory TOOLUW LI B. Only those libraries needed to meet
your library requirements will be created. Note that the library file extension will be . A
or . LI B or some other extension as dictated by the toolset which you are using.

KN713I P. A KwikNet IP Library
KN713TCP. A KwikNet TCP Library
KN7130PT. A KwikNet Library for optional KwikNet component OPT where

OPT may be one of PPP, FTP, EB, SNM, TEL Of TFT.

In addition to the library modules and the object modules used to create them, the
following files will aso be created in directory TOOLUW LI B.

KN_LI B. UP KwikNet Library Parameter File
KN_LI B. MAK KwikNet Network Library Make File
KN_LI B. H KwikNet Library Configuration Module

File KN_LI B. UP is a copy of the Library Parameter File NETLI B. UP which you identified
on your make command line. It is copied to the LI B directory so that you have a record
of the parameters used to produce the libraries present in the directory.

File KN_LI B. MAK is aKwikNet Network Library Make File which can be used to reproduce
the libraries. It is generated in the LI B directory so that you have a record of the make
file used to produce the libraries present in the directory. This file is derived from the
KwikNet Library Make Template file KN713LIB. Mr and the parameters in Library
Parameter File KN_LI B. UP. It should match the make file NETLI B. MAK which you passed
to your make utility to start the make process.

File KN_LI B. His the KwikNet Library Configuration Module, a C header file generated by
the make process. Thisfile is derived from the KwikNet Library Configuration Template
file KN713L1 B. HT and the parametersin Library Parameter File KN_LI B. UP.

A copy of header file KN_LI B. H will aso be found in the I NET directory. The make
process copies the file there so that it is available for inclusion in the compilation of all C
filesin thelibraries.

A copy of the toolset dependent header file TOOLUW KNzzzccC. H will also be found in the
I NET directory. The make process copies the file there so that it is also available for
inclusion in the compilation of al Cfilesin thelibraries.

Note

If your library specification requires KwikNet components
which you have not purchased and installed, the make
process will terminate because of the missing source files.

ZEKADAK KwikNet Library Construction

5. KwikNet Application Construction

5.1 Building an Application

Now that you have ported KwikNet t0 your operating environment and are able to
construct the KwikNet Libraries, you are ready to build an actual KwikNet application. The
sample program(s) provided with KwikNet and its optional components are working
examples which you can use either for guidance or as a starting point for your own
application.

To build a KwikNet application you must perform the following steps.

1.

Using the KwikNet Configuration Builder, create and/or edit a Library Parameter File
to select the KwikNet features which your application requires. On the Debug property
page, enable some or all of KwikNet's debug features to assist you during initial
testing. Use the builder to generate your KwikNet Network Library Make File. Using
that file, create your KwikNet Libraries following the procedure described in
Chapter 4.4.

If none of the available KwikNet device drivers meet your needs, create a custom
device driver as described in the kwikNet Device Driver Technical Reference Manual.

If necessary, adapt the KwikNet board driver KN_BOARD. C to accommodate your target
processor, device interfaces and interrupt management scheme.

Using the KwikNet Configuration Builder, create and/or edit a Network Parameter File
to describe your network interfaces and their associated device drivers. Use the
builder to generate a KwikNet Network Configuration Module, a C file describing your
networks.

Finally, create a make file which your make utility can use to build your application.
It must compile your application modules, your KwikNet device drivers, your KwikNet
board driver and your KwikNet Network Configuration Module. It can then link the
resulting object modules with your KwikNet libraries, your RT/OS libraries and your C
run-time library to create an executable load module.

Use your software debugger and/or in-circuit emulator tools to transfer your load
module to your target hardware. When testing, you should execute your application
with a breakpoint on KwikNet procedure kn_bphi t () So that you can readily detect
fatal configuration or programming errors (hopefully none) or unusual operation of
the KwikNet TCP/IP Stack.

KwikNet Application Construction IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

93

94

rev2

5.2 KwikNet Sample Programs

An overview of a KwikNet application was presented in Chapter 1 and illustrated as a
block diagram in Figure 1.1-1. Y ou should review that material now.

