
KwikNet®

Porting Kit

User's Guide

First Printing: July 15, 1999
Last Printing: September 15, 2002

Manual Order Number: PN713-9

Copyright © 1999-2002

KADAK Products Ltd.
206 - 1847 West Broadway Avenue
Vancouver, BC, Canada, V6J 1Y5

Phone: (604) 734-2796
Fax: (604) 734-8114

KwikNet Porting Kit KADAK i

TECHNICAL SUPPORT

KADAK Products Ltd. is committed to technical support for its software products. Our
programs are designed to be easily incorporated in your systems and every effort has
been made to eliminate errors.

Engineering Change Notices (ECNs) are provided periodically to repair faults or to
improve performance. You will automatically receive these updates for a period of one
year. After that period, you may purchase additional updates. Please keep us informed
of the primary user in your company to whom these update notices and other pertinent
information should be directed.

Should you require direct technical assistance in your use of this KADAK software
product, engineering support is available by telephone, fax or e-mail without charge.
KADAK reserves the right to charge for technical support services which it deems to be
beyond the normal scope of technical support.

We would be pleased to receive your comments and suggestions concerning this product
and its documentation. Your feedback helps in the continuing product evolution.

KADAK Products Ltd.
206 - 1847 West Broadway Avenue
Vancouver, BC, Canada, V6J 1Y5

Phone: (604) 734-2796
Fax: (604) 734-8114
e-mail: amxtech@kadak.com

ii KADAK KwikNet Porting Kit

Copyright © 1999-2002 by KADAK Products Ltd.
All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated into any language or computer
language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual or otherwise, without the prior
written permission of KADAK Products Ltd., Vancouver, BC, CANADA.

DISCLAIMER

KADAK Products Ltd. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any implied
warranties or merchantability or fitness for any particular purpose.
Further, KADAK Products Ltd. reserves the right to revise this
publication and to make changes from time to time in the content
hereof without obligation of KADAK Products Ltd. to notify any
person of such revision or changes.

TRADEMARKS

AMX in the stylized form and KwikNet are registered trademarks of KADAK Products Ltd.
AMX, AMX/FS, InSight, KwikLook and KwikPeg are trademarks of KADAK Products Ltd.
UNIX is a registered trademark of AT&T Bell Laboratories.
Microsoft, MS-DOS and Windows are registered trademarks of Microsoft Corporation.
All other trademarked names are the property of their respective owners.

KwikNet Porting Kit KADAK iii

KwikNet Porting Kit User's Guide
Table of Contents

Page

1. KwikNet Porting Kit Overview 1

1.1 Introduction.. 1
The KwikNet Porting Interface.. 2
Adapting KwikNet to Your Software Tools .. 4

1.2 Getting Started ... 6
Installing KwikNet... 6
A Trial Run .. 7
Files to be Edited ... 8

2. KwikNet RT/OS Interface 9

2.1 Introduction.. 9
Using a Multitasking RTOS... 9
Using a Single Threaded OS.. 9

2.2 The Multitasking RTOS Interface.. 10
Summary of RTOS Interface Services ... 11
RTOS and KwikNet Startup .. 12
KwikNet Task Operation ... 13
KwikNet Timer Operation ... 14
Task Delays.. 15
Task Identification ... 15
KwikNet RTOS Resources .. 15
Resource Locking .. 16
KwikNet Message Queueing.. 17
Memory Allocation Services.. 18
Application Blocking Services... 19
Interrupt Vector Manipulation ... 20
Device Driver Support ... 21
KwikNet and RTOS Shutdown.. 22
Error Handling ... 22

2.3 The Single Threaded OS Interface ... 23
Summary of OS Interface Services .. 24
KwikNet Startup .. 25
KwikNet Task Operation ... 25
KwikNet Timer Operation ... 26
Memory Allocation Services.. 27
Interrupt Vector Manipulation ... 28
Device Driver Support ... 29
KwikNet and OS Shutdown... 30
Error Handling ... 30

2.4 RT/OS Interface Make File .. 31
2.5 RT/OS Interface Procedures... 33

iv KADAK KwikNet Porting Kit

KwikNet Porting Kit User's Guide
Table of Contents (continued)

Page

3. Target Processor and Compiler Use 51

3.1 Introduction.. 51
3.2 C Compiler Adaptation .. 53

Standard C Header Files .. 53
Parameter Passing Conventions ... 53
Random Number Generator ... 53
Eliminating Warnings .. 55
Segmented Memory Access... 55
Interrupt Function Definitions.. 55
File I/O Definitions .. 55

3.3 Low Level Services.. 56
Critical Section Protection ... 59
Using RTOS Critical Section Protection.. 59
Interrupt Priority Level Manipulation .. 60
End-for-End Byte Swapping.. 61
IP Checksum Calculation... 62
Memory Mapped Device I/O ... 63
Device Port I/O .. 64
Clock Services ... 65
Reading Clock Tick Count... 65
Clock Tick Difference Computation.. 66

3.4 Code Fragment Implementation... 67
3.4.1 C Macro Using In-Line Assembly Language.................................... 68

Example 3.4.1-A .. 68
Example 3.4.1-B .. 69
Example 3.4.1-C .. 70

3.4.2 C Functions Coded in Assembly Language 71
Example 3.4.2-A .. 71
Example 3.4.2-B .. 73

3.4.3 Simple C Macros... 75
Example 3.4.3-A .. 75
Example 3.4.3-B .. 76

3.4.4 C Functions Coded in C .. 77
Example 3.4.4-A .. 77

4. KwikNet Library Construction 79

4.1 Preparation ... 79
KwikNet Directories and Files... 80

4.2 Software Development Tools... 81
Make Utility ... 81
C Compiler... 81
Object Module Librarian.. 82

4.3 The KwikNet Tailoring File ... 83
Editing the KwikNet Tailoring File ... 85
The C Compilation Implicit Rule... 86
The Library Build Implicit Rule .. 86

4.4 Making the KwikNet Library... 90
Network Library Make File ... 90
Gathering Files... 90
Creating the KwikNet Libraries ... 91
Generated KwikNet Library Modules.. 92

KwikNet Porting Kit KADAK rev2 v

KwikNet Porting Kit User's Guide
Table of Contents (continued)

Page

5. KwikNet Application Construction 93

5.1 Building an Application ... 93
5.2 KwikNet Sample Programs.. 94

Sample Program Directories and Files... 94
The Application OS Interface .. 95
Editing the Application OS Interface ... 95
RTOS Services in the Application OS Interface 96
Data Recording .. 96
Console Device Use ... 97

5.3 Tailoring File Enhancements.. 98
Editing the KwikNet Tailoring File ... 98
The C Compilation Implicit Rule... 99
The Implicit Rule for Assembly... 99
The Implicit Rule for Linking .. 99

5.4 Making the Sample Program.. 101
KwikNet Parameter Files ... 101
Building the KwikNet Libraries... 101
Gathering Files... 102
The Sample Program Make Process .. 103

5.5 RT/OS Examples.. 104
5.5.1 Using a Custom RTOS.. 104
5.5.2 Using MS-DOS ... 105
5.5.3 Using the DOS/4GW DOS Extender with MS-DOS 106
5.5.4 Using KwikNet Without an OS... 107

KwikNet Porting Kit User's Guide
Table of Figures

Page

Figure 1.1-1 KwikNet Application Block Diagram 3
Figure 1.1-2 KwikNet Library Construction .. 5
Figure 2.4-1 KwikNet OS Interface Make File .. 32
Figure 3.1-1 Compiler Configuration Header File Examples 52
Figure 3.2-1 C Compiler Adaptations .. 54
Figure 3.3-1 Specifying Low Level Services ... 57
Figure 4.3-1 KwikNet Tailoring File (Part 1) .. 87
Figure 4.3-2 KwikNet Tailoring File (Part 2) .. 88
Figure 4.3-3 KwikNet Tailoring File (Part 3) .. 89
Figure 5.3-1 Sample Program Tailoring File Enhancements 100

vi Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet Porting Kit

This page left blank intentionally.

KwikNet Porting Kit Overview KADAK rev2 1

1. KwikNet Porting Kit Overview

1.1 Introduction
The KwikNet® TCP/IP Stack is a compact, reliable, high performance TCP/IP stack, well
suited for use in embedded networking applications. KwikNet is best used with a real-time
operating system (RTOS) such as KADAK's AMX™ Real-Time Multitasking Kernel.
However, KwikNet can be used in single threaded systems without an RTOS. Designing
and implementing an application which requires a TCP/IP stack will always be easier if
you start with some form of underlying operating system, even if it is of the crudest form.

This manual describes how to port KwikNet to the operating environment of your choice.
You pick the target processor, the software development tools and the multitasking
RTOS or single threaded OS.

Although porting KwikNet to your environment is a fairly straight-forward process, it is
still not trivial. KADAK has used its extensive knowledge of target processors and
software development tools and their quirks to simplify the steps which must be followed
for a successful port. Since KwikNet is already available for use with KADAK's AMX
kernel, you know that KwikNet has been tested on many target processors with a number
of different compilers.

It is assumed that you are familiar with the architecture of the target processor and its
interrupt structure. It is further assumed that you are familiar with the rudiments of
microprocessor programming including the concepts of code, data and stack separation.
Of course, you must also have an intimate knowledge of your multitasking RTOS or
single threaded OS. Finally, it is assumed that you have a detailed knowledge of your
software development tools, including C compiler, assembler (if needed), object librarian,
linker/locator and program loader or debugger.

KwikNet is provided in C source format to ensure that regardless of your development
environment, your ability to use and support KwikNet is uninhibited. As will be
explained, the source code can easily be adapted to include code fragments programmed
in the assembly language of the target processor to improve execution speed.

This manual will not tell you how the KwikNet TCP/IP Stack and its options operate or
how to use KwikNet in your application. That information is provided in the KwikNet
TCP/IP Stack User's Guide and in the manuals provided with each optional KwikNet
component. Before starting the porting process, you should read these manuals to
become familiar with KwikNet and the terminology used in this guide.

Note

Throughout this manual the term RT/OS is used to refer to
any operating system (OS), be it a multitasking RTOS or a
single threaded OS.

2 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet Porting Kit Overview

The KwikNet Porting Interface

The KwikNet TCP/IP Stack and your application operate together as illustrated in Figure
1.1-1. The shaded blocks indicate modules which require modification to adapt KwikNet
for use with your application. As you can see, very few modules require adaptation.

The KwikNet TCP/IP Stack consists of one or more KwikNet libraries built according to
your specifications to meet your particular needs. The stack interacts directly with one or
more KwikNet device drivers, each of which connects KwikNet to a particular network.
Each network and its associated device driver is described in the KwikNet Network
Configuration Module.

Your custom KwikNet Libraries and the KwikNet Network Configuration Module are
derived from parameter files generated by the KwikNet Configuration Builder as described
in Chapter 2 of the KwikNet TCP/IP Stack User's Guide. The actual modules are
constructed using your software development tools as described in Chapter 4 of this
manual.

KwikNet is connected to your RT/OS by an OS Interface Module, a C file containing
procedures which provide access to the services of your particular RT/OS. This module
is incorporated into the KwikNet IP Library so that it is always available for use by your
application. A separate board driver connects KwikNet, its device drivers and your OS
Interface Module to your target hardware in an RT/OS independent manner. You must
edit these modules to meet the requirements of your particular RT/OS and target
hardware.

Figure 1.1-1 also shows an application OS interface, a C module used by KADAK to
provide a standard interface between your RT/OS and the sample programs (applications)
provided with KwikNet and its options. If you port the KwikNet sample programs (and it is
recommended that you do so), you will have to edit this module to adapt it for use with
your RT/OS. You will probably find that portions of the code in this module can, with
very little adaptation, be used by your own application.

Finally, your RT/OS must provide a timing source. Although the RT/OS clock driver is
shown as a separate component, it is often implemented as an interrupt service routine
which resides in the OS Interface Module or in the application OS interface.

Porting Tip

The separation of the portable KwikNet components into the
OS Interface Module, the application OS interface and the
board driver will meet most porting needs. However, you
are free to adapt these interfaces to meet your RT/OS needs
and to accommodate the constraints imposed by your
software development tools. As long as the functional
requirements are met, the services can be provided in any
module of your choice.

KwikNet Porting Kit Overview KADAK Copyright © 1999-2000 KADAK Products Ltd. 3

Application

Application
OS Interface
KNSAMOS.C
KNSAMOS.H

KwikNet
TCP/IP
Stack

OS Interface
Module

KN_OSIF.C
KN_OSIF.H

RT/OS

RT/OS
Clock Driver

Board Driver
KN_BOARD.C

KwikNet
Device

Driver(s)

Network
Configuration

Module

Target Hardware

Figure 1.1-1 KwikNet Application Block Diagram

4 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet Porting Kit Overview

Adapting KwikNet to Your Software Tools

To adapt KwikNet for your use, you will need a make utility capable of running your C
compiler, object librarian (archiver) and link/locate utility. The KwikNet library
construction process is illustrated in Figure 1.1-2. The shaded blocks indicate modules
which require modification to adapt the make process to accommodate your software
development tools. As you can see, very few modules require adaptation.

Your custom KwikNet Libraries are created from the KwikNet Library Parameter File, a text
file describing the TCP/IP features and options which your application requires. This file
is created and edited using the KwikNet Configuration Builder as described in Chapter 2 of
the KwikNet TCP/IP Stack User's Guide.

The KwikNet Configuration Builder uses the information in your Library Parameter File to
generate a Network Library Make File. This make file is suitable for use with either
Borland's MAKE or Microsoft's NMAKE utility. The make file purposely avoids constructs
and directives that tend to vary among make utilities. Hence, you should have little
difficulty using this make file with your own make utility if you so choose.

The make utility uses your C compiler and object librarian to generate the KwikNet
Libraries from the KwikNet source modules and your OS Interface Module.

There are several custom adaptations which must be made for the construction process to
succeed. All KwikNet C files include a KwikNet compiler configuration header file
KNZZZCC.H. This file must be edited to identify the characteristics of your C compiler.
This file is also used to optimize code sequences within KwikNet modules by taking
advantage of compiler specific features such as in-line code, assembly language functions
and C library macros or functions. Details are provided in Chapter 3. Fortunately, a
number of variants of this module are provided with KwikNet ready for use with popular
compilers on a variety of target processors.

Your custom OS Interface Module is included in the KwikNet IP Library. This is the
module (see Figure 1.1-1) which connects KwikNet to your RT/OS. You must specify the
make dependencies and rules which control the compilation of its source file KN_OSIF.C.
These make specifications are provided in the OS Interface Make File KN_OSIF.INC
which the make process automatically includes. You must edit this file as described in
Chapter 2 to meet your requirements.

As you would probably expect, the make file does not know how to run your C compiler
and object librarian. You must provide this information in a file called KNZZZCC.INC
which the make process automatically includes. This file, called a tailoring file, is used
to tailor the library construction process to accommodate your make utility's syntax for
implicit rules. It also provides the command sequences necessary to invoke your C
compiler and object librarian. KwikNet is shipped with a number of tailoring files ready
for use with many popular compilers using either Borland's MAKE or Microsoft's NMAKE
utility.

KwikNet Porting Kit Overview KADAK Copyright © 1999-2000 KADAK Products Ltd. 5

KwikNet
Configuration

Builder

Compiler
Header

KNZZZCC.H

Tailoring
File

KNZZZCC.INC

OS Interface
Module

KN_OSIF.C
KN_OSIF.H

OS Interface
Make File

KN_OSIF.INC

Network
Library

Make File

MAKE
Utility

KwikNet
Source
Code

Library
Parameter

File

C Compiler
Object Librarian

KwikNet
Libraries

Figure 1.1-2 KwikNet Library Construction

6 rev2 KADAK KwikNet Porting Kit Overview

1.2 Getting Started

Installing KwikNet

The KwikNet Porting Kit is installed as described in the Installation Guide which is
packaged with the KwikNet product disks. You will observe a number of directories,
many of which will contain the source modules for the KwikNet libraries. File
MANIFEST.TXT in the root of the installation directory is the product manifest containing
a list of all KwikNet installed files. You can use this text file to find the location of any of
the installed KwikNet files.

Fortunately, there are few KwikNet files which will require modification. The files of
interest are located in directory EXAMPLES. The following sets of files are provided, each
set offering a complete KwikNet port using a particular RT/OS, target processor and
software toolset. The file sets are located in the following subdirectories within directory
EXAMPLES.

MSDOS MS-DOS, PC hardware, Microsoft tools
DOS4GW DOS/4GW, PC hardware, WATCOM tools
XRTOS Custom RTOS, 68xxx hardware, Mentor Graphics (Microtec) tools
XOS Custom single threaded OS, 68xxx hardware,

Mentor Graphics (Microtec) tools

The MS-DOS example illustrates the use of KwikNet with stand-alone MS-DOS operating
in real mode on PC compatible hardware. This single threaded example is ready to use
with MS-DOS with very little change.

The DOS/4GW example illustrates the use of KwikNet with stand-alone MS-DOS
operating in protected mode on PC compatible hardware with the Tenberry DOS/4GW
DOS Extender. This single threaded example is ready to use with MS-DOS and
DOS/4GW with very little change.

The last two examples are for use with custom KwikNet ports.

If you are using a commercial multitasking RTOS (not KADAK's AMX kernel) or your
own in-house RTOS, start with the files from directory XRTOS. This example assumes
that your RTOS includes the task, semaphore and timing features required by KwikNet for
multitasking operation.

If you are using your own single threaded OS or if you are operating without an OS of
any kind, start with the files from directory XOS.

KwikNet Porting Kit Overview KADAK rev2 7

A Trial Run

Once you have installed the KwikNet Porting Kit, you can build and test a single threaded
version of KwikNet for use with MS-DOS without modifying any of the installed files. To
do so, you will need Microsoft 16-bit software development tools.

As installed, KwikNet is ready for use with MS-DOS using Microsoft tools and the NMAKE
make utility. A copy of the MS-DOS porting example from directory EXAMPLES\MSDOS
is installed in the KwikNet toolset directory TOOLUU, ready for use.

If you would rather use the Borland MAKE utility, you will have to replace file
KNZZZCC.INC in the TOOLUU directory. Copy tailoring file B__86MC.15 from directory
EXAMPLES\TF_BORLD to directory TOOLUU, renaming it KNZZZCC.INC.

To build the KwikNet Libraries for the TCP/IP Sample Program, skip to Chapter 4.4 and
follow the directions. Build the libraries using the Library Parameter File KNSAMLIB.UP
from directory TOOLUU\SAM_TCP. Just replace references to NETLIB with KNSAMLIB.

With the KwikNet Libraries in place, you are ready to build the TCP/IP Sample Program
executable file KNSAMPLE.EXE which you will be able to load and run under MS-DOS.
Skip to Chapter 5.4 and follow the directions. There is no need to gather the files; they
are already in place. Simply run the Microsoft make utility as instructed.

Porting Tip

When the KwikNet Porting Kit is installed, it is ready to
build the MS-DOS porting example. To build any of the
other examples, go to the KwikNet installation directory
KNT713 and run batch file TOOLUU.BAT without parameters.
Follow the instructions which it presents to copy the
porting example of interest to toolset directory TOOLUU.

You will need the software tools listed on the previous page
to build the particular example which you selected.

Porting Tip

If you use the Borland MAKE utility, you will have to use the
Borland tailoring file for the example of interest. Copy the
Borland tailoring file for the compiler and target processor
from directory EXAMPLES\TF_BORLD to directory TOOLUU
and rename it KNZZZCC.INC as described in Chapter 4.3.

8 rev2 KADAK KwikNet Porting Kit Overview

Files to be Edited

Once you have selected the KwikNet porting example which most closely matches your
application requirements, copy the entire subdirectory from the EXAMPLES directory to a
working directory in which the files can be edited. The following files will require
modification as described in the chapter indicated.

Module Chapter Purpose

KN_OSIF.C 2 OS Interface Module for your RT/OS
KN_OSIF.H 2 OS Interface Header File for your RT/OS
KN_OSIF.INC 2 OS Interface Make Specification for your RT/OS

KN_BOARD.C Board driver for your target hardware

KNZZZCC.H 3 Compiler Configuration Header File

KNZZZCC.INC 4 Tailoring File (for use with your make utility)
KN713IP.LBM 4 KwikNet IP Library Specification File
KN713TCP.LBM 4 KwikNet TCP Library Specification File
KN713*.LBM 4 Library Specification Files for optional KwikNet Libraries

KNSAMOS.C 5 Sample Program OS Interface for your RT/OS
KNSAMOS.H 5 Sample Program OS Interface Header File for your RT/OS

The number 713 in some of the filenames is the KADAK part number used to identify the
KwikNet Porting Kit.

The KwikNet board driver KN_BOARD.C is described in Chapter 3 of the KwikNet Device
Driver Technical Reference Manual.

The compiler configuration header file KNZZZCC.H and the tailoring file KNZZZCC.INC
provided with each example are ready for use with Microsoft NMAKE and one particular
software toolset. Other files are available for use with other tools.

Installation directory EXAMPLES\CC_H contains a number of compiler configuration
header files ready for use with different compilers and target processors. All of these
files have been derived from the equivalent files used by KADAK with AMX. Pick the
file which you think most closely matches your C compiler's characteristics and copy that
file to your working directory, renaming it KNZZZCC.H.

Installation directory EXAMPLES also contains a number of tailoring files ready for use
with different compilers. Directory EXAMPLES\TF_BORLD contains tailoring files ready
for use with the Borland MAKE utility. Directory EXAMPLES\TF_MSOFT contains equivalent
tailoring files ready for use with Microsoft NMAKE. All of these tailoring files have been
derived from the equivalent files used by KADAK with AMX. Pick the tailoring file
which you think most closely matches the requirements of your make utility and software
tools and copy that file to your working directory, renaming it KNZZZCC.INC.

KwikNet RT/OS Interface KADAK rev2 9

2. KwikNet RT/OS Interface

2.1 Introduction
The KwikNet TCP/IP Stack requires access to services provided by your multitasking
RTOS or single threaded OS. All such access is done through a collection of procedures
in your OS Interface Module KN_OSIF.C. It is the purpose of this chapter to define the
OS interface and provide detailed descriptions of each of the procedures which you must
provide.

Start by selecting the OS interface files from one of the examples provided in installation
directory EXAMPLES. The following files make up the OS interface.

KN_OSIF.C OS Interface Module
KN_OSIF.H OS Interface Header File
KN_OSIF.INC OS Interface Make File

The OS Interface Header File KN_OSIF.H is ready for use. It identifies the particular OS
interface example which you have chosen and specifies whether it is a multitasking
RTOS or a single threaded OS. In general, there should be no need to edit this file.
However, should you decide to add your own RT/OS specific definitions to the file,
follow the edit instructions provided in the file.

Your OS Interface Module KN_OSIF.C must be compiled and installed in the KwikNet IP
Library as described in Chapter 4. The OS Interface Make File KN_OSIF.INC, described
in Chapter 2.4, provides your make utility with the information necessary to compile
module KN_OSIF.C.

Using a Multitasking RTOS

If you are using a multitasking RTOS, pick your OS interface files from the example in
directory XRTOS. The OS Interface Module KN_OSIF.C will contain all of the interface
procedures which you require. Follow the directions in Chapter 2.2 and skip Chapter 2.3.

Using a Single Threaded OS

If you are using MS-DOS in real mode, pick your OS interface files from the example in
directory MSDOS. If you plan to use MS-DOS in protected mode, pick files from example
directory DOS4GW. Otherwise, pick files from example directory XOS. The OS Interface
Module KN_OSIF.C will contain all of the interface procedures which you require. Skip
Chapter 2.2 and follow the directions in Chapter 2.3.

10 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet RT/OS Interface

2.2 The Multitasking RTOS Interface
The general operation of KwikNet is described in the KwikNet TCP/IP Stack User's Guide.
When used with a multitasking RTOS, KwikNet makes use of services provided by the
RTOS to enhance its operational characteristics.

The KwikNet OS Interface includes all of the interface procedures necessary to use
KwikNet with your RTOS. It is simply a question of adapting the examples for use with
your RTOS. Most of the procedures require only a few lines of code. Although you
may choose to wade in and start editing, you should first take a few moments to read this
chapter for an overview of the requirements and the recommended methods of
implementation.

Your RTOS interface must provide a task, called the KwikNet Task, which operates at a
priority above all other tasks wishing to make use of KwikNet and its network services.
This task controls the KwikNet startup process. Once started, the task operates
asynchronously, servicing the KwikNet events for which it is responsible. If your
application chooses to stop KwikNet, the KwikNet Task supervises the orderly shut down
and then ceases to operate.

KwikNet must be able to dynamically allocate and free blocks of memory as it executes.
These memory services must be thread-safe so that the integrity of KwikNet is not
compromised by the effects of task switching by your RTOS. If your RTOS provides its
own memory allocation services, you should adapt the KwikNet OS interface to make use
of them. Otherwise, you must provide a semaphore which KwikNet can use to protect its
access to your custom memory allocation services or to those available in the standard C
library.

KwikNet also needs a timing source, a periodic tickle at the frequency specified by your
KwikNet Library Parameter File. KwikNet also expects to be able to initiate a delay,
measured in milliseconds, during which the task using some KwikNet service will be
forced to relinquish control of the processor in favour of lower priority tasks.

The KwikNet Task provides its own event message queue, thereby eliminating any
dependence on the queueing services which your RTOS might provide. However, the
KwikNet Task must be able to block itself (sleep) and resume execution (wakeup) at will.
Your RTOS interface must provide these services in the most efficient manner possible.

From time to time, KwikNet will have to block the currently executing task pending a
particular KwikNet event. The OS interface procedures which provide this blocking and
unblocking service are critical to the successful operation of KwikNet.

In order to protect some of its network data structures, KwikNet uses a resource lock to
prevent concurrent access by multiple tasks. The resource lock must be provided in the
OS interface, usually using a resource semaphore which permits nested ownership of the
resource.

KwikNet device drivers must be able to hook their interrupt handlers into the interrupt
system of the target processor. The manner in which this is accomplished is both target
processor and RTOS dependent. The KwikNet board driver KN_BOARD.C resolves the
target issues. The OS interface must resolve the RTOS issues.

KwikNet RT/OS Interface KADAK Copyright © 1999-2000 KADAK Products Ltd. 11

Summary of RTOS Interface Services

The KwikNet TCP/IP Stack gains access to your RTOS services via the procedures in your
OS Interface Module KN_OSIF.C. These procedures are summarized below. Detailed
specifications are provided in Chapter 2.5.

kn_osprep Prepare for use of the RTOS
kn_osready Declare the RTOS ready for use
kn_osfinish Finished using the RTOS

kn_osenter Entering KwikNet; setup RTOS resources accordingly
kn_osexit Leaving KwikNet; relinquish RTOS resources accordingly

kn_osfatal Handle a fatal error condition
kn_ostaskid Get the task identifier of the currently executing task

kn_osmeminit Initialize memory allocator for use by KwikNet
kn_osmemget Get a block of memory
kn_osmemrls Release (free) a block of memory

kn_osclkinit Create/start a periodic timer (clock) for KwikNet use
kn_osclkexit Stop the KwikNet timer
kn_osdelay Block the current task for an interval measured in milliseconds

kn_osflagwait Block the KwikNet Task until the signal flag is raised
kn_osflagup Unblock the KwikNet Task by raising the signal flag
kn_osblock Block the current task until a particular event of interest occurs
kn_osunblock Unblock a task waiting for an event which just occurred

kn_oslocknet Lock the network resource for exclusive use by the caller
kn_osunlocknet Unlock the network resource

kn_oslockmem Lock memory allocation services for use by the caller
kn_osunlockmem Unlock memory allocation services

kn_oslockfs Lock file access services for use by the caller
kn_osunlockfs Unlock file access services

kn_osvinstall Install an interrupt service routine
kn_osvaccess Read from and/or write to a processor exception vector

12 rev2 KADAK KwikNet RT/OS Interface

RTOS and KwikNet Startup

The KwikNet OS interface must be initialized with a call to procedure kn_osprep()
before your RTOS begins operation. Note that this procedure must be called by your
application; it is not called by KwikNet. It is recommended that the call be made from
your main() function.

Procedure kn_osprep() must call KwikNet procedure kn_logbufinit() to prepare the
KwikNet data logger so that KwikNet procedure kn_dprintf() can be used for data
recording even when KwikNet is not running.

Procedure kn_osprep() can then initialize all variables, if any, associated with the RTOS
interface. Although rarely necessary, any non-RTOS resources upon which your OS
interface depends should also be allocated and initialized.

Once the OS interface is ready for use, your RTOS can be started. Thereafter, the
progression of execution will depend upon the way your RTOS works. Your RTOS may
automatically create one or more tasks which it then executes. Others may require that
you initialize the RTOS, create a task and then start the RTOS to execute that task.

Regardless of how it is done, the RTOS will finally execute some procedure which is part
of your application. Your application must call procedure kn_osready() in the OS
interface to declare the RTOS ready for use. This procedure will usually afford the first
opportunity to use the RTOS to create things like tasks, timers and semaphores. It is
recommended that procedure kn_osready() allocate the RTOS resources which your OS
interface must provide for use by KwikNet. Finally, procedure kn_osready() must call
KwikNet procedure kn_memprep() to prepare the KwikNet memory allocation system.

At some point during this startup process, your application must start KwikNet with a call
to kn_enter(). This call is usually made from a task, be it an RTOS startup task or one
of your own application tasks. KwikNet immediately calls your OS interface procedure
kn_osenter(). If you have not already done so, you must allocate all of the RTOS
resources which your OS interface must provide for use by KwikNet. These resource
requirements will be described shortly.

Finally, the OS interface procedure kn_osenter() must create and start the KwikNet
Task. However the task comes into existence, the KwikNet Task must begin execution in
response to this start request. Starting the KwikNet Task must be the last action performed
by procedure kn_osenter().

Once the KwikNet Task has been started, the execution sequence will depend upon several
factors. If your call to kn_enter() to start KwikNet was made in some kind of RTOS
startup procedure, the KwikNet Task will not begin execution until your RTOS permits. If
an application task called kn_enter() and that task is of higher priority than your
KwikNet Task, then the KwikNet Task will not execute until your other higher priority tasks
block for some reason. If an application task called kn_enter() and that task is of lower
priority than your KwikNet Task, then the KwikNet Task may execute as soon as it is started
from within procedure kn_osenter(). In other cases, your RTOS may not allow the
KwikNet Task to execute, even though it is of higher priority, until a time slice tick or
other task rescheduling signal occurs.

All subsequent KwikNet startup processing occurs in the context of the KwikNet Task.

KwikNet RT/OS Interface KADAK Copyright © 1999-2000 KADAK Products Ltd. 13

KwikNet Task Operation

Your OS interface must provide an application task which will act as the KwikNet Task.
The task is created and started as the final action of OS interface procedure
kn_osenter().

If your RTOS does not allow the dynamic creation of a task, you will have to ensure that
the KwikNet Task exists before your RTOS is started. Even if tasks can be created
dynamically, you may still prefer to let your RTOS automatically create your KwikNet
Task from a description which you provide as part of your RTOS configuration.
However the task comes into existence, the KwikNet Task must begin execution in
response to the trigger (start request) from procedure kn_osenter().

The KwikNet Task must meet your RTOS specifications. It is recommended that 1024
bytes of stack be allocated for use on most target processors. More stack may be needed
on complex RISC processors or to satisfy your RTOS demands.

Note

The KwikNet Task must execute at a priority above that of
all application tasks which make use of KwikNet services.

Special consideration may be required if your RTOS does not allow tasks to be
dynamically created and/or started. If your RTOS automatically creates and starts a task
when the RTOS begins, then your KwikNet Task will have to block (wait) until KwikNet is
allowed to actually start. How you do this will be RTOS dependent. For example, your
KwikNet Task could wait on a semaphore or event flag until signalled from OS interface
procedure kn_osenter().

Once your task is permitted to actually perform as the KwikNet Task, it must call KwikNet
procedure kn_task(). There will be no return from this procedure until KwikNet is
ordered by your application to shut down.

The KwikNet Task calls OS interface procedure kn_osmeminit() to initialize your
memory allocator for use by KwikNet. Once your memory allocation services are
available, KwikNet can use OS interface procedures kn_osmemget() and kn_osmemrls()
to acquire and release variable sized blocks of memory.

After the KwikNet Task has initialized its network interfaces, it calls OS interface
procedure kn_osclkinit() to create and/or start a periodic software timer for KwikNet
use. Operation of the KwikNet timer will be described shortly.

Once the KwikNet Task completes its initialization, it calls OS interface procedure
kn_osflagwait() to wait for a message to arrive on its private message queue.
Messages are generated by KwikNet services invoked by your application tasks, by
KwikNet timer ticks and by KwikNet device drivers. All use KwikNet's message posting
service which calls OS interface procedure kn_osflagup() to force the KwikNet Task to
resume servicing its message queue.

The KwikNet Task will continue to execute until ordered to shut down by your
application's call, if any, to KwikNet procedure kn_exit().

14 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet RT/OS Interface

KwikNet Timer Operation

The KwikNet TCP/IP Stack operates at the clock frequency defined in your KwikNet
Library Parameter File which you created using the KwikNet Configuration Builder. The
frequency is provided as a parameter on the Target property page. All KwikNet timing
intervals are based upon this frequency.

The minimum frequency is 2 Hz. A frequency of 10 or 20 Hz is recommended. Any
frequency above 50 Hz will simply introduce unnecessary execution overhead with little
noticeable improvement in network throughput.

The KwikNet timer procedure kn_timer() must be called by your OS interface at the
defined frequency. For example, if the KwikNet frequency is declared to be 20 Hz, you
must ensure that procedure kn_timer() is executed once every 50 ms. This procedure
can be called from an interrupt service routine (ISR), provided the ISR preserves all
processor registers which your C compiler considers to be alterable.

Your RTOS will probably give you a mechanism for implementing a software timer to
meet this requirement. If software timers are resources created by your RTOS, then you
should create the KwikNet timer at the same time as all other RTOS related resources are
allocated, usually in OS interface procedure kn_osenter(). Alternatively, you can defer
creating the timer until the KwikNet Task calls procedure kn_osclkinit() to start it.

If your RTOS does not provide timers, then you will have to create such a software timer
and hook it to your fundamental hardware clock. In most cases, you will already have
such a hook in place for use by your RTOS. In rare cases, you may have to create a task
which repetitively delays for the required interval before calling kn_timer().

No matter how the software timer is created or initialized, the timer must not call
kn_timer() until the KwikNet Task calls OS interface procedure kn_osclkinit() to start
KwikNet timing. The examples provided with the KwikNet Porting Kit illustrate this point.

If your software timer executes at a frequency greater than the KwikNet frequency, you
will have to use a software counter to derive the slower KwikNet tick. When the KwikNet
Task calls procedure kn_osclkinit() to start the KwikNet timer, it provides the timer
period, measured in milliseconds, as a parameter. You can use this parameter to derive
the number of actual timer ticks which constitute a KwikNet tick. For example, if the
KwikNet clock frequency is 20 Hz (period of 50 ms) but your software timer operates at
100 Hz (period of 10 ms), your timer procedure must only call kn_timer() once every
5 ticks.

When KwikNet shuts down the TCP/IP stack, it calls OS interface procedure
kn_osclkexit() to stop the KwikNet timer. This procedure must ensure that your
software timer stops calling the KwikNet timer procedure kn_timer().

If procedure kn_clkinit() created and started your timer procedure, then procedure
kn_clkexit() should delete it. If your timer procedure was created by procedure
kn_osenter(), then it should be deleted by procedure kn_osexit().

KwikNet RT/OS Interface KADAK Copyright © 1999-2000 KADAK Products Ltd. 15

Task Delays

KwikNet calls OS interface procedure kn_osdelay() to force the currently executing task
to delay (block) for an interval measured in milliseconds. The KwikNet Task never calls
this procedure. It is only called by KwikNet services which are executing in the context of
an application task. Some of the server and client tasks provided with optional KwikNet
components also call kn_osdelay() to delay briefly.

Task Identification

KwikNet calls OS interface procedure kn_ostaskid() to fetch the identity of the currently
executing task. The procedure must return the task identifier as a 32-bit unsigned long
value. The value 0 is reserved as an invalid task identifier.

KwikNet RTOS Resources

Your OS interface must provide the following RTOS resources for use by KwikNet. The
KwikNet Task and the KwikNet timer requirements have already been described. The
resource semaphores must be created by your OS interface procedure kn_osready() or
kn_osenter() unless they already exist by the time the latter procedure is executed.

RTOS resources which are created or initialized by procedure kn_osenter() must be
released or destroyed by procedure kn_osexit(). This requirement must be met if
KwikNet can be shut down and restarted by your application.

RTOS resources which are created or initialized by OS interface procedure
kn_osready() may have to be released or destroyed by your application before the
RTOS is shut down. This requirement will be dictated by your RTOS. In some cases,
you may be able to relinquish these RTOS resources in procedure kn_osfinish() which
is called after the RTOS has returned to main().

• A task to operate as the KwikNet Task

• A periodic timing tick to activate the KwikNet timer

• A resource semaphore to guard access to KwikNet networks

• A resource semaphore to guard memory allocation services
(Only required if C symbol KN_MEMLOCK has a non-zero value.)

• A resource semaphore to guard file system access
(Only required if C symbol KN_FS_LOCK has a non-zero value.)

16 rev2 KADAK KwikNet RT/OS Interface

Resource Locking

KwikNet uses a lock to guard access to its network resources. Without the lock,
application tasks making use of KwikNet services could generate serious conflicts between
themselves and the higher priority KwikNet Task.

A similar lock can be used to guard access to memory allocation services and file system
services which are otherwise not thread-safe. These particular locks are optional and are
only required if needed to support your memory allocator or file system.

KwikNet calls OS interface procedures kn_oslockXXX() and kn_osunlockXXX() to
reserve and release network (XXX is net), memory allocation (XXX is mem) and file system
(XXX is fs) services. In most cases, an RTOS resource semaphore is used to implement
the lock. A resource semaphore is a semaphore with a task ownership attribute.

Procedure kn_oslockXXX() must ensure that the task making the request is blocked until
ownership of the resource has been granted to that task. If the calling task already owns
the resource, the caller is not blocked and retains nested ownership of the resource.

Procedure kn_osunlockXXX() relinquishes the resource, provided it is owned by the
calling task. The task owning a resource must call kn_osunlockXXX() once for every
call to kn_oslockXXX() which it made to reserve the resource. Only when the task's
ownership is no longer nested is the resource released and granted to another task, if any,
waiting for its use.

The resource semaphore required by KwikNet is sometimes called a mutex. If your RTOS
provides a mutex, be sure that it supports the concept of task ownership and allows
nesting of a task's ownership.

Porting Tip

The XRTOS example in the KwikNet Porting Kit can be
configured to use a resource semaphore or to derive a
resource semaphore from a binary semaphore. You can use
the latter implementation if your RTOS does not offer a
resource semaphore with nested task ownership.