The KwikNet TCP/IP Stack includes a sample program, a working application that you can
use to confirm the operation of your KwikNet port. Other sample programs are provided
with optional KwikNet components such as the FTP, TELNET and TFTP Options and the
HTTP Web Server.

Sample Program Directoriesand Files

When KwikNet is installed, the following subdirectories on which the sample program
construction process depends are created within directory KNT713.

CFGBLDW KwikNet Configuration Builder; template files
ERR Construction error summary

TOOLUU Toolset specific files

TOOLUW DRI VERS KwikNet Device Drivers

TOOLUW LI B Toolset specific libraries will be built here

TOOLUW SAM MAKE Sample program make directory

TOOLUW SAM TCP KwikNet TCP/IP Sample Program directory containing:
KNSAMPLE. MAK TCP/IP Sample Program make file
KNSAMPLE. C TCP/IP Sample Program
KNZZZAPP. H Application Header
KNSAM_I B. UP Library Parameter File
KNSAMNCF. UP Network Parameter File
KNSAMPLE. LKS Link Specification File

TOOLUW SAM COW Common sample program source files:

KNSAMOS. C Application OS Interface
KNSAMOS. H Application OS Interface header file
KNRECORD. C Message recording services
KNCONSCL. C Console driver
KNCONSOL. H Console driver header

Console driver serial 1/O support:
KN8250S. C INS8250 (NS16550) UART driver

Other sample program subdirectories such as SAM FTP, SAM TEL, SAM TFTP and SAM WEB
will also be present within directory TooLWU if you have purchased the corresponding
optional KwikNet components.

A single toolset specific directory TooLUU will be present. This directory will be used to
house modules which are specific to the software development tools which you are using.
KADAK uses a two or three character mnemonic to identify each of the toolset
combinations which it supports. The software toolset for the kwikNet Porting Kit has
been assigned the mnemonic UU. Y ou can use some other mnemonic if you wish.

iEEKADAK KwikNet Application Construction

The Application OS Interface

All KwikNet sample programs share a common implementation strategy. The application
interacts directly with kwikNet. However, for portability, the application interacts with
your RT/OS through the Application OS Interface. One such module, KNSAMOS. C, is
provided with each of the porting examples in the KwikNet Porting Kit.

If you port the KwikNet sample program(s) to your operating environment, you will have
to edit the Application OS Interface KNSAMOS. C and its header file KNSAMOS. H. Edit the
copy of these files which you transferred to your working directory when you selected the
set of filesfor a particular porting example.

Editing the Application OS Interface

The Application OS Interface module KNSAMOS. C includes the mai n() function used by
all kwikNet sample programs. This function may have to be altered to properly start up
and shut down your RT/OS. The mai n() function calls the various application and
RT/OS initialization and termination procedures as recommended in the RT/OS Interface
description presented in Chapter 2.

All KwikNet sample programs call procedure sam osshut down() after KwikNet has been
shutdown. The purpose of the call is to terminate execution of your RT/OS so that the
application can gracefully return to the mai n() function. For most single threaded
applications, procedure sam osshut down() can be empty.

The KwikNet data logging procedure sam record() is located in the Application OS
Interface, giving you full control over the dispatch of messages generated by KwikNet and
its sample programs. All of the examples provided with the KwikNet Porting Kit use the
data recording service in module KNRECORD. C to record such messages. However, the
implementation varies according to the way the RT/OS operates as indicated by the
explanations provided in each of the sample KNSAMos. C files. One way or another, the
message to be logged is passed to procedure kn_I ogmsg() in the data recording module
KNRECORD. C.

KwikNet Application Construction IEKADAK rev2 95

96

rev2

RTOS Servicesin the Application OS Interface

When used with a multitasking RTOS, the Application OS Interface must provide the
following task management service. Procedure sam ost kprep() must create an RTOS
compatible instance of atask. Procedure sam ost kstart () must force that task to begin
execution at the earliest possible opportunity. The RT/OS independent task definition
structure used by the sample programs can be found in the sample specific header file
KNZZZAPP. H.