KwikNet RT/OS Interface KADAK Copyright © 1999-2000 KADAK Products Ltd. 17

KwikNet Message Queueing

KwikNet does not depend on the message passing capabilities of your RTOS. Instead, it
provides its own message queue and depends only on an RTOS signalling service which
most reasonable RTOS implementations offer.

The KwikNet Task calls OS interface procedure kn_osflagwait() to wait for a message
to arrive on its private message queue. Messages are generated by KwikNet services
invoked by your application tasks, by KwikNet timer ticks and by KwikNet device drivers.
All use KwikNet's message posting service which calls OS interface procedure
kn_osflagup() to force the KwikNet Task to resume servicing its message queue.

The signalling method relies on an RTOS flag of some kind. Initially the flag is down.
The KwikNet Task calls kn_osflagwait() to wait for the flag to go up. If the flag is up at
the time of the call, the flag is dropped and the KwikNet Task is allowed to continue
executing. If the flag is down at the time of the call, the KwikNet Task is forced to block
(wait) in procedure kn_osflagwait().

Eventually some task, timer or device driver will force KwikNet to call kn_osflagup() to
raise the flag. If the flag is up at the time of the call, it stays up and no further action is
required. If the flag is down at the time of the call, the flag is raised and the KwikNet Task
is forced to resume excution if it was blocked waiting for the flag. When the KwikNet
Task resumes execution in procedure kn_osflagwait(), the flag is dropped.

In some cases, the flag may be an inherent part of some RTOS services such as sleep()
or wake(). However, be careful. A wake() call must generate a pending wake (raise the
flag) so that a subsequent sleep() request does not inadvertently block the KwikNet Task.

Your RTOS may provide a message queuing service which can be used to implement this
feature. Whether called a queue, mailbox or exchange, create a queue which can hold
only one element. Procedure kn_osflagwait() waits at the queue. Procedure
kn_osflagup() adds an arbitrary element to the queue (flag goes up). If the queue
already has an element in it, an error may be reported but the error can safely be ignored.
When the element is retrieved from the queue by procedure kn_osflagwait(), the queue
goes empty (flag is down).

Another common RTOS feature that can be used effectively is the mailbox which can
hold a single non-zero numeric message. Procedure kn_osflagwait() waits at the
mailbox. Procedure kn_osflagup() adds an arbitrary non-zero message to the mailbox
(flag goes up). If the mailbox already has a message in it, an error may be reported but
the error can safely be ignored. When the message is retrieved from the mailbox by
procedure kn_osflagwait(), the mailbox is zeroed (flag is down).

18 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet RT/OS Interface

Memory Allocation Services

KwikNet must be able to dynamically allocate and free blocks of memory of varying sizes.
KwikNet uses the memory allocation services in the OS Interface Module.

The KwikNet Task calls OS interface procedure kn_osmeminit() to initialize your
memory allocator. Thereafter, KwikNet calls kn_osmemget() to get a block of memory.
Some time later, it calls kn_osmemrls() to free the block. In many cases, the block will
not be freed until KwikNet shuts down.

The KwikNet Library can be configured to support several different memory allocation
strategies. The strategy is defined by the parameters in your Library Parameter File. The
choices, summarized below, are made on the OS property page using the KwikNet
Configuration Builder.

• Use standard C memory allocation functions

• Use RTOS memory allocator

• Use RTOS allocation services to manage allocation from a fixed region of
memory provided by the application from one of the following sources:
(1) a static array in the KwikNet Configuration Module,
(2) an absolute address in memory or
(3) a memory region provided by your custom kn_memacquire() procedure.

The KwikNet library configuration file KN_LIB.H specifies the strategy which you
selected. C symbol KN_MEMSRC will be defined to have value KN_MS_STDC if standard C is
to be used. Otherwise, an RTOS dependent allocation method is to be used.

The examples provided with the KwikNet Porting Kit support the use of standard C. If
standard C is selected, the examples conditionally compile code to use standard C
functions calloc() and free() to allocate and free memory. No specific memory
initialization actions are required since standard C is assumed to manage its own heap.

If you use an RTOS memory management scheme, you must edit OS interface
procedures kn_osmeminit(), kn_osmemget() and kn_osmemrls() to use your RTOS
services.

Procedure kn_osmeminit() receives two parameters: a pointer to a fixed region of
memory to be used for allocation and the size of that region. If your RTOS has its own
memory allocator, procedure kn_osmeminit() can safely ignore these parameters since
the RTOS is assumed to have its own memory resources. However, if you chose to use
RTOS memory management services to control allocation from a fixed memory region,
then procedure kn_osmeminit() must give control of the memory region to your RTOS.

Porting Tip

If your standard C or RTOS memory allocation services are
not thread-safe, configure your KwikNet Library to enable
KwikNet locking for memory allocation. Your OS interface
can then use the memory resource semaphore to protect
memory access as shown in the porting examples.

KwikNet RT/OS Interface KADAK rev2 19

Application Blocking Services

From time to time, a task will use a KwikNet service which will force KwikNet to block
(suspend) the task until a particular event occurs. KwikNet depends on two procedures in
the OS interface to meet this requirement: kn_osblock() and ks_osunblock().

KwikNet calls OS interface procedure kn_osblock() to block the currently executing task.
The procedure is given a pointer to a callback function and a parameter which must be
passed to that function. Procedure kn_osblock() must inhibit task preemption, execute
the callback function (passing it its parameter) and then block the currently executing
task. KwikNet gives the procedure a 32 byte block of storage which can be used to
preserve information needed by your RTOS interface to meet the blocking requirements.

When the event of interest occurs, KwikNet calls procedure kn_osunblock() to unblock
the task waiting for the event. KwikNet passes to the procedure a pointer to the same 32
byte block of storage which procedure kn_osblock() used when it blocked the task.

Of particular importance is the need to temporarily inhibit task preemption. Procedure
kn_osblock() must ensure that the calling task cannot be preempted while it executes
the callback function and blocks itself from further execution. Task switching must be
disabled until the task is blocked, at which point task switching must again be enabled.

If your RTOS permits task preemption to be enabled and disabled for a specific task,
implementing procedure kn_osblock() will be simple. Be careful if your RTOS only
allows the unconditional enabling or disabling of task switching. For such an RTOS, if
you disable task switching and then block (wait, sleep, etc), you may find that task
switching remains disabled forever, thereby totally crippling your system.

The following technique can be used if your RTOS supports the dynamic alteration of a
task's execution priority. The private storage block can be used to save the task's current
execution priority. The task can then raise itself to a priority above that of the KwikNet
Task. It then calls the callback function and finally blocks itself. When the event of
interest occurs, procedure kn_osunblock() unblocks the task which then restores its
original execution priority.

Another technique requiring an additional task and an associated message queue can be
used. The extra task, called a sleep task, and its message queue must be created when
your RTOS resources are first allocated, usually in OS interface procedure
kn_osenter(). The sleep task must execute at a priority above the KwikNet Task. It
starts and waits on its message queue. Procedure kn_osblock() saves the callback
function pointer, its parameter and the calling task's identifier in the storage block
provided by KwikNet. The pointer to the storage block is then added to the sleep task's
message queue, causing the higher priority sleep task to preempt the task being blocked.
The sleep task calls the callback function and finally suspends the task which sent it the
message. When the event of interest occurs, procedure kn_osunblock() removes the
suspension, allowing the blocked task to resume execution.

The latter technique has a nasty side effect. Since the callback function is executed by
the sleep task, it cannot manipulate resources owned by the task being blocked. Hence,
the KwikNet callback function cannot unlock the network resource owned by the task
being blocked. To overcome this constraint, procedure kn_osunlocknet() must allow
the sleep task to release network resources owned by other tasks.

20 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet RT/OS Interface

Interrupt Vector Manipulation

KwikNet device drivers must be able to connect their interrupt handlers to the underlying
interrupt architecture of the target processor. Unfortunately, there are almost as many
architectures as there are processors.

The simplest interrupt systems are found in processors like the Motorola MC68000 and
the Intel 80x86 families, in which a single, linear vector table is used to dispatch both
processor exceptions and device interrupts to an appropriate software handler. Entries in
the vector table are simply pointers to the supporting software function.

Protected mode Intel 80x86 systems still use a linear table, but the table entries are
anything but simple. Instead, each entry is an 8 byte descriptor which leads through an
exception specific gate to an appropriate software handler.

RISC processors such as the PowerPC, ARM and MIPS can be even more difficult to
use. In most cases, the R in RISC means that most of the interrupt source decoding has
been Removed. Frequently all device interrupts funnel through one or two entries in a
processor exception table and a software procedure must identify the interrupt source and
branch to the appropriate device interrupt handler. For such processors, it will help if
your RTOS, like AMX, provides a linear interrupt vector table through which all device
interrupts can be dispatched.

Entries in the processor or RTOS vector table are identified by a vector number which,
for simple architectures, is usually just the processor vector number. For complex
architectures, the vector number will be an interrupt source identifier dictated by your
RTOS or your own low level RTOS interface.

The KwikNet OS interface procedure kn_osvaccess() helps shield KwikNet from the
complexity of the processor's interrupt architecture. This procedure is used to access the
processor or RTOS vector table in order to attach software handlers to specific exceptions
and interrupts.

Procedure kn_osvaccess() is used to read and/or write a specific entry in your processor
or RTOS vector table. The entry is identified by its vector number. The procedure can
be used to read and save the current vector content and then install new content, all in one
operation. The procedure must ensure that device interrupts are inhibited while the
vector content is being manipulated.

Porting Tip

The KwikNet IRQ identifier assigned to a KwikNet device
driver should be the vector number for the actual processor
or RTOS vector through which the device interrupt is
serviced.

KwikNet RT/OS Interface KADAK Copyright © 1999-2000 KADAK Products Ltd. 21

Device Driver Support

KwikNet device drivers are implemented as described in the KwikNet Device Driver
Technical Reference Manual. Most network device interfaces use the processor's
interrupt facility to enhance operation of the network connected to the interface. The
device driver is then responsible for handling one or more interrupts generated by the
device interface.

Unfortunately, several factors complicate interrupt handling. To begin with, the target
processor dictates how it responds to interrupts generated by internal and external
devices. In some cases, extra hardware is added to prioritize the interrupt sources. The
interrupt prioritization logic may be internal to the processor or external in the form of an
interrupt controller. Finally, your RTOS will superimpose its own rules for the handling
of interrupts by your software.

To meet such diverse requirements, KwikNet separates board level interrupt support and
RTOS interrupt support. KwikNet device drivers install interrupt handlers and manipulate
interrupts using services provided in the KwikNet board driver KN_BOARD.C. The board
driver uses services provided in the OS Interface Module to ensure compliance with your
RTOS and its support for the underlying processor interrupt structure.

The KwikNet board driver KN_BOARD.C is described in Chapter 1.8 of the KwikNet Device
Driver Technical Reference Manual. It provides support for up to KN_INTSRCMAX unique
interrupt sources. Unless altered by you, KN_INTSRCMAX is defined to be 4. A KwikNet
device driver provides an interrupt handler for each of the interrupts which the associated
device can generate. Do not lose sight of the fact that most network devices can only
generate a single interrupt, albeit for a great many different reasons.

The device driver calls board driver procedure kn_brdintsvc() to install a device
interrupt handler into a specific interrupt vector. The vector is determined by the KwikNet
IRQ identifier which you assigned via the device driver parameters entered in your
KwikNet Network Parameter File.

Procedure kn_brdintsvc() assigns a handle to the device. The handle is a number from
1 to KN_INTSRCMAX which KwikNet uses to identify the interrupt handler. Procedure
kn_brdintsvc() then calls the OS interface procedure kn_osvinstall() passing it the
device handle and vector number.

Procedure kn_osvinstall() must provide an RTOS compatible interrupt service routine
(ISR) for the device. The ISR must call KwikNet procedure kn_isphandler() passing it
the device handle for the device being serviced. The examples provided with the KwikNet
Porting Kit implement one such ISR for each of the KN_INTSRCMAX KwikNet interrupt
sources.

Procedure kn_osvinstall() must modify the specified vector in the processor or RTOS
vector table so that subsequent interrupts from the device in question are handled by its
ISR. It can do so using OS interface procedure kn_osvaccess().

22 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet RT/OS Interface

KwikNet and RTOS Shutdown

Once KwikNet is started, it executes forever unless requested by your application to shut
down. To stop KwikNet, an application shutdown task of lower priority than KwikNet must
call KwikNet procedure kn_exit(). Most of the initial termination processing by KwikNet
will occur in the context of the shutdown task. Once most stack operations have ceased,
OS interface procedure kn_osclkexit() will be called to stop the KwikNet timer.

The shutdown task is then blocked until the KwikNet Task can complete the shutdown.
The shutdown task resumes periodically to monitor progress as it waits for the shutdown
process to complete.

Once the KwikNet Task has been stopped, procedure kn_exit(), executing in the context
of the shutdown task, calls OS interface procedure kn_osexit() to relinquish all of the
RTOS resources previously allocated by procedure kn_osenter().

Most applications which shutdown KwikNet do so in preparation for a final termination.
However, once kn_exit() returns to your shutdown task, your application can start
KwikNet again with a call to procedure kn_enter().

When your application is done and your RTOS has stopped, control returns to your
main() function. At this point, procedure kn_osfinish() must be called to relinquish
all C, C++ or hardware resources, if any, allocated by procedure kn_osprep() when your
main() function started. As its last operation, kn_osfinish() must call KwikNet
procedure kn_memquit() to close down the KwikNet memory allocation system.

If your KwikNet application can never be stopped, procedures kn_osexit() and
kn_osfinish() can be empty stubs.

Error Handling

Whenever KwikNet detects an error condition from which recovery is not possible, it calls
its fatal error handler kn_fatal() with one of the KwikNet fatal error codes KN_FERxxxxx.
It is recommended that your OS interface procedures adopt this same strategy.

The KwikNet fatal error handler calls your OS interface procedure kn_osfatal() giving
you one last chance to take whatever abortive action your RTOS may allow.

If your fatal handler kn_osfatal() returns, KwikNet will enter a software loop, forever
calling its debug breakpoint procedure kn_bphit().

KwikNet RT/OS Interface KADAK Copyright © 1999-2000 KADAK Products Ltd. 23

2.3 The Single Threaded OS Interface
The general operation of KwikNet is described in the KwikNet TCP/IP Stack User's Guide.
KwikNet is ready for use with single threaded operating systems including MS-DOS or
your own stand-alone application. In the latter case, although a formal operating system
may not be present, some piece of your application code can still be loosely referred to as
your OS, even if it is just that endless software loop that keeps the application humming.

The KwikNet OS Interface includes all of the interface procedures necessary to use
KwikNet with your OS. It is simply a question of adapting the examples for use with your
OS. Few of the procedures will require any modification. Although you may choose to
wade in and start editing, you should first take a few moments to read this chapter for an
overview of the requirements and the recommended methods of implementation.

The main part of KwikNet is a body of code which, for lack of a better term, is called the
KwikNet Task through which your application gains access to KwikNet and its network
services. This task controls the KwikNet startup process. If your application chooses to
stop KwikNet, the task supervises the orderly shut down and then ceases to operate.

Once KwikNet has been started, the KwikNet Task can only execute when given the
opportunity by your application. The KwikNet Task executes when you call kn_yield()
giving KwikNet control of the processor. The KwikNet Task will then execute as long as it
has work to do. You must call kn_yield() frequently enough to ensure that the KwikNet
Task can meet its fundamental timing obligations.

KwikNet must be able to dynamically allocate and free blocks of memory as it executes.
These memory services are inherently thread-safe in a single threaded system. Usually
standard C memory allocation services will be adequate. However, if you have your own
memory allocator, you should adapt the KwikNet OS interface to use it.

KwikNet also needs a timing source, a periodic tickle at the frequency specified by your
KwikNet Library Parameter File. KwikNet also expects to be able to initiate a delay,
measured in milliseconds, during which the KwikNet Task will execute but your
application will be blocked.

From time to time, KwikNet will have to block your application pending a particular
KwikNet event. The OS interface procedures which provide this blocking and unblocking
service are critical to the successful operation of KwikNet.

KwikNet device drivers must be able to hook their interrupt handlers into the interrupt
system of the target processor. The manner in which this is accomplished is both target
processor and OS dependent. The KwikNet board driver KN_BOARD.C resolves the target
issues. The OS interface must resolve the OS issues.

24 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet RT/OS Interface

Summary of OS Interface Services

The KwikNet TCP/IP Stack gains access to your OS services via the procedures in your
OS Interface Module KN_OSIF.C. These procedures are summarized below. Detailed
specifications are provided in Chapter 2.5.

kn_osprep Prepare for use of the OS
kn_osready Declare the OS ready for use
kn_osfinish Finished using the OS

kn_osenter Entering KwikNet; setup OS resources accordingly
kn_osexit Leaving KwikNet; relinquish OS resources accordingly

kn_osfatal Handle a fatal error condition

kn_osmeminit Initialize memory allocator for use by KwikNet
kn_osmemget Get a block of memory
kn_osmemrls Release (free) a block of memory

kn_osclkinit Create/start a periodic timer (clock) for KwikNet use
kn_osclkexit Stop the KwikNet timer

kn_osvinstall Install an interrupt service routine
kn_osvaccess Read from and/or write to a processor exception vector

KwikNet RT/OS Interface KADAK Copyright © 1999-2000 KADAK Products Ltd. 25

KwikNet Startup

The KwikNet OS interface must be initialized with a call to procedure kn_osprep() when
your application first begins. Note that this procedure must be called by your application;
it is not called by KwikNet. It is recommended that the call be made from your main()
function.

Procedure kn_osprep() must call KwikNet procedure kn_logbufinit() to prepare the
KwikNet data logger so that KwikNet procedure kn_dprintf() can be used for data
recording even when KwikNet is not running.

Procedure kn_osprep() can then initialize all variables, if any, associated with the OS
interface. Although rarely necessary, any resources upon which your OS interface
depends should also be allocated and initialized. As a last step, kn_osprep() must call
OS interface procedure kn_osready() to declare the OS ready for use. As the final step,
procedure kn_osready() must call KwikNet procedure kn_memprep() to prepare the
KwikNet memory allocation system.

Once the OS interface is ready for use, your application can be started. At some point,
your application must start KwikNet with a call to kn_enter(). KwikNet immediately calls
your OS interface procedure kn_osenter(). You must allocate the OS resources, if any,
which your OS interface needs to support its operation with KwikNet.

Finally, the OS interface procedure kn_osenter() must call kn_yield() to allow the
KwikNet Task to start and complete the initialization sequence. Starting the KwikNet Task
must be the last action performed by procedure kn_osenter().

The KwikNet Task calls OS interface procedure kn_osmeminit() to initialize your
memory allocator for use by KwikNet. Once your memory allocation services are
available, KwikNet can use OS interface procedures kn_osmemget() and kn_osmemrls()
to acquire and release variable sized blocks of memory.

After the KwikNet Task has initialized its network interfaces, it calls OS interface
procedure kn_osclkinit() to start a periodic software timer for KwikNet use. Operation
of the KwikNet timer will be described shortly.

Once the KwikNet Task completes its initialization, execution resumes following the
kn_yield() call in procedure kn_osenter(). KwikNet is ready for use and your
application resumes execution following its call to kn_enter().

KwikNet Task Operation

Your OS interface must periodically call kn_yield() to let the KwikNet Task execute.
The task is initially started as the final action of OS interface procedure kn_osenter().

The KwikNet Task will resume execution whenever you call kn_yield(). It checks for
the arrival of a message on its private message queue. Messages are generated by
KwikNet services invoked by your application, by KwikNet timer ticks and by KwikNet
device drivers. Each message is decoded and serviced as required. When the message
queue is empty the KwikNet Task returns to your application and awaits your next call.

The KwikNet Task will continue to execute in this fashion until ordered to shut down by
your application's call, if any, to KwikNet procedure kn_exit().

26 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet RT/OS Interface

KwikNet Timer Operation

The KwikNet TCP/IP Stack operates at the clock frequency defined in your KwikNet
Library Parameter File which you created using the KwikNet Configuration Builder. The
frequency is provided as a parameter on the Target property page. All KwikNet timing
intervals are based upon this frequency.

The minimum frequency is 2 Hz. A frequency of 10 or 20 Hz is recommended. Any
frequency above 50 Hz will simply introduce unnecessary execution overhead with little
noticeable improvement in network throughput.

The KwikNet timer procedure kn_timer() must be called by your OS interface at the
defined frequency. For example, if the KwikNet frequency is declared to be 20 Hz, you
must ensure that procedure kn_timer() is executed once every 50 ms. This procedure
can be called from an interrupt service routine (ISR), provided the ISR preserves all
processor registers which your C compiler considers to be alterable.

If your OS does not provide timer services, then you will have to create such a software
timer and hook it to your fundamental hardware clock. You may already have such a
hook in place for use by your application.

The software timer can be initialized in procedure kn_osprep() or kn_osenter().
Alternatively, you can defer installation of the timer until the KwikNet Task calls
procedure kn_osclkinit() to start it.

No matter when the software timer is created or initialized, the timer must not call
kn_timer() until the KwikNet Task calls OS interface procedure kn_osclkinit() to start
KwikNet timing. The examples provided with the KwikNet Porting Kit illustrate this point.

If your software timer executes at a frequency greater than the KwikNet frequency, you
will have to use a software counter to derive the slower KwikNet tick. When the KwikNet
Task calls procedure kn_osclkinit() to start the KwikNet timer, it provides the timer
period, measured in milliseconds, as a parameter. You can use this parameter to derive
the number of actual timer ticks which constitute a KwikNet tick. For example, if the
KwikNet clock frequency is 20 Hz (period of 50 ms) but your software timer operates at
100 Hz (period of 10 ms), your timer procedure must only call kn_timer() once every
5 ticks.

When KwikNet shuts down the TCP/IP stack, it calls OS interface procedure
kn_osclkexit() to stop the KwikNet timer. This procedure must ensure that your
software timer stops calling the KwikNet timer procedure kn_timer().

If procedure kn_clkinit() created and started your software timer, then procedure
kn_clkexit() should remove it. If your software timer was initialized by procedure
kn_osenter(), then it should be removed by procedure kn_osexit(). If your software
timer was initialized by procedure kn_osprep(), then it should be removed by procedure
kn_osfinish().

KwikNet RT/OS Interface KADAK Copyright © 1999-2000 KADAK Products Ltd. 27

Memory Allocation Services

KwikNet must be able to dynamically allocate and free blocks of memory of varying sizes.
KwikNet uses the memory allocation services in the OS Interface Module.

The KwikNet Task calls OS interface procedure kn_osmeminit() to initialize your
memory allocator. Thereafter, KwikNet calls kn_osmemget() to get a block of memory.
Some time later, it calls kn_osmemrls() to free the block. In many cases, the block will
not be freed until KwikNet shuts down.

The KwikNet Library can be configured to support several different memory allocation
strategies. The strategy is defined by the parameters in your Library Parameter File. The
choices, summarized below, are made on the OS property page using the KwikNet
Configuration Builder.

• Use standard C memory allocation functions

• Use OS memory allocator

• Use custom allocation services to manage allocation from a fixed region of
memory provided by the application from one of the following sources:
(1) a static array in the KwikNet Configuration Module,
(2) an absolute address in memory or
(3) a memory region provided by your custom kn_memacquire() procedure.

The KwikNet library configuration file KN_LIB.H specifies the strategy which you
selected. C symbol KN_MEMSRC will be defined to have value KN_MS_STDC if standard C is
to be used. Otherwise, an OS allocator or custom allocation method is to be used.

The examples provided with the KwikNet Porting Kit support the use of standard C. If
standard C is selected, the examples conditionally compile code to use standard C
functions calloc() and free() to allocate and free memory. No specific memory
initialization actions are required since standard C is assumed to manage its own heap.

If you use an OS allocator or a custom memory management scheme, you must edit OS
interface procedures kn_osmeminit(), kn_osmemget() and kn_osmemrls().

Procedure kn_osmeminit() receives two parameters: a pointer to a fixed region of
memory to be used for allocation and the size of that region. If your OS has its own
memory allocator, procedure kn_osmeminit() can safely ignore these parameters since
your OS is assumed to have its own memory resources.

However, if you choose to provide custom services to control allocation from a fixed
memory region, then procedure kn_osmeminit() must accept the specified memory
region and prepare it for use. Procedure kn_osmemget() must allocate memory from this
region. Procedure kn_osmemrls() must free memory previously allocated from the
region.

28 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet RT/OS Interface

Interrupt Vector Manipulation

KwikNet device drivers must be able to connect their interrupt handlers to the underlying
interrupt architecture of the target processor. Unfortunately, there are almost as many
architectures as there are processors.

The simplest interrupt systems are found in processors like the Motorola MC68000 and
the Intel 80x86 families, in which a single, linear vector table is used to dispatch both
processor exceptions and device interrupts to an appropriate software handler. Entries in
the vector table are simply pointers to the supporting software function.

Protected mode Intel 80x86 systems still use a linear table, but the table entries are
anything but simple. Instead, each entry is an 8 byte descriptor which leads through an
exception specific gate to an appropriate software handler.

RISC processors such as the PowerPC, ARM and MIPS can be even more difficult to
use. In most cases, the R in RISC means that most of the interrupt source decoding has
been Removed. Frequently all device interrupts funnel through one or two entries in a
processor exception table and a software procedure must identify the interrupt source and
branch to the appropriate device interrupt handler. For such processors, it will help if
your OS provides a linear interrupt vector table through which all device interrupts can be
dispatched.

Entries in the processor or OS vector table are identified by a vector number which, for
simple architectures, is usually just the processor vector number. For complex
architectures, the vector number will be an interrupt source identifier dictated by your OS
or your own low level interrupt interface.

The KwikNet OS interface procedure kn_osvaccess() helps shield KwikNet from the
complexity of the processor's interrupt architecture. This procedure is used to access the
processor or OS vector table in order to attach software handlers to specific exceptions
and interrupts.

Procedure kn_osvaccess() is used to read and/or write a specific entry in your processor
or OS vector table. The entry is identified by its vector number. The procedure can be
used to read and save the current vector content and then install new content, all in one
operation. The procedure must ensure that device interrupts are inhibited while the
vector content is being manipulated.

Porting Tip

The KwikNet IRQ identifier assigned to a KwikNet device
driver should be the vector number for the actual processor
or OS vector through which the device interrupt is serviced.

KwikNet RT/OS Interface KADAK Copyright © 1999-2000 KADAK Products Ltd. 29

Device Driver Support

KwikNet device drivers are implemented as described in the KwikNet Device Driver
Technical Reference Manual. Most network device interfaces use the processor's
interrupt facility to enhance operation of the network connected to the interface. The
device driver is then responsible for handling one or more interrupts generated by the
device interface.

Unfortunately, several factors complicate interrupt handling. To begin with, the target
processor dictates how it responds to interrupts generated by internal and external
devices. In some cases, extra hardware is added to prioritize the interrupt sources. The
interrupt prioritization logic may be internal to the processor or external in the form of an
interrupt controller. Finally, your OS may superimpose its own rules for the handling of
interrupts by your software.

To meet such diverse requirements, KwikNet separates board level interrupt support and
OS interrupt support. KwikNet device drivers install interrupt handlers and manipulate
interrupts using services provided in the KwikNet board driver KN_BOARD.C. The board
driver uses services provided in the OS Interface Module to ensure compliance with your
OS and its support for the underlying processor interrupt structure.

The KwikNet board driver KN_BOARD.C is described in Chapter 1.8 of the KwikNet Device
Driver Technical Reference Manual. It provides support for up to KN_INTSRCMAX unique
interrupt sources. Unless altered by you, KN_INTSRCMAX is defined to be 4. A KwikNet
device driver provides an interrupt handler for each of the interrupts which the associated
device can generate. Do not lose sight of the fact that most network devices can only
generate a single interrupt, albeit for a great many different reasons.

The device driver calls board driver procedure kn_brdintsvc() to install a device
interrupt handler into a specific interrupt vector. The vector is determined by the KwikNet
IRQ identifier which you assigned via the device driver parameters entered in your
KwikNet Network Parameter File.

Procedure kn_brdintsvc() assigns a handle to the device. The handle is a number from
1 to KN_INTSRCMAX which KwikNet uses to identify the interrupt handler. Procedure
kn_brdintsvc() then calls the OS interface procedure kn_osvinstall() passing it the
device handle and vector number.

Procedure kn_osvinstall() must provide an interrupt service routine (ISR) for the
device. The ISR must call KwikNet procedure kn_isphandler() passing it the device
handle for the device being serviced. The examples provided with the KwikNet Porting
Kit implement one such ISR for each of the KN_INTSRCMAX KwikNet interrupt sources.

Procedure kn_osvinstall() must modify the specified vector in the processor or OS
vector table so that subsequent interrupts from the device in question are handled by its
ISR. It can do so using OS interface procedure kn_osvaccess().

30 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet RT/OS Interface

KwikNet and OS Shutdown

Once KwikNet is started, it executes forever unless requested by your application to shut
down. To stop KwikNet, your application must call KwikNet procedure kn_exit(). The
function in which the call is made will be referred to as the shutdown function. All of the
termination processing by KwikNet will occur in the context of the shutdown function.
Once most stack operations have ceased, OS interface procedure kn_osclkexit() will
be called to stop the KwikNet timer.

The KwikNet Task is then executed to complete the shutdown process. Then OS interface
procedure kn_osexit() is called to relinquish all of the OS resources previously
allocated by procedure kn_osenter().

Most applications which shutdown KwikNet do so in preparation for a final termination.
However, once kn_exit() returns to your shutdown function, your application can start
KwikNet again with a call to procedure kn_enter().

When your application is finished, control returns to your main() function. At this point,
procedure kn_osfinish() must be called to relinquish all C, C++ or hardware resources,
if any, allocated by procedure kn_osprep() when your main() function started. As its
last operation, kn_osfinish() must call KwikNet procedure kn_memquit() to close down
the KwikNet memory allocation system.

If your KwikNet application can never be stopped, procedures kn_osexit() and
kn_osfinish() can be empty stubs.

Error Handling

Whenever KwikNet detects an error condition from which recovery is not possible, it calls
its fatal error handler kn_fatal() with one of the KwikNet fatal error codes KN_FERxxxxx.
It is recommended that your OS interface procedures adopt this same strategy.

The KwikNet fatal error handler calls your OS interface procedure kn_osfatal() giving
you one last chance to take whatever abortive action your OS may allow.

If your fatal handler kn_osfatal() returns, KwikNet will enter a software loop, forever
calling its debug breakpoint procedure kn_bphit().

KwikNet RT/OS Interface KADAK Copyright © 1999-2000 KADAK Products Ltd. 31

2.4 RT/OS Interface Make File

The OS Interface Make File KN_OSIF.INC contains all of the make specifications which
you must edit to define how your OS Interface Module is to be compiled. This module
also provides access to the RT/OS object modules and/or libraries which must be linked
with the KwikNet sample programs.

Figure 2.4-1 shows a listing of a typical OS Interface Make File KN_OSIF.INC. This
example is taken directly from the EXAMPLES\XRTOS directory. You should examine the
other examples as well to see how they differ in ways that might apply to your RT/OS.

The specification begins with a set of macro definitions which are only used within the
OS Interface Make File itself. In this example, macros OSHDRP and OSLIBP have been
defined as the paths to the RTOS header and library files. Note that global macro
$(OSPATH) is the path to your RT/OS installation directory. It is defined on the
command line used to invoke your make utility when building the KwikNet Libraries.

Macro HOSIF must be defined, even if it is an empty (blank) macro. It must identify all
of the RT/OS header files upon which file KN_OSIF.C and its header file KN_OSIF.H
depend. Note that the header file KN_OSIF.H will not include any other header files
unless you have explicitly edited it to do so.

If you port the KwikNet Sample Program, then your application OS interface module
KNSAMOS.C and its header file KNSAMOS.H may depend on RT/OS header files not already
identified by macro HOSIF. If so, be sure to add those RT/OS header files to the HOSIF
definition.

Target OSHDR must be defined. It must list the file names of all header files identified by
macro HOSIF. The file names must not include path information.

For each file listed in target OSHDR, there must be a rule provided which copies the header
file from its source directory to the current directory.

If you port the KwikNet Sample Program, you must identify the RT/OS object modules
and/or library files with which the samples must be linked. These modules must be
identified in a dependency list defined by macro OSLIB. An empty list is permissible.

Target OSLIBGET must be defined without any dependencies. Its purpose is to copy all of
the files identified by macro OSLIB from their source directory to the directory identified
by global macro $(ULINK). An empty command list is permissible.

Target OSLIBDEL must also be defined with no dependencies. Its purpose is to delete all
of the files copied when target OSLIBGET was resolved. It must delete all of the files
identified by macro OSLIB from the destination directory identified by $(ULINK). An
empty command list is permissible.

Porting Tip

For portability of the make process, it is recommended that
you use the global macros $(CMDCOPY) and $(CMDDEL) to
invoke the copy and delete (erase) commands of the
operating system which is executing your make utility.

32 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet RT/OS Interface

The following macros are used only in this include file.

OSHDRP = full path to the directory containing the RTOS header file(s)
OSLIBP = full path to the directory containing the RTOS library file(s)

OSHDRP = $(OSPATH)\INCLUDE
OSLIBP = $(OSPATH)\LIB

Define HOSIF to identify the OS dependent header files that
are included by your custom KwikNet OS Interface modules
KN_OSIF.C and KN_OSIF.H and by the KwikNet Sample Program
OS interface modules KNSAMOS.C and KNSAMOS.H.

HOSIF = $(OSHDRP)\U_RTOS.H \
$(OSHDRP)\U_CFG.H

Define rules to copy the OS header file(s) to the MAKE directory
in order to compile the KwikNet OS Interface module KN_OSIF.C
and the KwikNet sample programs. Be sure to copy all of the
OS header files identified by macro HOSIF.

OSHDR: \
U_RTOS.H \
U_CFG.H

no commands required

U_RTOS.H: $(OSHDRP)\U_RTOS.H
$(CMDCOPY) $(OSHDRP)\U_RTOS.H U_RTOS.H

U_CFG.H: $(OSHDRP)\U_CFG.H
$(CMDCOPY) $(OSHDRP)\U_CFG.H U_CFG.H

Define OSLIB to identify the OS library and/or object files that must
be linked with the KwikNet sample programs to satisfy the needs of
your KwikNet OS interface.

OSLIB = $(OSLIBP)\U_RTOS.LIB \
$(OSLIBP)\U_CFG.OBJ

Define a target to copy the OS library and/or object file(s) to the
$(ULINK) directory in order to link the KwikNet sample programs.
Be sure to copy all of the files identified by macro OSLIB.

OSLIBGET:
$(CMDCOPY) $(OSLIBP)\U_RTOS.LIB $(ULINK)\U_RTOS.LIB
$(CMDCOPY) $(OSLIBP)\U_CFG.OBJ $(ULINK)\U_CFG.OBJ

Define another target to delete the OS library and/or object file(s)
copied by OSLIBGET.

OSLIBDEL:
$(CMDDEL) $(ULINK)\U_RTOS.LIB
$(CMDDEL) $(ULINK)\U_CFG.OBJ

------------------- End of INCLUDE file -------------------------------

Figure 2.4-1 KwikNet OS Interface Make File

KwikNet RT/OS Interface KADAK Copyright © 1999-2000 KADAK Products Ltd. 33

2.5 RT/OS Interface Procedures
The KwikNet TCP/IP Stack gains access to your RT/OS services via the procedures in
your OS Interface Module KN_OSIF.C. A detailed specification for each procedure is
provided in this chapter. The specifications are presented in the order in which they
appear in the following summary.

Multitasking RTOS or Single Threaded OS Interface:
kn_osprep Prepare for use of the RT/OS
kn_osready Declare the RT/OS ready for use
kn_osfinish Finished using the RT/OS

kn_osenter Entering KwikNet; setup RT/OS resources accordingly
kn_osexit Leaving KwikNet; relinquish RT/OS resources accordingly

kn_osfatal Handle a fatal error condition

kn_osmeminit Initialize memory allocator for use by KwikNet
kn_osmemget Get a block of memory
kn_osmemrls Release (free) a block of memory

kn_osclkinit Create/start a periodic timer (clock) for KwikNet use
kn_osclkexit Stop the KwikNet timer

kn_osvinstall Install an interrupt service routine
kn_osvaccess Read from and/or write to a processor exception vector

Multitasking RTOS Interface Only:
kn_ostaskid Get the task identifier of the currently executing task

kn_osflagwait Block the KwikNet Task until the signal flag is raised
kn_osflagup Unblock the KwikNet Task by raising the signal flag

kn_osdelay Block the current task for an interval measured in milliseconds
kn_osblock Block the current task until a particular event of interest occurs
kn_osunblock Unblock a task waiting for an event which just occurred

kn_oslocknet Lock the network resource for exclusive use by the caller
kn_osunlocknet Unlock the network resource

kn_oslockmem Lock memory allocation services for use by the caller
kn_osunlockmem Unlock memory allocation services

kn_oslockfs Lock file access services for use by the caller
kn_osunlockfs Unlock file access services

34 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet RT/OS Interface

kn_osprep kn_osprep
kn_osready kn_osready
kn_osfinish kn_osfinish
Purpose Begin and End Use of the RT/OS

Caller Procedures kn_osprep() and kn_osfinish() should be called from your
main() function as illustrated in the KwikNet Sample Program OS interface
module KNSAMOS.C. Procedure kn_osready() must be called by your
application once the RT/OS is ready for use.

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_osprep(void);
void kn_osready(void);
void kn_osfinish(void);

Description Procedure kn_osprep() must be called prior to first use of your RT/OS by
your application. It must call KwikNet procedure kn_logbufinit() to
prepare the KwikNet data logger so that KwikNet procedure kn_dprintf()
can be used for data recording even if KwikNet is not running.

Procedure kn_osprep() must initialize all variables, if any, associated
with the RT/OS interface. It can then allocate the C, C++ or hardware
resources, if any, which your OS interface requires for its operation.

Procedure kn_osready() must be called by your application once the
RT/OS is ready for use. It must conclude with a call to KwikNet procedure
kn_memprep() to prepare the KwikNet memory allocation system.

Procedure kn_osfinish() must be called after your application has shut
down and no longer requires the use of your RT/OS. Its purpose is to
relinquish all C, C++ or hardware resources, if any, allocated by procedure
kn_osprep(). It must conclude with a call to KwikNet procedure
kn_memquit() to shut down the KwikNet memory allocation system. If the
RT/OS cannot be shut down once started, procedure kn_osfinish() can
be an empty stub which will never be executed.

Returns Nothing

Multitasking Operation

Procedure kn_osprep() must be called before the RTOS is started. It cannot use any
RTOS services. Procedure kn_osready() must be called as soon as the RTOS is ready
for use. Procedure kn_osfinish() must not be called until the RTOS has stopped
operating. It cannot use any RTOS services.