If atask automatically begins to execute when it is created, procedure sam ost kpr ep()
should ignore the request and let procedure sam ost kstart () create and start the task.
If tasks cannot be dynamically created, you will have to predefine a set of tasks and
activate one of these tasks each time the application calls procedure sam ost kstart () to
start atask. None of the KwikNet sample programs require more than five such tasks.

Data Recording

A data recording service is provided with the KwikNet sample programs. Procedure
kn_l ognsg() in module KNRECORD. C can be used to record messages generated by
KwikNet and the application. Procedure sam record() in the Application OS Interface
acts as a funnel to deliver each KwikNet message to procedure kn_| ognsg() which then
records the message into its string array kn_r ecordl i st[].

KwikNet messages will only be logged through procedure sam recor d() if dataloggingis
enabled on the Application property page of your KwikNet Network Parameter File. Be
sureto enter sam r ecor d asthe name of the logging function in the field provided.

The data recording service can be adapted to your needs by editing the definitions in the
sample program's application header file KNzzzapp. H. A unigue header file is provided
with each KwikNet sample program. Symbol KN_REC_MEMORY must be set to 1 to enable
recording of messages into a character array. Symbol KN_REC_MEMSI ZE defines the size
of that array. Symbol KN_REC_NUM defines the maximum number of message strings
which can be recorded into the array.

Procedure kn_l ogi nit () in module KNRECORD. C must be called by the application
before the data recording service can be used by KwikNet or the application. For this
reason, the mai n() function in the Application OS Interface module KNSAMOS. C calls
kn_l ogi ni t () asone of its earliest operations.

Some of the KwikNet sample programs implement a dump command to display the
recorded messages. These applications call procedure kn_I ogget s() to extract each
message string from the recording array. After displaying all messages in the order in
which they were recorded, procedure kn_l ogi ni t () iscalled to reset the array.

Warning

The procedures in the recording module KNRECORD. C are
NOT reentrant. Hence, in multitasking systems, you must
ensure that, if one task calls any one of these procedures,
no other task can execute any of the procedures until that
task completesits use of the recording service.

iEEKADAK KwikNet Application Construction

Console Device Use

The KwikNet sample programs provide support for a simple, interactive console device.
The console driver in module KNCONSOL. C can be adapted to use any of several possible
console devices, including aterminal connected by a serial UART interface, a PC screen
and keyboard or aremote Telnet terminal.

To select a particular console device, edit the sample program’s application header file
KNzzzAPP. H and change the definition of symbol KN_CS DEVTYPE as instructed in the
file. Note that a unique application header file KNzzzAPP. H is provided with each
KwikNet sample program.

The basic kwikNet TCP/IP Sample Program uses the console device for displaying
messages logged by KwikNet and the application. The data recording procedure
kn_l ognsg() in module KNRECORD. C echoes each message it receives to the console
device. You can disable this display of recorded messages by setting the value of symbol
KN_REC_CONSOLE to 0 in the sample program's application header file KNzzzAPP. H.

Other KwikNet sample programs (FTP Option, Web Server, etc) provide a simple
command interpreter which alows you to interact with the program to control its
operation. Since the console device is used by the application, it cannot be used by the
recording service to display KwikNet messages. Hence, for these programs, symbol
KN_REC CONSOLE is defined to be 0 in the sample program's application header file
KNZZZAPP. H.

The interactive KwikNet sample programs implement a dump command to display the
recorded messages. These applications call procedure kn_I| oggets() in module
KNRECORD. C to extract all of the message strings from the recording array. The extracted
messages are displayed on the console device.

Warning

The message recording services are not reentrant. Hence,
the dump command implemented by some KwikNet sample
programs should only be used when KwikNet is not active
since the extraction of messages for display may occur
concurrently with the generation of messages by KwikNet.

If you use the Telnet console device, the dump command
must be used with caution. Since KwikNet must be active
for the Telnet console driver to operate, KwikNet may
generate several messages for every message that is
dumped, especially if you have enabled most of the KwikNet
debug and trace options.