Single Threaded Operation

Except for the mandatory calls to KwikNet procedures kn_logbufinit(), kn_memprep()
and kn_memquit(), these procedures rarely have much to do in a single threaded OS.

KwikNet RT/OS Interface KADAK Copyright © 1999-2000 KADAK Products Ltd. 35

kn_osenter kn_osenter
kn_osexit kn_osexit

Purpose Allocate/Release RT/OS Resources on Entry to/Exit from KwikNet

Caller These procedures are called by KwikNet as it starts up and shuts down the
KwikNet TCP/IP Stack.

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_osenter(void);
void kn_osexit(void);

Description Procedure kn_osenter() is the first OS interface procedure called by
KwikNet after your application starts KwikNet with a call to kn_enter().
Its purpose is to allocate all of the RT/OS resources which your OS
interface must provide for the proper operation of KwikNet.

Procedure kn_osexit() is the last OS interface procedure called by
KwikNet as it shuts down in response to your application's call to
kn_exit(). Its purpose is to relinquish all RT/OS resources, if any,
allocated by procedure kn_osenter(). If KwikNet will not be shut down
once started, procedure kn_osexit() can be an empty stub which will
never be executed.

Returns Nothing

Multitasking Operation

Procedure kn_osenter() must create and/or initialize the RTOS resources required by
KwikNet. If the task(s), timer(s) and resource semaphore(s) which you must provide do
not already exist, they must be created. In particular, the KwikNet Task and the network
locking semaphore must exist. You may choose to leave creation of the KwikNet timer to
OS interface procedure kn_osclkinit(). The final operation of this procedure must be
to start the KwikNet Task.

KwikNet is usually only shut down as a prelude to stopping your RTOS. Procedure
kn_osexit() must release all of the RTOS resources allocated by kn_osenter(). This
requirement must be met if KwikNet is to be subsequently restarted by your application.
However, if your application is terminating and your RTOS can be shut down with
resources left allocated but no longer in use, then procedure kn_osexit() will not have
to release the allocated resources.

Single Threaded Operation

KwikNet makes no demands on a single threaded OS. Consequently, these procedures
rarely have any OS dependent operations to perform. The final operation of procedure
kn_osenter() must be to call kn_yield() to start the KwikNet Task. Procedure
kn_osexit() must release any OS resources allocated by kn_osenter().

36 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet RT/OS Interface

kn_osfatal kn_osfatal

Purpose Handle a Fatal Error Condition

Caller Called from the KwikNet fatal error procedure kn_fatal() upon detection
of an unrecoverable error condition.

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_osfatal(int fatalerr);

Parameters Parameter fatalerr is one of the KwikNet fatal error codes listed in
Appendix B of the KwikNet TCP/IP Stack User's Guide. Fatal error code
KN_FERPORT can be used to identify fatal conditions detected by your OS
interface.

Description Procedure kn_osfatal() is given the opportunity to handle a fatal error in
an RT/OS dependent fashion.

The examples provided with the KwikNet Porting Kit call data logging
procedure kn_dprintf() to record an error message and then generate a
debug trap by calling the KwikNet breakpoint procedure kn_bphit().

Returns Nothing

Procedure kn_osfatal() need not return to KwikNet. However, if it does,
KwikNet will enter a software loop, repetitively calling its breakpoint
procedure kn_bphit().

Multitasking Operation

If your RTOS allows an application to abort or restart in some manner, you may be able
to initiate that action within procedure kn_osfatal().

If the procedure returns to KwikNet, the task which was executing when the fatal error
condition was detected will become compute bound, preventing all lower priority tasks
from executing.

Single Threaded Operation

If your OS allows an application to abort or restart in some manner, you may be able to
initiate that action within procedure kn_osfatal().

If the procedure returns to KwikNet, your application will appear to hang.

KwikNet RT/OS Interface KADAK Copyright © 1999-2000 KADAK Products Ltd. 37

kn_osmeminit kn_osmeminit

Purpose Initialize the RT/OS Memory Allocator

Caller Called by the KwikNet Task as it starts up.

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_osmeminit(char *memp, unsigned long memsz);

Parameters Memp is a pointer to a region of memory which your OS interface can
manage for memory allocation purposes. Memp references the memory
region specified by you in your KwikNet Network Parameter File.

If your KwikNet network configuration indicates that you are using
standard C for memory allocation or that your RT/OS memory allocator
does not require a fixed block of memory for its use, memp will be NULL.

Memsz is the size, in bytes, of the memory region referenced by memp. If
memp is NULL, the value of memsz will be undefined.

Description If your KwikNet network configuration indicates that you are using
standard C for memory allocation or that your RT/OS memory allocator
does not require a fixed block of memory for its use, then procedure
kn_osmeminit() does nothing. Otherwise it must prepare the memory
region for subsequent use by memory allocation procedures
kn_osmemget() and kn_osmemrls().

Returns Nothing

Multitasking Operation

If standard C memory allocation is used or if your RTOS provides its own memory
(heap) for allocation, leave procedure kn_osmeminit() unaltered. Otherwise, edit this
procedure to match your RTOS requirements.

Single Threaded Operation

If standard C memory allocation is used, leave procedure kn_osmeminit() unaltered.
Otherwise, edit this procedure only if you wish to use or implement your own memory
allocation services.

38 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet RT/OS Interface

kn_osmemget kn_osmemget
kn_osmemrls kn_osmemrls

Purpose Get a Zero Filled Block of Memory / Release a Block of Memory

Caller Called by KwikNet procedures executing in the context of the KwikNet Task
or the currently executing application or task.

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void *kn_osmemget(unsigned int memsize);
void kn_osmemrls(void *blockp);

Parameters Memsize is the number of bytes of memory required by the caller.

Blockp is a pointer to a block of memory previously allocated by
procedure kn_osmemget().

Description If standard C memory allocation is used, leave procedure kn_osmemget()
unaltered. Otherwise, edit the procedure to use your RT/OS memory
allocation services to acquire a block of memsize bytes of memory. If
necessary, zero fill the block of memory which it provides.

If standard C memory allocation is used, leave procedure kn_osmemrls()
unaltered. Otherwise, edit the procedure to use your RT/OS memory
allocation services to release the block of memory referenced by blockp.

Returns Kn_osmemrls() returns nothing.
Kn_osmemget() returns a pointer to a zero filled region of memsize bytes
of memory. If enough memory is not available, NULL is returned.

Multitasking Operation

If your RTOS has its own memory allocator, use it to get and free memory.
Alternatively, if your RTOS has a general purpose heap manager, you can use it to
control access to the memory region (heap) presented to procedure kn_osmeminit().
Otherwise, edit procedure kn_osmemget() to allocate memory from the memory region.

If your standard C or RTOS memory allocation services are not thread-safe, be sure to
configure KwikNet to provide memory access locking and implement OS interface
procedures kn_oslockmem() and kn_osunlockmem(). Your allocation operations must
be bracketed by calls to these locking procedures as illustrated in the examples provided
with the KwikNet Porting Kit.

Single Threaded Operation

The memory allocation procedures provided with the examples in the KwikNet Porting Kit
are ready to use with standard C. There is no need to edit these procedures unless you
intend to use the memory management services provided by your OS or prefer to
implement your own.

KwikNet RT/OS Interface KADAK Copyright © 1999-2000 KADAK Products Ltd. 39

kn_osclkinit kn_osclkinit
kn_osclkexit kn_osclkexit

Purpose Start and Stop the RT/OS Timer Providing the KwikNet Clock Source

Caller Procedure kn_osclkinit() is called by the KwikNet Task as it prepares
the TCP/IP stack for use. Procedure kn_osclkexit() is called in the
context of the shutdown task/function which called kn_exit() to stop
KwikNet.

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_osclkinit(unsigned long ms);
void kn_osclkexit(void);

Parameters Parameter ms is the period of the KwikNet clock measured in milliseconds.
For example, if the KwikNet clock frequency is configured to be 20 Hz, ms
will have the value 50 specifying a 50 ms clock period.

Description Procedure kn_osclkinit() must start an OS interface software timer
which forces KwikNet timer procedure kn_timer() to be called once every
ms milliseconds. Note that it is acceptable to call procedure kn_timer()
from within an interrupt service routine.

Procedure kn_osclkexit() must stop the OS interface software timer. At
the very least it must inhibit the software timer from making subsequent
calls to procedure kn_timer().

Returns Nothing

Multitasking Operation

If your RTOS allows a software timer to be dynamically created and/or started, create
such a timer and start it. Otherwise, add such a software timer as a hook within your
RTOS timer support module or your hardware clock interrupt service routine.

You may prefer to create your software timer within your OS interface procedure
kn_osenter() when all other RTOS resources required by KwikNet are allocated. If you
do so, be sure that your software timer inhibits calls to kn_timer() until procedure
kn_osclkinit() is called by the KwikNet Task to start the KwikNet timer.

Single Threaded Operation

Add your software timer as a hook within your OS timer support module or your
hardware clock interrupt service routine.

If your clock hook is installed by OS interface procedure kn_osprep() or
kn_osenter(), be sure that it inhibits calls to kn_timer() until procedure
kn_osclkinit() is called by the KwikNet Task to start the KwikNet timer.

40 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet RT/OS Interface

kn_osvinstall kn_osvinstall

Purpose Make and/or Install an RT/OS Compatible Interrupt Service Routine

Caller Called by KwikNet device drivers to add their interrupt handler to the
processor or RT/OS interrupt system.

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_osvinstall(int vector, int handle);

Parameters Parameter vector identifies an entry in the processor or RTOS exception
table or interrupt vector table. For most simple interrupt architectures,
vector is the interrupt vector number. For complex architectures, the
vector number may be dictated by your RT/OS or by your custom
exception handling software.

See the topics "Interrupt Vector Manipulation" and "Device Driver
Support" in Chapter 2.2 or 2.3 for a full discussion of interrupt vector
identification.

Parameter handle is a number ranging in value from 1 to KN_INTSRCMAX.
This parameter identifies the particular KwikNet device driver which
services interrupts generated via the specified interrupt vector. Constant
KN_INTSRCMAX, defined in the KwikNet board driver KN_BOARD.C, specifies
the maximum number of KwikNet device driver interrupt sources that this
module can support.

Description This procedure must install an RT/OS compatible interrupt service routine
(ISR) into the processor or RT/OS interrupt vector table. It can do so
using OS interface procedure kn_osvaccess().

The ISR must call KwikNet procedure kn_isphandler(), passing it the
device handle for the device being serviced. The examples provided with
the KwikNet Porting Kit implement one such ISR for each of the
KN_INTSRCMAX KwikNet interrupt sources. Procedure kn_isphandler() is
prototyped in the OS Interface header file KN_OSIF.H as follows:

void kn_isphandler(int handle);

Returns Nothing

...more

KwikNet RT/OS Interface KADAK rev2 41

...continued

Multitasking Operation

The XRTOS example provided with the KwikNet Porting Kit uses the following technique
for implementing procedure kn_osvinstall().

This simple approach can be adopted if your RTOS and C compiler permit an interrupt
service routine (ISR) to be coded in C. Suppose that the following ISR (with
modification) can service interrupts from the device with a KwikNet device handle of 1.
When procedure kn_osvinstall() is called with a handle value of 1, it simply modifies
the entry in the interrupt vector table (per parameter vector) to force procedure
os_ispsrc1() to be used for interrupt service.

void _interrupt os_ispsrc1(void)
{

rtos_isrenter();
kn_isphandler(1);
rtos_isrleave();
}

Single Threaded Operation

The examples provided with the KwikNet Porting Kit assume that your C compiler permits
an interrupt service routine (ISR) to be coded in C. Suppose that the following ISR (with
modification) can service interrupts from the device with a KwikNet device handle of 2.
When procedure kn_osvinstall() is called with a handle value of 2, it simply modifies
the entry in the interrupt vector table (per parameter vector) to force procedure
os_ispsrc2() to be used for interrupt service.

void _interrupt os_ispsrc2(void)
{

kn_isphandler(2);
}

42 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet RT/OS Interface

kn_osvaccess kn_osvaccess

Purpose Read from/Write to the Processor or RT/OS Interrupt Vector Table

Caller Called by procedures in the KwikNet board driver KN_BOARD.C, the sample
program OS interface module KNSAMOS.C and the OS Interface Module
KN_OSIF.C.

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_osvaccess(int vector, void *vectp, void *oldvectp);

Parameters Parameter vector identifies an entry in the processor or RTOS exception
table or interrupt vector table. For most simple interrupt architectures,
vector is the interrupt vector number. For complex architectures, the
vector number may be dictated by your RT/OS or by your custom
exception handling software.

See the topics "Interrupt Vector Manipulation" and "Device Driver
Support" in Chapter 2.2 or 2.3 for a full discussion of interrupt vector
identification.

Parameter vectp is a pointer to storage containing the description of the
interrupt service routine (ISR) to be installed. If vectp is NULL, the vector
table must not be altered.

Parameter oldvectp is a pointer to storage for a description of the
interrupt service routine (ISR) in use at the time this procedure was called.
If oldvectp is NULL, the parameter is ignored.

By default, an ISR description is just a pointer to the actual ISR. Hence,
vectp and oldvectp are actually pointers to an ISR pointer. This ISR
description is used by all of the examples provided with the KwikNet
Porting Kit. However, for more complex interrupt architectures, you may
have to change the ISR description to match your RT/OS or processor
requirements. If the ISR description is changed, be sure to modify all
source modules which reference procedure kn_osvaccess().

Description If parameter oldvectp is not NULL, procedure kn_osvaccess() must
extract the ISR description from the entry in the processor or RT/OS
interrupt vector table specified by parameter vector and store it in
memory at *oldvectp.

Then, if parameter vectp is not NULL, the procedure must modify the entry
in the interrupt vector table to match the ISR description found in memory
at *vectp.

Device interrupts must be disabled while the vector table entry is being
read and modified to ensure that read/write operations are indivisible.

...more

KwikNet RT/OS Interface KADAK rev2 43

...continued

Returns Nothing

Multitasking Operation

If your RTOS provides services for modifying the processor or RTOS interrupt vector
table, modify procedure kn_osvaccess() to make use of them. Otherwise, adapt the
XRTOS example provided with the KwikNet Porting Kit for use with your target processor
and RTOS.

Single Threaded Operation

The MS-DOS example provided with the KwikNet Porting Kit is ready for use, without
modification, with MS-DOS operating in real mode on an 80x86 processor.

The DOS/4GW example provided with the KwikNet Porting Kit is ready for use with
MS-DOS and the Tenberry DOS/4GW DOS Extender operating in protected mode on an
80386, 80486 or Pentium processor. However, without modification, it is restricted for
use with interrupt vectors 8 to 15 (IRQ0 to IRQ7).

If your OS provides services for modifying the processor's interrupt vector table, modify
procedure kn_osvaccess() from the XOS example to make use of them. Otherwise,
adapt one of the MSDOS, DOS4GW or XOS examples provided with the KwikNet Porting Kit
for use with your target processor.

44 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet RT/OS Interface

kn_ostaskid kn_ostaskid

Purpose Get the Task Identifier of the Currently Executing Task

Caller Called by the KwikNet Task.

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
KNP_OS_ID kn_ostaskid(void);

Description KwikNet uses a 32-bit task identifier declared as type KNP_OS_ID. The
value (KNP_OS_ID)0 is reserved as an invalid task identifier.

If the task identifier used by your RTOS can be represented in 32 bits or
less, then procedure kn_ostaskid() can fetch the task identifier for the
currently executing task from your RTOS and cast it to be a KwikNet task
identifier.

Otherwise, this procedure must convert your RTOS task identifiers into a
form that can be represented in 32 bits.

Returns The RTOS identifier for the currently executing task, cast to be a KwikNet
task identifier of type KNP_OS_ID.

If this function is called while not executing in the context of a task, it
should return (KNP_OS_ID)0, the KwikNet representation for an invalid task
identifier.

Multitasking Operation

This procedure must be implemented as described.

Single Threaded Operation

This procedure is not present in the single threaded OS Interface Module.

KwikNet RT/OS Interface KADAK Copyright © 1999-2000 KADAK Products Ltd. 45

kn_osflagwait kn_osflagwait
kn_osflagup kn_osflagup

Purpose Block/Unblock the KwikNet Task using a Signal Flag

Caller The KwikNet Task calls procedure kn_osflagwait() to wait for the next
occurrence of a significant KwikNet event. The KwikNet message posting
service calls procedure kn_osflagup() to signal such an event.

Calls to kn_osflagup() can originate in the KwikNet Task, in the KwikNet
timer procedure or in an application task or device interrupt handler
making use of KwikNet services.

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_osflagwait(void);
void kn_osflagup(void);

Description A detailed description of the operation of these two procedures is provided
in Chapter 2.2 under the topic "KwikNet Message Queueing". Several
different RTOS strategies for implementing these procedures are explored.

Returns Nothing

Multitasking Operation

These procedures must be implemented as described in Chapter 2.2 under the topic
"KwikNet Message Queueing".

Single Threaded Operation

These procedures are not present in the single threaded OS Interface Module.

46 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet RT/OS Interface

kn_osdelay kn_osdelay

Purpose Suspend (Delay) the Currently Executing Task for a Timed Interval

Caller Called by any task which has requested a KwikNet operation which requires
that the task pause briefly to allow lower priority tasks an opportunity to
execute. Most KwikNet server and client tasks will call this procedure.

The KwikNet Task never calls this procedure.

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_osdelay(unsigned long ms);

Parameters Parameter ms specifies the required delay interval, measured in
milliseconds.

Description The currently executing task must be forced to pause for ms milliseconds.

If the minimum timing resolution provided by your RTOS is greater than
ms milliseconds, the task must pause, at the very least, until the next RTOS
tick. The examples provided with the KwikNet Porting Kit meet this
requirement.

Returns Nothing

Multitasking Operation

This procedure must be implemented as described.

Single Threaded Operation

Although this procedure must be present in the single threaded OS Interface Module, you
will observe that the examples provided with the KwikNet Porting Kit require no
modification.

The procedure is included in the OS interface so that you can adapt it to perform other
essential, application dependent operations which must continue, even while KwikNet is
spinning waiting for the delay interval to expire.

KwikNet RT/OS Interface KADAK Copyright © 1999-2000 KADAK Products Ltd. 47

kn_osblock kn_osblock
kn_osunblock kn_osunblock

Purpose Block/Unblock a Task Waiting for an Event

Caller KwikNet calls procedure kn_osblock() to block the currently executing
task pending a particular KwikNet event. When KwikNet detects the event, it
calls kn_osunblock() to unblock the task waiting for the event.

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_osblock(void (*func)(void *),

void *param, void *infop);
void kn_osunblock(void *infop);

Parameters Parameter func is a pointer to a KwikNet function which must be called by
procedure kn_osblock().

Param is a pointer which must be passed to function func as a parameter.

Infop is a pointer to a block of 32 bytes of memory storage which
procedure kn_osblock() can use, if necessary, to save information for
subsequent use by procedure kn_osunblock().

Description Procedure kn_osblock() must inhibit task preemption, call function func
passing it the parameter param and then block the currently executing task
to await some KwikNet event.

A detailed description of the operation of these two procedures is provided
in Chapter 2.2 under the topic "Application Blocking Services". Several
different RTOS strategies for implementing these procedures are explored.

Returns Nothing

Multitasking Operation

These procedures must be implemented as described in Chapter 2.2 under the topic
"Application Blocking Services".

Single Threaded Operation

Although these procedures must be present in the single threaded OS Interface Module,
you will observe that the examples provided with the KwikNet Porting Kit require no
modification. Procedure kn_osblock() spins in the KwikNet Task waiting for a software
flag to be set by kn_osblock(), indicating that the event of interest has occurred.