KwikNet Application Construction IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

97

98

5.3 Tailoring File Enhancements

The KwikNet tailoring file is a file used to tailor the KwikNet Library construction process
for the particular C compiler and object librarian which you are using. Tailoring files are
described in Chapter 4.3. It is the tailoring file which provides the make commands to
compile a C module or to construct a library module. Obviously, the tailoring file must
use the make syntax which is acceptable to your make utility.

A make file is provided with each KwikNet sample program. The make file can be used
with your make utility to generate the sample program load module as described in the
next chapter. To use these make files, the KwikNet tailoring file must be adapted to
specify the make commands needed to compile the sample program C modules and to
link the resulting object modules with various libraries to create the sample program load
module.

Editing the KwikNet Tailoring File

You must edit your KwikNet tailoring file KNzzzCc. | NC so that your make utility will be
able to run your software development tools to compile the sample program modules and
link them to create aload module.

Tailoring files were described in Chapter 4. Figures 4.3-1, 4.3-2 and 4.3-3 show alisting
of the tailoring file M__86McC. 15 provided for use with Microsoft NMAKE. It illustrates the
use of the Microsoft 16-bit Visual C/C++ compiler (CL) to compile C source files for use
on a 16-bit 80x86 target processor.

Macro Cscowvpl LE (see Figure 4.3-2) is defined for use in the construction of KwikNet
sample programs. It defines the command which the make utility can execute to invoke
your C compiler. This macro gives the C compiler access to the header files located in
the sample program make directory SAM MAKE.

Macro cscowpl LE is used in the subsequent definition of the implicit rule which the make
utility must follow to compile a sample program C source file. Severa definitions of
macro CSCOVPI LE are provided (see Figure 4.3-2) to allow the C compilation rules to be
easily adjusted viathe make command line.

Finaly, two implicit rules must be defined in the tailoring file (see Figure 5.3-1). The
first implicit rule provides the command(s) to be executed by the make utility to compile
a sample program C source file to generate an object module. The second implicit rule
provides the command(s) to be executed to create a load module by linking the collection
of the compiled object modules with the KwikNet Libraries and other application libraries.

Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet Application Construction

The C Compilation Implicit Rule

You must be aware of the conditions which will exist when your C compiler is invoked
by the implicit rule to compile a sample program module. When making a sample
program, the current directory will aways be one directory level below the KwikNet
toolset directory KNT713\ TOOLUU. For example, when one of the common C source files
in directory KNT713\ TOOLUW SAM COWN is being compiled, that directory will be the
current directory when your C compiler is executed.

Your C compiler will require access to C header files from the then current directory and
from the KwikNet sample construction make directory . .\ SAM_MAKE. It will also require
access to the standard C header files required by your C compiler. How you provide such
access will depend upon the operating environment in which you are doing your software
development. In the tailoring file example shown in Figure 4.3-2, access to the KwikNet
directory . .\ SAM_MAKE is provided using the compiler's/ 1 command line switch.

Since the current directory is always one level below the KwikNet toolset directory, you
may be able to redirect compiler warnings and error messages to the KwikNet error
directory a . .\ . .\ ERR asillustrated in the tailoring file example in Figure 5.3-1.

The lmplicit Rulefor Assembly

None of the KwikNet sample program source files are coded in assembly language. Hence
there is usualy no need for the make utility to run an assembler to build sample program
object modules. However, an example of such an implicit rule (see Figure 5.3-1) is
included with each of the tailoring files provided with the KwikNet Porting Kit. You are
freeto revise this rule to meet your application requirements.

The Implicit Rulefor Linking

Y ou must be aware of the conditions which will exist when your linker is invoked by the
implicit rule to create a sample program load module. When making a sample program,
the current directory will always be one directory level below the KwikNet toolset
directory KNT713\ TOOLUU. For example, when the KwikNet TCP/IP Sample Program is
being built, directory KNT713\ TOOLUW SAM TCP will be the current directory when your
linker is executed. The object modules to be linked will be in this directory.

Most program linkers allow you to define a command file which specifies the list of
object files and libraries to be linked. KADAK calls such afile a Link Specification File
and gives it the file extension LKS. Examples are included with each of the porting
examples provided with the KwikNet Porting Kit. For example, the Link Specification
File for the KwikNet TCP/IP Sample Program is file KNSAVPLE. LKS.

The Link Specification File for the sample program must be edited to match the syntax
required by your program linker. The sample program object modules listed in the file
will not have path information appended because the directory in which they reside is
always current at the time your linker is invoked. For the same reason, the KwikNet
Libraries can always accessed via the path . .\ LI B. So, for example, the KwikNet IP
Library can beidentified asfile. .\ LI B\KN7131 P. LI B. If necessary, be sure to adjust the
filename extensions for object modules and libraries in the Link Specification File to
match those defined in your tailoring file.

KwikNet Application Construction IEKADAK Copyright © 1999-2000 K ADAK ProductsL td.

99

The implicit rule for linking the sample program isillustrated in Figure 5.3-1. Theruleis
invoked by the dependency on a file with extension matching macro expansion $(LNKS) .
The rule constructs a load module with extension matching macro expansion $(XEXT) .
The macros LNKS and XEXT are defined in your tailoring file as shown in Figure 4.3-1 in
Chapter 4.3

Since the current directory is always one level below the KwikNet toolset directory, you
may be able to redirect linker warnings and error messages to the KwikNet error directory
a..\..\ERrRasillustrated in thetailoring file examplein Figure 5.3-1.

Sanpl e Program Construction Rul es

l'i fdef ULINK
Create object file fromC file in current source directory.
Move object file to the sanple programdirectory specified by $(ULINK).
{-}.c{$(ULINK)}.$(CEXT):
$(CSCOWPI LE) /Fo$@$(@B).C >. .\. .\ERR $(@) . E

Create object file fromassenbly file in current source directory.
Move object file to the sanple programdirectory specified by $(ULINK).
{.}. $(AEXT) { $(ULI NK) } . $(CEXT) :

MASM $(@) . $(AEXT) /M. /N, $@>..\..\ERR$(@B) . E

Link an executable file in current directory.
{S(ULI NK) } . $(LNKS) { $(ULI NK) } . $(XEXT) :

LINK $(@B).$(LNKS) >..\..\ERR $(@) . LKE
lendif

A R End of INCLUDE file ----------------mmmmmmmaaa oo

Figure 5.3-1 Sample Program Tailoring File Enhancements

100 Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet Application Construction

5.4 Making the Sample Program

The KwikNet sample programs are provided ready to be constructed using your make
utility, C compiler and link/locate utility. The make utility takes as input a sample
program make file which specifies how the program isto be built.

KwikNet Parameter Files
Two KwikNet parameter files are provided with each KwikNet sample program.

The Library Parameter File describes the KwikNet options and features illustrated by the
sample program. This file is used to construct the KwikNet Libraries for the sample
program.

The Network Parameter File describes the network interfaces and the associated device
drivers which the sample program needs to operate. This file is used to construct the
KwikNet Network Configuration Module for the sample program.

Building the KwikNet Libraries

Before you can construct any of the KwikNet sample programs, you must first build the
associated KwikNet Libraries.

Use the KwikNet Configuration Builder to edit the sample program Library Parameter
File. For example, to build the KwikNet Libraries for the kKwikNet TCP/IP Sample
Program, edit Library Parameter File KNSAMLI B. UP. Use the Configuration Builder to
generate the Network Library Make File KNSAMLI B. MAK. This process is described in
Chapter 2.1 of the KwikNet TCP/IP Stack User's Guide.

Use the Network Library Make File KNSAMLI B. MAK to build the KwikNet Libraries.
Follow the directions provided in Chapter 4.4.

Porting Tip

The KwikNet Porting Kit includes a batch file which will
help you prepare to construct any of the sample programs
provided with KwikNet and its optional components. In the
KwikNet installation directory KNT713, run batch file
TOOLUU. BAT without parameters for a description of its
usage. Use the batch file to copy your ported files from
your working directory into the appropriate directories.