The procedures are included in the OS interface so that you can adapt procedure
kn_osblock() to perform other essential, application dependent operations which must
continue, even while KwikNet is spinning waiting for the event.

48 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet RT/OS Interface

kn_oslockXXX kn_oslockXXX
kn_osunlockXXX kn_osunlockXXX

Purpose kn_[un]locknet() - Lock/Unlock a Network Resource
kn_[un]lockmem() - Lock/Unlock Memory Allocation Services
kn_[un]lockfs() - Lock/Unlock File System Access

Caller These procedures are only called in the context of a task, either by the
KwikNet Task or by another task which has invoked some KwikNet service.

KwikNet calls procedure kn_oslocknet() to reserve network resources for
the exclusive use of the currently executing task while critical network
operations are performed. When the operations are complete, KwikNet
calls procedure kn_osunlocknet() to release the network resources.

Memory allocation procedures kn_osmemget() and kn_osmemrls() can
call procedure kn_oslockmem() to ensure exclusive use of these
procedures by the currently executing task. When the memory block is
allocated or freed, procedure kn_osunlockmem() must be called to release
the lock.

The KwikNet Universal File System (UFS) file system interface calls
procedure kn_oslockfs(), when necessary, to ensure exclusive use of a
particular file system service by the currently executing task. Note that
only file services accessed through the UFS are locked in this manner.
When the file system operation is complete, the UFS calls procedure
kn_osunlockfs() to release the lock.

Setup Prototype is in file KN_API.H.
#include "KN_LIB.H"
void kn_oslocknet(void); void kn_osunlocknet(void);
void kn_oslockmem(void); void kn_osunlockmem(void);
void kn_oslockfs(void); void kn_osunlockfs(void);

Description A detailed description of the operation of these resource locking
procedures is provided in Chapter 2.2 under the topic "Resource Locking".

Network resource locking must always be supported.

Memory locking is only required if your memory allocation services are
not thread-safe. To enable memory locking, use the KwikNet Configuration
Builder to edit your KwikNet Library Parameter File and check the box
labelled "Protect memory get/free operations" on the OS property page.

Symbol KN_MEMLOCK is defined in KwikNet header file KN_LIB.H to
indicate that memory locking is disabled (0) or enabled (non-zero).
Memory locking procedures kn_oslockmem() and kn_osunlockmem() are
conditionally compiled so that they exist only if memory locking is
required (KN_MEMLOCK is non-zero).

...more

KwikNet RT/OS Interface KADAK Copyright © 1999-2000 KADAK Products Ltd. 49

Description ...continued

File access locking is only required if you are using a file system with file
services that are not thread-safe. To enable file access locking, use the
KwikNet Configuration Builder to edit your KwikNet Library Parameter File
and check the box labelled "Protect file system services" on the File System
property page.

Symbol KN_FS_LOCK is defined in KwikNet header file KN_LIB.H to
indicate that file access locking is disabled (0) or enabled (non-zero). File
access locking procedures kn_oslockfs() and kn_osunlockfs() are
conditionally compiled so that they exist only if file access locking is
required (KN_FS_LOCK is non-zero).

Returns Nothing

Multitasking Operation

These procedures must be implemented as described in Chapter 2.2 under the topic
"Resource Locking".

Single Threaded Operation

These procedures are not present in the single threaded OS Interface Module.

50 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet RT/OS Interface

This page left blank intentionally.

Target Processor and Compiler Use KADAK rev2 51

3. Target Processor and Compiler Use

3.1 Introduction
KwikNet C source files include header file KN_LIB.H, your KwikNet Library Configuration
Module which defines the subset of KwikNet features required by your application. Any
of your C source files which access KwikNet services must also include this header file.

KwikNet header file KN_LIB.H includes another header file which is both target processor
and C compiler dependent. This file is the compiler header file KNZZZCC.H first
introduced in Chapter 1.1 (see Figure 1.1-2). File KNZZZCC.H is referred to as the KwikNet
compiler configuration header file.

Porting Tip

This long chapter provides a complete specification for the
content of the KwikNet compiler header file KNZZZCC.H.

Pick the file for your target processor and C compiler from
the examples in installation directory EXAMPLES\CC_H.
Little, if any, editing will be required. For other targets or
compilers, pick the architecturally closest example as a
starting point.

Compiler header file KNZZZCC.H serves several purposes. It identifies the specific
features which your C compiler supports and, if necessary, provides alternatives to
standard C usage. It also determines how critical section protection, device I/O
operations, interrupt level manipulations and clock services are to be performed. The file
can also include C or assembly language code fragments to optimize the execution speed
of certain time-critical or frequently occurring KwikNet operations.

So how can this header file generate code fragments? The answer lies in the fact that the
compiler configuration header file KNZZZCC.H is included more than once by some
KwikNet C source modules. For example, KwikNet module KN_UTIL.C includes file
KNZZZCC.H once (via KN_LIB.H) to get the usual kind of definitions which you expect to
see in a header file. It then defines a symbol, such as KN_CCNEED_SWAP, and includes file
KNZZZCC.H again. This time, the definitions within the file are ignored since they have
already been included once. However, because symbol KN_CCNEED_SWAP has been
defined, the fragment of code which implements a fast swapping function will be inserted
into the compiled copy of module KN_UTIL.C. This technique permits the KwikNet
fragments requiring customization to be collected into a single file which can be edited
by you without a detailed understanding of the KwikNet framework.

The remainder of this chapter will describe how to edit the compiler configuration header
file KNZZZCC.H to meet your requirements. Chapter 3.2 describes the edits required to
specify features supported by your C compiler. Chapter 3.3 summarizes the processor
and compiler dependent low level services which KwikNet requires and suggests methods
for their implementation. Actual implementation examples are provided in Chapter 3.4.

52 rev2 KADAK Target Processor and Compiler Use

The KwikNet compiler configuration header files H_tttXXX.vvv listed in Figure 3.1-1,
although created and tested for use with KwikNet and the AMX Real-Time Multitasking
Kernel, are but a few of those provided with the KwikNet Porting Kit as examples. The
files will be found in installation directory EXAMPLES\CC_H.

The mnemonic ttt identifies the target processor family. The mnemonic XXX identifies
the compiler vendor. The file extension vvv indicates the revision of the compiler with
which the header file was first tested.

When using any of these files, copy the file and rename it KNZZZCC.H.

File Target Compiler

H__86MC.15 80x86 (real mode) Microsoft 16-bit Visual C/C++ v1.5, v1.52
H__86PD.50 80x86 (real mode) Paradigm 16-bit C/C++ v5.0, v6.0
H__86TC.50 80x86 (real mode) Borland 16-bit C/C++ v5.0
H__86WC.110 80x86 (real mode) WATCOM (Sybase) 16-bit C/C++ v11.0

H_386BCB.50 80x86 (protected mode) Borland 32-bit C/C++ v5.0
H_386MCB.42 80x86 (protected mode) Microsoft 32-bit Visual C/C++ v4.2 and up
H_386MWB.331 80x86 (protected mode) MetaWare High C/C++ v3.31 and up
H_386PD.60 80x86 (protected mode) Paradigm 32-bit C/C++ v6.0
H_386WC.110 80x86 (protected mode) WATCOM (Sybase) 32-bit C/C++ v11.0

H_68KDA.42 68000 Diab-SDS C/C++ v4.2 and up
H_68KIM.842 68000 TASKING (Intermetrics) C/C++ v8.4.2
H_68KME.20 68000 Metrowerks C/C++ v2.0 and up
H_68KMR.45 68000 Mentor Graphics (Microtec) C/C++ v4.5G

H_CFDA.42 ColdFire Diab-SDS C/C++ v4.2 and up
H_CFME.25 ColdFire Metrowerks C/C++ v2.5

H_PPCDA.41 PowerPC Diab-SDS C/C++ v4.1 and up
H_PPCME.42 PowerPC Metrowerks C/C++ v4.2 and up
H_PPCMW.41 PowerPC MetaWare High C/C++ v4.1 and up

H_ARMRM.211 ARM (ARM mode) ARM Ltd. C/C++ SDK v2.11 and up
H_ARMMW.410 ARM (ARM mode) MetaWare High C/C++ v4.1 and up

H_ARBRM.211 ARM (Thumb mode) ARM Ltd. C/C++ SDK v2.11 and up
H_ARBMW.410 ARM (Thumb mode) MetaWare High C/C++ v4.1 and up

H_M32MW.430 MIPS32 MetaWare High C/C++ v4.3e

H_BFAD.30 Blackfin Analog Devices C/C++ v3.0

Figure 3.1-1 Compiler Configuration Header File Examples

Target Processor and Compiler Use KADAK Copyright © 1999-2000 KADAK Products Ltd. 53

3.2 C Compiler Adaptation

The KwikNet compiler configuration header file KNZZZCC.H must identify the specific
features which your C compiler supports. Figure 3.2-1 illustrates such a specification for
a typical, ANSI compliant C compiler.

Standard C Header Files

KwikNet assumes that a subset of the following standard C header files will be provided
with your C compiler. Unless otherwise specified, KwikNet assumes that all of the
standard C definitions needed for argument passing, string and memory manipulation and
memory allocation will be available in the subset marked with the * character.

KN_HSTDARG stdarg.h * Standard arguments
KN_HSTDLIB stdlib.h * Standard library
KN_HSTRING string.h * String manipulation
KN_HMEMORY memory.h Memory manipulation
KN_HMEM mem.h Memory manipulation
KN_HMALLOC malloc.h Memory allocation
KN_HSTDIO stdio.h Standard I/O

You can override KwikNet's choice of C header files by defining symbol KN_CCHDRTYPE to
identify the specific set of header files to be used. For example, if your C compiler does
not provide file stdarg.h and puts its memory manipulation definitions in file mem.h,
you must define KN_CCHDRTYPE as follows.

#define KN_CCHDRTYPE (KN_HSTDLIB | KN_HSTRING | KN_HMEM)

Parameter Passing Conventions

Some C compilers use a keyword such as __cdecl to define the parameter passing
conventions which a C function must follow when interfacing with modules coded in
other languages such as assembly language. If your C compiler uses such a keyword,
define symbol KN_CCPP to be that keyword. Otherwise define KN_CCPP to be an empty
string as in Figure 3.2-1.

If your C compiler allows variable length argument lists in C function declarations (using
"..."), define symbol KN_CCDOTS to be 1. Otherwise define KN_CCDOTS to be 0.

Random Number Generator

If your C library includes the random number functions rand() and srand(), define
symbol KN_CCRAND to be 1. Otherwise define KN_CCRAND to be 0. If KN_CCRAND is 0,
KwikNet will use its own primitive pseudo-random number generator.

54 rev2 KADAK Target Processor and Compiler Use

#ifndef KN_CCHDR_H
#define KN_CCHDR_H 1

/* Compiler has memory functions in string.h */
/* Malloc is in stdlib.h. */
/* Stdarg.h is available. */
/* Therefore, use the default definition of available header types */
/* and DO NOT define KN_CCHDRTYPE. */

#define KN_CCPP /* Uses standard C parameter */
/* passing convention */

#define KN_CCDOTS 1 /* Can use "..." in prototypes */
#define KN_CCRAND 1 /* rand(), srand(seed) ARE available */

/* Macro to get rid of "unused argument" warnings. */
/* With compilers that can suppress these warnings, define as empty. */
/* #define USE_ARG(x) ((void)(x)) */
#define USE_ARG(x)

/* Turn off nonsensical warnings. */
/* Because of the many supported configurations and options */
/* some warnings cannot be avoided. */
/* --- none --- */

/* Far and huge keywords not supported */
#define KN_CCFAR
#define KN_CCHUGE

#endif /* KN_CCHDR_H */

/* File I/O Definitions */
#ifdef KN_CCNEEDFILE
#ifndef KN_CCFILE_H
#define KN_CCFILE_H 1
#include <stdio.h>
#endif /* KN_CCFILE_H */
#endif /* KN_CCNEEDFILE */

Figure 3.2-1 C Compiler Adaptations

Target Processor and Compiler Use KADAK Copyright © 1999-2000 KADAK Products Ltd. 55

Eliminating Warnings

Many C compilers generate warnings if C code is not absolutely pristine. Others produce
warnings because of shortcomings in the compiler. If possible, use your compiler's
command line switch to avoid such warnings. Alternatively, use the #pragma statement,
if any, to eliminate the warning.

For example, the Borland (Inprise) C compiler generates a warning if a structure is
referenced before it is defined. Such references are common in structures which are
linked to each other. To avoid this warning, the following Borland specific statement can
be inserted into the compiler configuration header file KNZZZCC.H.

#pragma warn -stu

The most common warning is the reminder that a parameter passed to a function is not
actually used by the function. There are times when such functions cannot be avoided
without paying an execution penalty that is otherwise unwarranted. If possible, use your
compiler's command line switch to avoid such warnings. Alternatively, insert the
#pragma statement, if any, which eliminates the warning. In either of these cases, define
macro USE_ARG to be an empty string. If neither of these solutions is possible, define the
macro USE_ARG as shown in Figure 3.2-1 to force all arguments to actually be used.

Segmented Memory Access

When using the 16-bit Intel 80x86 processor with its segmented memory architecture,
there is difficulty allocating and accessing memory arrays which exceed 64K bytes.
Compilers overcome these hurdles by introducing keywords (such as _far and _huge) to
be used as modifiers for pointer references and array allocation.

If you are using KwikNet on the 16-bit Intel 80x86 processor operating in real mode,
define symbol KN_CCFAR and KN_CCHUGE to be the appropriate keyword used by your
compiler. Otherwise define both KN_CCFAR and KN_CCHUGE to be an empty string as
shown in Figure 3.2-1.

Interrupt Function Definitions

If your compiler permits an interrupt service routine (ISR) to be coded in C, then you
should provide compiler dependent definitions in header file KNZZZCC.H similar to those
illustrated below for use by your OS Interface Module KN_OSIF.C.

typedef void _interrupt (*KN_CCINTFNP)(void);
#define KN_CCINTFUNC(isrname) void _interrupt isrname(void)

File I/O Definitions

If you are using a KwikNet option such as FTP which requires a file system, you may be
using the file services from your C library. If so, KwikNet will define symbol
KN_CCNEEDFILE and include your compiler configuration header file KNZZZCC.H to gain
access to your C file I/O definitions, usually located in C header file stdio.h. Note that
the inclusion of your file I/O definitions must be done outside the header definition
region bounded by the KN_CCHDR_H definition.

56 Copyright © 1999-2000 KADAK Products Ltd. KADAK Target Processor and Compiler Use

3.3 Low Level Services

The KwikNet compiler configuration header file KNZZZCC.H must specify how critical
section protection, device I/O operations, interrupt level manipulations and clock services
are to be performed. It can also introduce C or assembly language code fragments to
optimize the execution speed of certain time-critical or frequently occurring KwikNet
operations.

The low level services can be implemented using any of the following techniques.
Examples of each technique are provided in Chapter 3.4.

• C macros which use in-line assembly language statements
• C functions coded in C with in-line assembly language statements
• C macros and equivalent C library macros or functions
• C functions coded in C using only C language statements

Figure 3.3-1 illustrates one possible specification of the low level services required by
KwikNet. Control symbols of the form KN_FN_xxxx are defined in the definitions region
of the KwikNet compiler configuration header file KNZZZCC.H following the C compiler
adaptation parameters. Each control symbol definition specifies how a particular low
level service or set of services is to be implemented.

If a control symbol is defined to be KN_AS_KNMACRO, then the low level service will be
implemented for you by KwikNet using a C macro definition.

If a control symbol is defined to be KN_AS_KNFUNC, then the low level service will be
implemented for you by KwikNet as a C function coded entirely in C.

If a control symbol is defined to be KN_AS_FNCC|KN_AS_FNPROTO, then the low level
service must be implemented by you as a function (or its equivalent) in header file
KNZZZCC.H using any of the techniques listed above and described in this chapter. The
function prototype will be provided for you by KwikNet.

Some C compilers allow you to declare an in-line assembly language macro which looks
like a function, feels like a function but is not actually a function. The definition of such
a macro provides the prototype and the function, all in one. When declaring such a
function, the control symbol must be defined as KN_AS_FNCC. Since the constant
KN_AS_FNPROTO is omitted from the definition, KwikNet will not generate a function
prototype, thereby avoiding any possible conflict with your in-line definition.

If you provide your own implementation of a low level service as a macro or as a
function complete with its own prototype, the associated control symbol must be defined
to have the value 0. Example 3.4.1-A illustrates this requirement.

Note

The definition of the critical section control symbol
KN_FN_CRIT must be done outside the usual header
definition region bounded by the KN_CCHDR_H definition.
Note that the definition is only required if symbol
KN_CCNEED_CRITDEF has been defined by KwikNet.

Target Processor and Compiler Use KADAK Copyright © 1999-2000 KADAK Products Ltd. 57

#ifndef KN_CCHDR_H
#define KN_CCHDR_H 1
/* : */
/* : Compiler definitions (see Figure 3.2-1) */
/* : */

/* -- */
/* Low Level Services */

/* Endian swapping */
#define KN_FN_SWAP (KN_AS_FNCC | KN_AS_FNPROTO)

/* IP checksum generation */
#define KN_FN_CKSUM (KN_AS_FNCC | KN_AS_FNPROTO)

/* Interrupt level manipulation */
#define KN_FN_INTSUPP (KN_AS_FNCC | KN_AS_FNPROTO)

/* Device I/O operations */
#define KN_FN_MEMIO KN_AS_KNMACRO
#define KN_FN_MEMREP KN_AS_KNMACRO

/* Clock read must be atomic */
#define KN_FN_CLKRD (KN_AS_FNCC | KN_AS_FNPROTO)

#endif /* KN_CCHDR_H */

/* -- */
/* Critical Section Services */

#ifdef KN_CCNEED_CRITDEF
#ifndef KN_CCCRITDEF_H
#define KN_CCCRITDEF_H 1

/* Define critical section protection mechanism */
#define KN_FN_CRIT (KN_AS_FNCC | KN_AS_FNPROTO)

#endif /* KN_CCCRITDEF_H */
#endif /* KN_CCNEED_CRITDEF */

Figure 3.3-1 Specifying Low Level Services

58 Copyright © 1999-2000 KADAK Products Ltd. KADAK Target Processor and Compiler Use

The following low level KwikNet services are governed by control symbols KN_FN_CRIT
and KN_FN_INTSUPP. Since these services are target dependent, you must provide them.
There are no defaults provided by KwikNet. However, examples are provided for several
different target processors and compilers.

KN_FN_CRIT kn_csenter() Enter into a critical section
KN_FN_CRIT kn_csexit() Exit from a critical section
KN_FN_INTSUPP kn_brdintlvl() Change interrupt priority level

The following low level KwikNet services are optional. You only need to provide them if
you wish to optimize their performance. They are governed by control symbols
KN_FN_SWAP and KN_FN_CKSUM. The KwikNet defaults for these services can be used.

KN_FN_SWAP kn_swap16() Reverse byte order in a 16-bit unsigned integer
KN_FN_SWAP kn_swap32() Reverse byte order in a 32-bit unsigned integer
KN_FN_CKSUM kn_cksum() Compute IP datagram checksum

The following low level KwikNet device I/O services must be provided. However, you
may be able to use the default services provided by KwikNet. The services are governed
by control symbols KN_FN_MEMxxx and KN_FN_DVCxxx.

If you are using a processor which uses memory mapped I/O addressing, you must
provide the memory mapped input/output services governed by control symbols
KN_FN_MEMIO and KN_FN_MEMREP. You can leave control symbols KN_FN_DVCIO and
KN_FN_DVCREP undefined or defined as 0.