KwikNet Application Construction IEKADAK Copyright © 1999-2000 K ADAK ProductsL td. 101

Gathering Files

The block diagram in Figure 1.1-1 summarizes the components which are fundamental to
any KwikNet application. Several of these components are the files which you have edited
to port KwikNet to your operating environment.

All of your updated porting files must be copied from your working directory to the
appropriate KwikNet toolset directories prior to making any of the KwikNet sample
programs. Some of the updated files will have aready been copied to the appropriate
directoriesin order to create the sample program's KwikNet Libraries.

To build the KwikNet TCP/IP Sample Program using make file KNSAMPLE. MAK, each of the
following updated files must be present in the indicated destination directory. For other
KwikNet sample programs, replace the program name KNSAVPLE, the parameter file names
KNSAM: . UP and references to directory SAM TCP with the appropriate names.

Sour ce Destination File Purpose

File Directory

KN_OSI F. H | NET OS Interface Header File for your RT/OS
KN_OSIF.INC TOOLW OS Interface Make Specification for your RT/OS
KNZZZCC. INC TOOLWU Tailoring File (for use with your make utility)
KNzZzCC. H TOOLWU Compiler Configuration Header File

KNSAMOS. C TOOLUW SAM COW Application OS Interface
KNSAMOS. H TOOLUW SAM COWN Application OS Interface header file

KNSAMPLE. LKS TOOLUW SAM TCP TCP/IP Sample Program Link Specification File

KN_BOARD. C TOOLUW DRI VERS Board driver for your target hardware

Porting Tip

Batch file TooLUU. BAT provided with KwikNet will gather
all of these components for you. In the KwikNet installation
directory KNT713, run batch file TOOLUU. BAT without
parameters for a description of its usage. Use the batch file
to copy your ported files from your working directory into
the appropriate directories.

102 Copyright © 1999-2000 K ADAK ProductsL td. IEKADAK KwikNet Application Construction

The Sample Program M ake Process

Each kwikNet sample program must be constructed from within the sample program
directory in the KwikNet toolset directory. For example, the KwikNet TCP/IP Sample
Program must be built in directory TOOLUW SAM TCP.

All of the compilers and librarians used at KADAK were tested under Windows® NT.
Most can also be used with Windows 2000 and Windows XP.

To create the KwikNet TCP/IP Sample Program, proceed as follows. From the Windows
NT Start menu, choose the MS-DOS Command Prompt from the Programs folder. From the
Windows 2000 or XP Start menu, choose the Command Prompt from the Programs (or
All Programs) folder. The Command Prompt may be located in the Accessories folder.
Make the KwikNet toolset TOOLUW SAM TCP directory the current directory.

To use Microsoft's NMAKE utility, issue the following command.

NMAKE - f KNSAMPLE. MAK " TOOLSET=UU" " OSPATH=your ospat h" " TPATH=t ool pat h"

To use Borland's MAKE utility, issue the following command.

MAKE - f KNSAMPLE. MAK - DTOOLSET=UU - DOSPATH=your ospat h - DTPATH=t ool pat h

In each case, the make symbol TOOLSET is defined to be the toolset mnemonic UU. The
symbol OSPATH is defined to be the string your ospat h, the full path (or the path relative
to directory TOOLUW SAM TCP) to the directory containing your RT/OS components
(header files, libraries and/or object modules).

The symbol TPATH is defined to be the string t ool pat h, the full path to the directory in
which your software devel opment tools have been installed.

The make process uses the sample program Network Parameter File KNSAMNCF. UP to
create Network Configuration Module KNSAMNCF. C from the template file KN713CFG. CT
in directory cFGBLDW The fileisleft in the sample program directory TOOLUW SAM TCP.

The KwikNet Sample Program load module KNSAMPLE. xxx is created in toolset directory
TOOLUW SAM TCP. The file extension of the load module will match your definition of
macro XEXT in your tailoring file (see Figure 4.3-1).

Note

For other KwikNet sample programs, replace the program
name KNSAMPLE, the Network Configuration Module name
KNSAMNCF and references to directory sAM TCP with the
appropriate names.

KwikNet Application Construction IEKADAK rev2 103

5.5 RT/OS Examples
5.5.1 UsingaCustom RTOS

KwikNet can be used with any custom in-house or commercial multitasking RTOS. This
porting example interfaces to a non-existent RTOS deemed to have the functional
capabilities present in most reasonable RTOS implementations. The example has been
built using Mentor Graphics (Microtec) C/C++ software development tools targeted for a
68000 processor.

Since the RTOS does not exist, this example has never been executed. However, al of
the OS interface procedures have been implemented and will serve as excellent working
models for your port.

A hardware clock operating at 1 KHz has been assumed as the fundamental source of
timing for the RTOS and KwikNet. The KwikNet clock frequency has been defined to be
20 Hz. It has been assumed that a clock device driver provided by the RTOS will have
properly initialized the hardware clock when the RTOS begins execution. Furthermore,
the RTOS is assumed to provide a clock hook which will call an application function
coded in C whenever a clock interrupt is serviced.

The console driver for the custom RTOS porting example is configured to use a UART
seria driver connected to a terminal. File KN8250S. C in the common sample program
directory KNT713\ TOOLUW SAM COW is a simple device driver for an INS8250 or
NS16550 compatible UART.

Standard C is used for memory allocation. The KwikNet memory locking feature is
enabled to permit multiple tasks operating under the RTOS to use the non-reentrant C
library memory allocation functions.

Sample programs which require a file system are configured to use a custom, user
defined file system. The KwikNet file access locking feature is enabled to permit multiple
tasks operating under this RTOS to use the custom file I/O functions which are assumed
to be non-reentrant.

Source Files

The source files for the KwikNet custom RTOS porting
example are located in KwikNet installation directory
KNT713\ EXAMPLES\ XRTCS.

104 rev2 sxKADAK KwikNet Application Construction

5.5.2 UsngMS-DOS

KwikNet has been tested with MS-DOS v6.22 operating in real mode on PC compatible
hardware. This single threaded KwikNet porting example was constructed using Microsoft
16-bit software devel opment tools.

The standard PC hardware clock operating at 18.2 Hz was used as the fundamental
source of timing for KwikNet and the application. The KwikNet clock frequency has been
defined to be 18 Hz. Microsoft C library function _chai n_i ntr () is used by the clock
interrupt service routine kn_oscl ocki sr() in the OS Interface Module KN_CsI F. C to
chain to the original clock handler.

The console driver for the MS-DOS porting example is configured to use the PC screen
and keyboard as aterminal.

Standard C is used for memory allocation. Memory locking is not required for single
threaded applications.

Sample programs which require a file system are configured to use standard C file
operations. The Microsoft C standard 1/O library provides access to the underlying
MS-DOSfile system. File accesslocking isnot required for single threaded applications.

The KwikNet OS Interface Module KN_osI F. € and Application OS Interface KNSAMOS. C.
should require little, if any, modification for use with your application.

Note that the Microsoft C library functions _dos_get vect () and _dos_setvect () are
used by procedure kn_osvaccess() in the OS Interface Module KN_osI F. C to modify
entries in the processor interrupt table. Library function _chai n_i ntr() isalso used to
chain to the original clock handler after servicing the KwikNet clock.

Source Files

The source files for the KwikNet MS-DOS porting example
are located in KwikNet installation directory
KNT713\ EXAMPLES\ MSDCS.

KwikNet Application Construction IEKADAK rev2 105

5.5.3 Using the DOS4GW DOS Extender with MS-DOS

KwikNet has been tested with the Tenberry DOS/AGW DOS Extender operating with
MS-DOS v6.22 in protected mode on PC compatible hardware. This single threaded
KwikNet porting example was constructed using WATCOM (Sybase) 32-bit software
development tools.