KN_FN_MEMIO kn_inmNN() 8, 16 and 32-bit read from device memory
KN_FN_MEMIO kn_outmNN() 8, 16 and 32-bit write to device memory
KN_FN_MEMREP kn_inmsNN() 8, 16 and 32-bit block read from device memory
KN_FN_MEMREP kn_outmsNN() 8, 16 and 32-bit block write to device memory

If you are using a processor like the Intel 80x86 which uses I/O ports for device
addressing, you must provide the port input/output services governed by control symbols
KN_FN_DVCIO and KN_FN_DVCREP. It is recommended that these services be implemented
as shown in the example files H__86xxx.vvv or H_386xxx.vvv listed in Figure 3.1-1.
You can leave control symbols KN_FN_MEMIO and KN_FN_MEMREP undefined or defined
as 0.

KN_FN_DVCIO kn_inpNN() 8, 16 and 32-bit read from device I/O port
KN_FN_DVCIO kn_outpNN() 8, 16 and 32-bit write to device I/O port
KN_FN_DVCREP kn_inpsNN() 8, 16 and 32-bit block read from device I/O port
KN_FN_DVCREP kn_outpsNN() 8, 16 and 32-bit block write to device I/O port

The following low level KwikNet clock services may have to be provided to handle the
atomic (indivisible) manipulation of 32-bit clock tick counts. They are governed by
control symbols KN_FN_CLKRD and KN_FN_CLKDIFF. The KwikNet defaults for these
services can be used on most 32-bit processors.

KN_FN_CLKRD kn_tickrd() Read a 32-bit clock tick count
KN_FN_CLKDIFF kn_tickdiff() Compute a 32-bit clock tick difference

Target Processor and Compiler Use KADAK Copyright © 1999-2000 KADAK Products Ltd. 59

Critical Section Protection

From time to time, KwikNet must perform a sequence of operations which must appear to
be done as one indivisible operation. Such a sequence is called a critical section. KwikNet
invokes the low level service kn_csenter() as it enters a critical section. It then invokes
kn_csexit() as it leaves the region.

These low level services must allow recursion so that KwikNet can enter one critical
section from another and remain critical until it finally exits from the first region. On
most target processors, this requirement can be most easily met by disabling interrupts on
entry to the critical section and restoring interrupts to their previous state upon exit.

These low level services can be implemented as macros or functions. If possible, they
should be implemented as in-line assembly language macros for best performance. If
implemented as C functions, they would be prototyped as follows:

unsigned int kn_csenter(void);
void kn_csexit(unsigned int);

Service kn_csenter() always returns a parameter which is subsequently passed to
kn_csexit(). Usually the parameter is the previous state of the interrupt system.
However, the parameter and its purpose is up to you.

You must define symbol KN_FN_CRIT to specify which of the techniques described in
Chapter 3.4 was used to implement these services.

Using RTOS Critical Section Protection

If you are using an RTOS which provides critical section protection, you may be able to
use the RTOS services instead of implementing your own.

You may have to implement the KwikNet critical section services as functions which make
the appropriate calls to your RTOS. In this case, define symbol KN_FN_CRIT as in Figure
3.3-1 and code the critical section services as functions using the technique illustrated in
Example 3.4.2-B (see Chapter 3.4).

In other cases, you may be able to map the KwikNet critical section services directly to
those of your RTOS as in the following example. Symbol KN_FN_CRIT must be defined
as 0 since low level service functions are not being implemented and KwikNet prototypes
are not required since the services have been defined using macros. The following
definitions should replace the definition of symbol KN_FN_CRIT in the critical section
definition region of header file KNZZZCC.H.

extern short rtos_critical(short);
#define kn_csenter() ((unsigned int)rtos_critical(0))
#define kn_csexit(prevstate) ((void)rtos_critical(prevstate))
#define KN_FN_CRIT 0

60 Copyright © 1999-2000 KADAK Products Ltd. KADAK Target Processor and Compiler Use

Interrupt Priority Level Manipulation

From time to time, KwikNet must perform a sequence of operations which must be done as
one indivisible operation without the possibility of a specific device interrupt. For
example, the KwikNet board driver KN_BOARD.C includes a function which must install a
pointer to an interrupt service procedure into the processor's interrupt or exception vector
table. Such an installation must be done without an interrupt from the device.

KwikNet invokes the low level service kn_brdintlvl() as it enters and leaves one of
these protected interrupt regions. This service must allow recursion so that KwikNet can
enter one such region from another and remain uninterrupted until it finally exits from the
first region. On most target processors, this requirement can be most easily met by
disabling interrupts on entry to the region and restoring interrupts to their previous state
upon exit. On some target processors, such as the Motorola 68000 family, you can gain
even better control by inhibiting only device interrupts above a particular priority level.

This low level service can be implemented as a macro or function. If possible, it should
be implemented as an in-line assembly language macro for best performance. If
implemented as a C function, it would be prototyped as follows:

unsigned long kn_brdintlvl(unsigned long p);

Service kn_brdintlvl() receives a single parameter p which specifies the required
interrupt state. If p is 0, the service must unconditionally disable interrupts from all
sources. If p is ~0, the service must unconditionally enable interrupts from all sources. If
p is any other value, the service must restore interrupts to the state specified by p.

Service kn_brdintlvl() always returns a parameter which specifies the state of the
interrupt system prior to its invocation. The parameter values 0 and ~0 are reserved for
use as described above. Any other values can be used by you to specify the prior state of
the interrupt system.

You must define symbol KN_FN_INTSUPP to specify which of the techniques described in
Chapter 3.4 was used to implement this service.

Target Processor and Compiler Use KADAK Copyright © 1999-2000 KADAK Products Ltd. 61

End-for-End Byte Swapping

KwikNet must adjust 16-bit and 32-bit big endian network values to match the endian
characteristics of your target processor. Low level services must be provided to reverse
the order of the bytes in a 16-bit or 32-bit unsigned value.

These low level services can be implemented as macros or functions. To use the default
C macro versions defined by KwikNet in header file KN_API.H, simply define symbol
KN_FN_SWAP as follows:

#define KN_FN_SWAP KN_AS_KNMACRO

If your C compiler cannot handle these simple KwikNet macros, you can use the default C
functions defined by KwikNet in header file KN_API.H and implemented in file
KN_UTIL.C. Simply define symbol KN_FN_SWAP as follows:

#define KN_FN_SWAP KN_AS_KNFUNC

However, for best performance, the low level byte swapping services should be
implemented as in-line assembly language macros. If implemented as C functions, these
services would be prototyped as follows:

unsigned short kn_swap16(unsigned short val);
unsigned long kn_swap32(unsigned long val);

Parameter val is the 16-bit or 32-bit value which is to be end-for-end byte swapped.

The 16-bit parameter val is returned from kn_swap16() with val[0..7] and
val[8..15] interchanged.

The 32-bit parameter val is returned from kn_swap32() with val[0..7] interchanged
with val[24..31] and val[8..15] interchanged with val[16..23].

You must define symbol KN_FN_SWAP to specify which of the techniques described in
Chapter 3.4 was used to implement these services.

62 Copyright © 1999-2000 KADAK Products Ltd. KADAK Target Processor and Compiler Use

IP Checksum Calculation

KwikNet must calculate the checksum for every IP datagram which it manipulates.
Optimization of the low level service which performs this operation can greatly enhance
performance.

This low level service can be implemented as a macro or function. Rarely is a macro
warranted, since the complexity of the algorithm and its frequency of use would
adversely affect code size. To use the default C function version defined by KwikNet in
header file KN_API.H and implemented in file KN_UTIL.C, simply define symbol
KN_FN_CKSUM as follows:

#define KN_FN_CKSUM KN_AS_KNFUNC

However, for best performance, this low level IP datagram checksum algorithm should be
implemented using in-line assembly language within a C function. See any of the
examples provided in the compiler configuration header files KNtttCC.xxx listed in
Figure 3.1-1. If implemented as a C function, it would be prototyped as follows:

unsigned short kn_cksum(void *p, unsigned int n);

The checksum service kn_cksum() returns the 16-bit checksum of the n 16-bit integer
values from the memory array referenced by pointer p. The checksum is computed by
summing the n 16-bit integers from the memory array using one's complement arithmetic
and then returning the one's complement of the sum.

An interesting characteristic of this algorithm is that it is endian independent. This fact
can be used to advantage when implementing this low level service. Examine any of the
in-line assembly language implementations in the KNtttCC.xxx header files or review
the C language implementation in file KN_UTIL.C.

You must define symbol KN_FN_CKSUM to specify which of the techniques described in
Chapter 3.4 was used to implement this service.

Target Processor and Compiler Use KADAK Copyright © 1999-2000 KADAK Products Ltd. 63

Memory Mapped Device I/O

If you are using a processor which uses memory mapped I/O addressing, you must
provide memory mapped versions of the low level KwikNet device I/O services. You can
leave the I/O device port symbols KN_FN_DVCIO and KN_FN_DVCREP undefined or defined
as 0.

If your C compiler supports the keyword volatile, you can use the default C macro
versions defined by KwikNet in header file KN_DVCIO.H. Simply define symbols
KN_FN_MEMIO and KN_FN_MEMREP as follows:

#define KN_MEMIO KN_AS_KNMACRO
#define KN_MEMREP KN_AS_KNMACRO

Alternatively, you can use the default C function versions defined by KwikNet in header
file KN_DVCIO.H and implemented as C functions in the KwikNet board driver
KN_BOARD.C. Simply define symbols KN_FN_MEMIO and KN_FN_MEMREP as follows:

#define KN_MEMIO KN_AS_KNFUNC
#define KN_MEMREP KN_AS_KNFUNC

When implemented as C functions, these low level services are prototyped as follows:

unsigned char kn_inm8(unsigned long addr);
unsigned short kn_inm16(unsigned long addr);
unsigned long kn_inm32(unsigned long addr);
void kn_outm8(unsigned long addr, unsigned char val);
void kn_outm16(unsigned long addr, unsigned short val);
void kn_outm32(unsigned long addr, unsigned long val);

void kn_inms8(unsigned long addr, void *valp, int n);
void kn_inms16(unsigned long addr, void *valp, int n);
void kn_inms32(unsigned long addr, void *valp, int n);
void kn_outms8(unsigned long addr, void *valp, int n);
void kn_outms16(unsigned long addr, void *valp, int n);
void kn_outms32(unsigned long addr, void *valp, int n);

Parameter addr is the device's linear memory address. Parameter val is an unsigned 8,
16 or 32-bit value to be written to the device.

For the block read services, parameter valp is a pointer to storage for an array of n
unsigned 8, 16 or 32-bit values to be read from the device. For the block write services,
parameter valp is a pointer to an array of n unsigned 8, 16 or 32-bit values to be written
to the device.

If you wish, you can implement these low level services as macros or functions which use
in-line assembly language for best performance. In this case, you must define symbols
KN_FN_MEMIO and KN_FN_MEMREP to specify which of the techniques described in Chapter
3.4 was used to implement the services.

64 Copyright © 1999-2000 KADAK Products Ltd. KADAK Target Processor and Compiler Use

Device Port I/O

If you are using a processor like the Intel 80x86 which uses I/O ports for device
addressing, you must provide the low level port input/output services. You can leave
memory mapped device I/O symbols KN_FN_MEMIO and KN_FN_MEMREP undefined or
defined as 0.

These low level services can be implemented as macros or functions. It is recommended
that you implement these services as shown in any of the 80x86 example files
H__86xxx.vvv or H_386xxx.vvv listed in Figure 3.1-1.

If implemented as C functions, these low level services are prototyped as follows:

unsigned char kn_inp8(unsigned int port);
unsigned short kn_inp16(unsigned int port);
unsigned long kn_inp32(unsigned int port);
void kn_outp8(unsigned int port, unsigned char val);
void kn_outp16(unsigned int port, unsigned short val);
void kn_outp32(unsigned int port, unsigned long val);

void kn_inps8(unsigned int port, void *valp, int n);
void kn_inps16(unsigned int port, void *valp, int n);
void kn_inps32(unsigned int port, void *valp, int n);
void kn_outps8(unsigned int port, void *valp, int n);
void kn_outps16(unsigned int port, void *valp, int n);
void kn_outps32(unsigned int port, void *valp, int n);

Parameter port is the device's I/O port address. Parameter val is an unsigned 8, 16 or
32-bit value to be written to the device port.

For the block read services, parameter valp is a pointer to storage for an array of n
unsigned 8, 16 or 32-bit values to be read from the device port. For the block write
services, parameter valp is a pointer to an array of n unsigned 8, 16 or 32-bit values to be
written to the device port.

You must define symbols KN_FN_DVCIO and KN_FN_DVCREP to specify which of the
techniques described in Chapter 3.4 was used to implement the services.

Target Processor and Compiler Use KADAK Copyright © 1999-2000 KADAK Products Ltd. 65

Clock Services

KwikNet maintains a clock tick counter which it uses for elapsed time monitoring. The
count is a 32-bit unsigned long integer value stored in public variable kn_ticks. KwikNet
must be able to read this 32-bit value atomically, even on systems with a 16-bit memory
system or target processor. KwikNet must be also be able to compare this 32-bit value
with another 32-bit value.

Reading Clock Tick Count

If your C compiler can generate code to fetch the tick count from variable kn_ticks
with a single, indivisible memory read, then KwikNet's tick access requirements will be
met. This will be the case for most 32-bit target processors. For such a C compiler,
simply leave symbol KN_FN_CLKRD undefined.

If your C compiler cannot generate code to fetch the tick count from variable kn_ticks
with a single, indivisible memory read, then you must provide a low level service
kn_tickrd() to perform the operation. This will be the case for most 16-bit target
processors. The low level service can be implemented as a macro or function. To use the
default C function version defined by KwikNet in header file KN_API.H and implemented
in file KN_UTIL.C, simply define symbol KN_FN_CLKRD as follows:

#define KN_FN_CLKRD KN_AS_KNFUNC

However, for best performance, the low level tick read service should be implemented as
an in-line assembly language macro. If implemented as a C function, the service would
be prototyped as follows:

unsigned long kn_tickrd(void);

The service kn_tickrd() must return the 32-bit unsigned long integer from the KwikNet
public variable kn_ticks. If the service guards the access to kn_ticks by disabling
interrupts, it must not unconditionally enable interrupts upon exit. Instead, it must restore
interrupts to the state which existed prior to entry to the service.

You must define symbol KN_FN_CLKRD to specify which of the techniques described in
Chapter 3.4 was used to implement this service.

66 Copyright © 1999-2000 KADAK Products Ltd. KADAK Target Processor and Compiler Use

Clock Tick Difference Computation

If your C compiler can correctly evaluate the following expression where x and y are
unsigned long values, then KwikNet's tick differencing requirements will be met. This will
be the case for most C compilers. For such a C compiler, simply leave symbol
KN_FN_CLKDIFF undefined.

(((long)(x - y)) <= 0L)

If your C compiler cannot correctly evaluate the above expression, then you must
provide a low level service kn_tickdiff() to perform the tick differencing operation.
The low level service can be implemented as a macro or function. To use the default C
function version defined by KwikNet in header file KN_API.H and implemented in file
KN_UTIL.C, simply define symbol KN_FN_CLKDIFF as follows:

#define KN_FN_CLKDIFF KN_AS_KNFUNC

However, for best performance, the low level tick difference service should be
implemented as an in-line assembly language macro. If implemented as a C function, the
service would be prototyped as follows:

long kn_tickdiff(unsigned long nticks);

The service kn_tickdiff() must read the 32-bit unsigned long integer from the KwikNet
public variable kn_ticks, subtract the unsigned long parameter value nticks and return
the difference as a signed, long integer value. If the service guards the access to
kn_ticks by disabling interrupts, it must not unconditionally enable interrupts upon exit.
Instead, it must restore interrupts to the state which existed prior to entry to the service.

You must define symbol KN_FN_CLKDIFF to specify which of the techniques described in
Chapter 3.4 was used to implement this service.

Target Processor and Compiler Use KADAK Copyright © 1999-2000 KADAK Products Ltd. 67

3.4 Code Fragment Implementation

The KwikNet compiler configuration header file KNZZZCC.H must specify how critical
section protection, device I/O operations, interrupt level manipulations and clock services
are to be performed. These services and their C function prototypes were introduced in
Chapter 3.3.

The low level services can be implemented using any of the following techniques.

• C macros which use in-line assembly language statements
• C functions coded in C with in-line assembly language statements
• C macros and equivalent C library macros or functions
• C functions coded in C using only C language statements

If performance is not an issue, the easiest solution is to use the default C macro or
function provided by KwikNet for the service. There are, however, a few services which
must be implemented by you. Even for these, you should follow the examples provided
in one of the compiler configuration header files listed in Figure 3.1-1.

The implementation technique to be used will be influenced by a number of factors. For
best performance, use in-line assembly language and implement the service as a macro or
function. Use a macro if the service involves very little in-line code. Use a function for a
service such as the IP datagram checksum calculation which, although too long to be
suitable for in-line use, still warrants assembly language implementation for performance.

Unfortunately, your choice of implementation technique will ultimately depend on the
compilation features provided by your C compiler.

In the remainder of this chapter, the various techniques will be explored. For each
technique, one or more of the low level services described in Chapter 3.3 will be
implemented using the technique. In each case, the example will be based on a particular
C compiler and target processor.

Note

Each low level service can be implemented using the
technique best suited for that service. All services do not
have to be implemented using the same technique.

68 Copyright © 1999-2000 KADAK Products Ltd. KADAK Target Processor and Compiler Use

3.4.1 C Macro Using In-Line Assembly Language
If your C compiler supports in-line assembly language code fragments, many of the
frequently used, low level services can benefit. This technique can only be used if your C
compiler allows in-line functions to receive parameters and return values.

Example 3.4.1-A

The following example illustrates the implementation of the critical section services
using Diab-SDS C/C++ on a Motorola M68000 processor. Note that this code fragment
resides in its own definition region bounded by the KN_CCNEED_CRITDEF definition as
previously illustrated in Figure 3.3-1.

The compiler's asm directive is used to prototype the in-line function and to allow its
definition using assembly language. Because the prototype has been provided and an
instance of the function will not actually be generated, the KwikNet symbol KN_FN_CRIT is
defined to be 0. KwikNet will not generate a conflicting function prototype and will not
try to force an instance of the function.

Every reference to these low level services will yield an in-line expansion of the function.
Function kn_csenter() returns the previous interrupt state in register d0 as specified by
the Diab-SDS C to assembly language interface. Note that the function kn_csexit() has
two specifications: one for use if parameter p is in a register and one for use if parameter
p is a memory variable.

/* Example: Diab-SDS C compiler for the M68000 processor */
/* -- */
/* Low level critical section services */

#ifdef KN_CCNEED_CRITDEF
#ifndef KN_CCCRITDEF_H
#define KN_CCCRITDEF_H 1

asm unsigned int kn_csenter(void)
{

move.w sr,d0
ori.w #0x0700,sr

}

asm void kn_csexit(unsigned int p)
{
% reg p;

move.w p,sr
% mem p;

move.l p,d0
move.w d0,sr

}

#define KN_FN_CRIT 0

#endif /* KN_CCCRITDEF_H */
#endif /* KN_CCNEED_CRITDEF */

Target Processor and Compiler Use KADAK Copyright © 1999-2000 KADAK Products Ltd. 69

Example 3.4.1-B

The following example illustrates the implementation of the low level services for clock
tick manipulation using WATCOM (Sybase) C/C++ on an Intel 80x86 processor
operating in real mode. Note that the macro definitions must reside within the definition
region of header file KNZZZCC.H.