The standard PC hardware clock operating at 18.2 Hz was used as the fundamental
source of timing for KwikNet and the application. The KwikNet clock frequency has been
defined to be 18 Hz. WATCOM C library function _chai n_i ntr () is used by the clock
interrupt service routine kn_oscl ocki sr() in the OS Interface Module KN_CsI F. C to
chain to the original clock handler.

The console driver for the DOS/AGW porting example is configured to use the PC screen
and keyboard as aterminal.

Standard C is used for memory allocation. Memory locking is not required for single
threaded applications.

Sample programs which require a file system are configured to use standard C file
operations. The WATCOM C standard 1/O library provides access to the underlying
MS-DOS file system through the DOS/AGW DOS Extender. File access locking is not
required for single threaded applications.

The KwikNet OS Interface Module KN_csI F. € and Application OS Interface KNSAMOS. C.
should require little, if any, modification for use with your application.

Note that the WATCOM C library functions _dos_get vect () and _dos_set vect () are
used by procedure kn_osvaccess() in the OS Interface Module KN_0sI F. C to modify
entries in the processor interrupt table. When used with the DOS/4AGW DOS Extender,
these functions only support modification of vector entries 8 through 15 corrsponding to
PC interrupt requests IRQO to IRQ?7.

Source Files

The source files for the KwikNet DOS/AGW porting
example are located in KwikNet installation directory
KNT713\ EXAMPLES\ DOS4GW

106 rev2 sxKADAK KwikNet Application Construction

5.5.4 Using KwikNet Without an OS

KwikNet can be used without any formal operating system (OS). However, even in this
case, a KwikNet OS interface must be provided. The interface must simply operate
without the benefit of conventional OS services. This porting example has been built
using Mentor Graphics (Microtec) C/C+ software development tools targeted for a
68000 processor.

Since the operating environment is unknown, this porting example has never been
executed. However, al of the OS interface procedures have been implemented and will
serve as excellent working models for your port.

A hardware clock operating at 1 KHz has been assumed as the fundamental source of
timing for your application and KwikNet. The KwikNet clock frequency has been defined
to be 20 Hz. It has been assumed that you will provide a clock device driver which will
properly initialize the hardware clock when your application begins execution.
Furthermore, it is assumed that the driver provides a clock hook which will call an
application function coded in C whenever a clock interrupt is serviced.

The console driver for this porting example is configured to use a UART seria driver
connected to a terminal. File KN8250S. C in the common sample program directory
KNT713\ TOOLUW SAM COWN is a simple device driver for an INS8250 or NS16550
compatible UART.

Standard C is used for memory allocation. Memory locking is not required for single
threaded applications.

Sample programs which require a file system are configured to use a custom, user
defined file system. File accesslocking isnot required for single threaded applications.

Source Files

The source files for the KwikNet custom non-OS porting
example are located in KwikNet installation directory
KNT713\ EXAMPLES\ XCS.

KwikNet Application Construction IEKADAK rev2 107

This page left blank intentionally.

108 rev2 sxKADAK KwikNet Application Construction

	Cover
	Table of Contents
	1. KwikNet Porting Kit Overview
	Introduction
	Getting Started

	2. KwikNet RT/OS Interface
	Introduction
	The Multitasking RTOS Interface
	The Single Threaded OS Interface
	RT/OS Interface Make File
	RT/OS Interface Procedures

	3. Target Processor and Compiler Use
	Introduction
	C Compiler Adaptation
	Low Level Services
	Code Fragment Implementation
	C Macro Using In-Line Assembly Language
	C Functions Coded in Assembly Language
	Simple C Macros
	C Functions Coded in C

	4. KwikNet Library Construction
	Preparation
	Software Development Tools
	The KwikNet Tailoring File
	Making the KwikNet Library

	5. KwikNet Application Construction
	Building an Application
	KwikNet Sample Programs
	Tailoring File Enhancements
	Making the Sample Program
	RT/OS Examples
	Using a Custom RTOS
	Using MS-DOS
	Using DOS/4GW DOS Extender
	Using KwikNet Without an OS