The compiler's #pragma aux directive is used to prototype the in-line functions and to
allow their definition using assembly language. Because the prototype has been provided
and an instance of each function will not actually be generated, the KwikNet symbols
KN_FN_CLKRD and KN_FN_CLKDIFF are defined to be 0. KwikNet will not generate
conflicting function prototypes and will not try to force an instance of the functions.

Every reference to these low level services will yield an in-line expansion of the function.
Function kn_tickrd() returns the value of variable kn_ticks in register pair DX:AX as
specified by the WATCOM C to assembly language interface. Function kn_tickdiff()
receives its parameter nticks in register pair CX:BX and subtracts it from the value of
variable kn_ticks. The result is returned in register pair DX:AX.

/* Example: WATCOM C compiler for the real mode 80x86 processor */
/* -- */
#ifndef KN_CCHDR_H
#define KN_CCHDR_H 1
/* : */
/* : Compiler definitions (see Figure 3.2-1) */
/* : */
/* -- */
/* Low level clock tick manipulation services */

extern unsigned long kn_ticks;
unsigned long kn_tickrd(void);
long kn_tickdiff(unsigned long);

#pragma aux kn_tickrd = \
"pushf", \
"cli", \
"mov ax,word ptr kn_ticks", \
"mov dx,word ptr kn_ticks+2", \
"popf"; /* Return result in DX:AX */

#pragma aux kn_tickdiff = \
"pushf", \
"cli", \
"mov ax,word ptr kn_ticks", \
"mov dx,word ptr kn_ticks+2", \
"popf", \
"sub ax,bx", \
"sbb dx,cx" \
parm [cx bx]; /* Return result in DX:AX */

#define KN_FN_CLKRD 0
#define KN_FN_CLKDIFF 0

#endif /* KN_CCHDR_H */

70 Copyright © 1999-2000 KADAK Products Ltd. KADAK Target Processor and Compiler Use

Example 3.4.1-C

The following example illustrates the implementation of the low level service for
interrupt priority manipulation using WATCOM (Sybase) C/C++ on an Intel 80x86
processor operating in real mode.

The compiler's #pragma aux directive is used to prototype the in-line function and to
allow its definition using assembly language. Because the prototype has been provided
and an instance of the function will not actually be generated, the KwikNet symbol
KN_FN_INTSUPP is defined to be 0. KwikNet will not generate a conflicting function
prototype and will not try to force an instance of the function.

Every reference to this low level service will yield an in-line expansion of the function.
Function kn_brdintlvl() receives its parameter p in register pair DX:AX. The result is
also returned in register pair DX:AX as specified by the WATCOM C to assembly
language interface.

/* Example: WATCOM C compiler for the real mode 80x86 processor */
/* -- */
#ifndef KN_CCHDR_H
#define KN_CCHDR_H 1
/* : */
/* : Compiler definitions (see Figure 3.2-1) */
/* : */
/* -- */
/* Low level interrupt priority manipulation service */

unsigned long kn_brdintlvl(unsigned long);

#pragma aux kn_brdintlvl = \
" sub dx,dx", \
" pushf", \
" test ah,2", /* Test required IF state */ \
" pop ax", /* DX:AX = previous PSW = result */ \
" jz short ldis", \
" sti", /* Enable interrupts */ \
" jmp short lexit", \
"ldis: cli", /* Disable interrupts */ \
"lexit:" \

parm [dx ax]; /* Return result in DX:AX */

#define KN_FN_INTSUPP 0

#endif /* KN_CCHDR_H */

Target Processor and Compiler Use KADAK Copyright © 1999-2000 KADAK Products Ltd. 71

3.4.2 C Functions Coded in Assembly Language
You can use this technique if your C compiler allows you to implement a C function
which, although called from C, is actually coded in assembly language. For many
compilers, this is the only technique you can use to create an assembly language function
which receives parameters and returns a value.

You can use this technique even if your C function will not use assembly language at all.
For example, the low level C function may be completely coded in C but make use of
non-standard C macros or functions provided with your C compiler to manipulate
registers within your target processor.

Example 3.4.2-A

The following example illustrates the implementation of the byte swapping services using
Borland (Inprise) C/C++ on an Intel 80x86 processor operating in protected mode.

There are two parts required: the definition of symbol KN_FN_SWAP and the assembly
language implementation of the C callable functions.

You must define the KwikNet symbol KN_FN_SWAP within the definition region of header
file KNZZZCC.H as follows:

/* Example: Borland C compiler for the protected mode 80x86 processor */
/* -- */
#ifndef KN_CCHDR_H
#define KN_CCHDR_H 1
/* : */
/* : Compiler definitions (see Figure 3.2-1) */
/* : */

/* -- */
/* Low level endian swapping services */

#define KN_FN_SWAP (KN_AS_FNCC | KN_AS_FNPROTO)

#endif /* KN_CCHDR_H */

The definition states that the swapping services are to be implemented in header file
KNZZZCC.H using assembly language code fragments. It also states that KwikNet must
provide its standard C function prototypes for these services. If you provide your own
custom compiler dependent prototypes for the low level service functions, be sure to omit
KN_AS_FNPROTO from your definition of KN_FN_SWAP so that the corresponding KwikNet
prototypes will be omitted, thereby avoiding possible conflicts.

Following the definition region in header file KNZZZCC.H you must implement the low
level services as C functions coded in assembly language.

Since your definition of KN_FN_SWAP indicates that your byte swapping services are
available in a code fragment, KwikNet defines symbol KN_CCNEED_SWAP and includes
header file KNZZZCC.H to generate one instance of the code fragment in the appropriate
KwikNet source module. In this example, the code fragment from header file KNZZZCC.H
is actually inserted into the source file KN_UTIL.C.

72 Copyright © 1999-2000 KADAK Products Ltd. KADAK Target Processor and Compiler Use

Example 3.4.2-A (continued)

Note that this code fragment must reside in its own definition region bounded by the
KwikNet KN_CCNEED_SWAP definition as shown in the example below.

The compiler's asm directive is used to code the body of the C functions using assembly
language. Function kn_swap16() returns the 16-bit result in register AX as specified by
the Borland C to assembly language interface. Function kn_swap32() returns the 32-bit
result in register EAX. Note that the Borland compiler allows these functions to reference
parameter p from within the assembly language code fragment. Also note that the
Borland pragma warn has been used to avoid erroneous warnings that these functions fail
to return a value.

/* Example: Borland C compiler for the protected mode 80x86 processor */
/* -- */
/* Low level endian swapping functions */
/* This code sequence is included once within module KN_UTIL.C */

#ifdef KN_CCNEED_SWAP
#ifndef KN_CCSWAP_H
#define KN_CCSWAP_H 1

/* Prevent warning about function not returning a value */
#pragma warn -rvl

unsigned short kn_swap16(unsigned short p)
{

asm {
movzx eax,p
xchg al,ah
}

} /* Return result in AX */

unsigned long kn_swap32(unsigned long p)
{

asm {
mov eax,p
xchg al,ah
ror eax,16
xchg al,ah
}

} /* Return result in EAX */

/* Restore warning state to its previous condition */
#pragma warn .rvl

#endif /* KN_CCSWAP_H */
#endif /* KN_CCNEED_SWAP */

Target Processor and Compiler Use KADAK Copyright © 1999-2000 KADAK Products Ltd. 73

Example 3.4.2-B

The following example illustrates the implementation of the critical section services
using Microsoft C/C++ on an Intel 80x86 processor operating in real mode.

There are two parts required: the definition of symbol KN_FN_CRIT and the assembly
language implementation of the C callable functions.

You must define the KwikNet symbol KN_FN_CRIT within the header file KNZZZCC.H as
shown below. Note that the definition must reside in its own definition region bounded
by the KN_CCNEED_CRITDEF definition as previously illustrated in Figure 3.3-1.

/* Example: Microsoft C compiler for the real mode 80x86 processor */
/* -- */
/* Low level critical section services */

#ifdef KN_CCNEED_CRITDEF
#ifndef KN_CCCRITDEF_H
#define KN_CCCRITDEF_H 1

#define KN_FN_CRIT (KN_AS_FNCC | KN_AS_FNPROTO)

#endif /* KN_CCCRITDEF_H */
#endif /* KN_CCNEED_CRITDEF */

The definition states that the critical section services are to be implemented in header file
KNZZZCC.H using assembly language code fragments. It also states that KwikNet must
provide its standard C function prototypes for these services. If you provide your own
custom, compiler dependent prototypes for the low level service functions, be sure to
omit KN_AS_FNPROTO from your definition of KN_FN_CRIT so that the corresponding
KwikNet prototypes will be omitted, thereby avoiding possible conflicts.

Following the definition region in header file KNZZZCC.H you must implement the low
level services as C functions coded in assembly language.

Since your definition of KN_FN_CRIT indicates that your critical section services are
available in a code fragment, KwikNet defines symbol KN_CCNEED_CRIT and includes
header file KNZZZCC.H to generate one instance of the code fragment in the appropriate
KwikNet source module. In this example, the code fragment from header file KNZZZCC.H
is actually inserted into the source file KN_UTIL.C.

74 Copyright © 1999-2000 KADAK Products Ltd. KADAK Target Processor and Compiler Use

Example 3.4.2-B (continued)

Note that this code fragment must reside in its own definition region bounded by the
KwikNet KN_CCNEED_CRIT definition as shown in the example below.

The compiler's __asm directive is used to code the body of the C functions using
assembly language. Function kn_csenter() returns the previous interrupt state in
register AX as specified by the Microsoft C to assembly language interface. Note that the
Microsoft compiler allows function kn_csexit() to reference its parameter p from
within the assembly language code fragment. Also note that the Microsoft pragma
warning has been used to avoid an erroneous warning that function kn_csenter() fails
to return a value.

/* Example: Microsoft C compiler for the real mode 80x86 processor */
/* -- */
/* Low level critical section functions */
/* This code sequence is included once within module KN_UTIL.C */

#ifdef KN_CCNEED_CRIT
#ifndef KN_CCCRIT_H
#define KN_CCCRIT_H 1

/* Prevent warning about function not returning a value */
#pragma warning(disable : 4035)

unsigned int kn_csenter(void)
{

__asm {
pushf
pop ax
cli
}

} /* Return result in AX */

void kn_csexit(unsigned int p)
{

__asm {
mov ax,word ptr p
push ax
popf
}

}

#endif /* KN_CCCRIT_H */
#endif /* KN_CCNEED_CRIT */

Target Processor and Compiler Use KADAK Copyright © 1999-2000 KADAK Products Ltd. 75

3.4.3 Simple C Macros
If you do not want to optimize a particular low level service using assembly language
techniques, you can use the KwikNet C macro for the service, if one is available.
Alternatively, you may be able to implement the service as a C macro of your own. This
technique is especially suitable for mapping KwikNet services to equivalent C macros
provided by your C compiler or to functions available in your C runtime library.

Example 3.4.3-A

The following KwikNet low level services are available as KwikNet macros. Note that
some of these services are also available as KwikNet functions (see Chapter 3.4.4). The
memory mapped device I/O services can only be used if your C compiler supports the
volatile keyword. The 32-bit memory mapped device I/O services can only be used if
your C compiler and target processor support atomic (indivisible) access to 32-bit device
addresses.

Symbol Service Purpose
KN_FN_SWAP kn_swap16() Byte reverse 16-bit unsigned value
KN_FN_SWAP kn_swap32() Byte reverse 32-bit unsigned value

KN_FN_MEMIO kn_inmXX() 8, 16 and 32-bit memory mapped device read
KN_FN_MEMIO kn_outmXX() 8, 16 and 32-bit memory mapped device write
KN_FN_MEMREP kn_inmsXX() 8, 16 and 32-bit memory mapped device block read
KN_FN_MEMREP kn_outmsXX() 8, 16 and 32-bit memory mapped device block write

KN_FN_CLKRD kn_tickrd() Read a 32-bit clock tick count
KN_FN_CLKDIFF kn_tickdiff() Compute a 32-bit clock tick difference

To use these services, simply define the associated KwikNet symbol to be KN_AS_KNMACRO
as illustrated in the example below. Note that the definition must reside within the
definition region of header file KNZZZCC.H.

/* Example: Most C compilers for most processors */
/* -- */
#ifndef KN_CCHDR_H
#define KN_CCHDR_H 1
/* : */
/* : Compiler definitions (see Figure 3.2-1) */
/* : */

/* -- */
/* Low level services implemented by KwikNet as macros */

#define KN_FN_SWAP KN_AS_KNMACRO /* Endian swapping services */
#define KN_FN_MEMIO KN_AS_KNMACRO /* Memory mapped device I/O services */
#define KN_FN_MEMREP KN_AS_KNMACRO /* Memory mapped device block I/O services */

#endif /* KN_CCHDR_H */

76 Copyright © 1999-2000 KADAK Products Ltd. KADAK Target Processor and Compiler Use

Example 3.4.3-B

The following example illustrates the implementation of the device I/O services using
MetaWare C/C++ on an Intel 80x86 processor operating in protected mode.

The low level device I/O services can be mapped directly to MetaWare services available
as macros or library functions. Note that the MetaWare macros or function prototypes
must be available in the C header files included by KwikNet (see Chapter 3.2).

Because these services are being provided by MetaWare C, the KwikNet symbols
KN_FN_DVCIO and KN_FN_DVCREP are defined to be 0. KwikNet will not generate
conflicting function prototypes and will not try to force an instance of equivalent
functions.

/* Example: MetaWare C compiler for the protected mode 80x86 processor */
/* -- */
#ifndef KN_CCHDR_H
#define KN_CCHDR_H 1
/* : */
/* : Compiler definitions (see Figure 3.2-1) */
/* : */

/* -- */
/* Low level device I/O services */

/* The following low level services can be mapped directly to */
/* MetaWare services available as macros or library functions. */

#define kn_inp8(p) _inb((int)(p))
#define kn_inp16(p) _inw((int)(p))
#define kn_inp32(p) _ind((int)(p))

#define kn_outp8(p, d) _outb((int)(p), (int)(d))
#define kn_outp16(p, d) _outw((int)(p), (int)(d))
#define kn_outp32(p, d) _outd((int)(p), (int)(d))

#define kn_inps8(p, b, c) _insb((int)(p), b, c)
#define kn_inps16(p, b, c) _insw((int)(p), b, c)
#define kn_inps32(p, b, c) _insd((int)(p), b, c)

#define kn_outps8(p, b, c) _outsb((int)(p), b, c)
#define kn_outps16(p, b, c) _outsw((int)(p), b, c)
#define kn_outps32(p, b, c) _outsd((int)(p), b, c)

#define KN_FN_DVCIO 0
#define KN_FN_DVCREP 0

#endif /* KN_CCHDR_H */

Target Processor and Compiler Use KADAK Copyright © 1999-2000 KADAK Products Ltd. 77

3.4.4 C Functions Coded in C
If you do not want to optimize a particular low level service using assembly language
techniques, you can use the KwikNet C function for the service, if one is available.
Alternatively, you can implement the service as a C function of your own, although rarely
will you have to do so. The low level services that are not provided by KwikNet as either
macros or C functions are, by their very nature, target processor dependent and will most
likely have to be coded using the techniques described in Chapters 3.4.1 or 3.4.2.

Example 3.4.4-A

The following KwikNet low level services are available as KwikNet C functions. Note that
some of these services are also available as KwikNet macros (see Chapter 3.4.3). If
possible, use the equivalent macro version. The memory mapped device I/O services
should only be used if your C compiler does not support the volatile keyword, thereby
preventing you from using the equivalent KwikNet macros. Furthermore, the 32-bit
memory mapped device I/O services can only be used if your C compiler and target
processor support atomic (indivisible) access to 32-bit device addresses.

Symbol Service Purpose
KN_FN_SWAP kn_swap16() Byte reverse 16-bit unsigned value
KN_FN_SWAP kn_swap32() Byte reverse 32-bit unsigned value

KN_FN_CKSUM kn_cksum() IP datagram checksum computation

KN_FN_MEMIO kn_inmXX() 8, 16 and 32-bit memory mapped device read
KN_FN_MEMIO kn_outmXX() 8, 16 and 32-bit memory mapped device write

KN_FN_CLKRD kn_tickrd() Read a 32-bit clock tick count
KN_FN_CLKDIFF kn_tickdiff() Compute a 32-bit clock tick difference

To use these services, simply define the associated KwikNet symbol as illustrated in the
example below. Note that the definition must reside within the definition region of
header file KNZZZCC.H.

/* Example: Most C compilers for most processors */
/* -- */
#ifndef KN_CCHDR_H
#define KN_CCHDR_H 1
/* : */
/* : Compiler definitions (see Figure 3.2-1) */
/* : */

/* -- */
/* Low level services implemented as KwikNet functions */

#define KN_FN_CKSUM KN_AS_KNFUNC /* IP datagram checksum service */

#endif /* KN_CCHDR_H */

78 Copyright © 1999-2000 KADAK Products Ltd. KADAK Target Processor and Compiler Use

This page left blank intentionally.

KwikNet Library Construction KADAK Copyright © 1999-2000 KADAK Products Ltd. 79

4. KwikNet Library Construction

4.1 Preparation
KwikNet is provided in source form ready to create customized KwikNet Libraries which
meet your particular network needs.

The KwikNet Library construction process, described in Chapter 1, is illustrated in the
block diagram of Figure 1.1-2. The components shown in that figure will be referenced
throughout this chapter as the construction procedure is unveiled. You should review that
material at this time.

In Chapter 1.2, you were advised to select a KwikNet porting example from which to
derive your KwikNet implementation. The set of files from that example were to be
copied to a working directory and edited to meet the requirements of your RT/OS and
software development tools.

In particular, the RT/OS interface files KN_OSIF.* were to have been edited as described
in Chapter 2. Your choice of C compiler header file KNZZZCC.H may also have required
modification to match your C compiler. Complete specifications were presented in
Chapter 3.

The remaining files from the porting example are used only for constructing the KwikNet
Libraries. They may have to be edited for use with your software development tools.

If you are not using the object module librarian (archiver) used in one of the porting
examples, you will have to revise the Library Specification Files KN713*.LBM to operate
with your librarian as described in Chapter 4.2.

You may also have to edit your choice of KwikNet tailoring file KNZZZCC.INC so that your
make utility will be able to run your software development tools. Tailoring files are
described in Chapter 4.3.

Once these last few files are ready, you can proceed with the make by following the
directions presented in Chapter 4.4.

80 rev2 KADAK KwikNet Library Construction

KwikNet Directories and Files

The make process depends upon the structure of the KwikNet installation directory
KNT713. When KwikNet is installed, the following subdirectories are created within
directory KNT713.

INET IP, UDP and related protocols; DHCP client; DNS client
Ethernet and SLIP Network Drivers; Modem Driver
Ethernet and Serial Loopback Drivers
Universal File System Interface; Administration Interface

TCP TCP protocol
MAKE KwikNet make directory
CFGBLDW KwikNet Configuration Builder; template files
ERR Construction error summary
TOOLUU Toolset specific files
TOOLUU\LIB Toolset specific libraries will be built here
TOOLUU\DRIVERS KwikNet Device Drivers

Other subdirectories such as PPP, FTP, HTTP, SNMP, TELNET or TFTP will also be present if
you have purchased the corresponding optional KwikNet components.

Other directories containing example software and sample programs will also be present
but are not involved in the make process.

A single toolset specific directory TOOLUU will be present. This directory will be used to
house modules which are specific to the software development tools which you are using.
KADAK uses a two or three character mnemonic to identify each of the toolset
combinations which it supports. The software toolset for the KwikNet Porting Kit has
been assigned the mnemonic UU. You can use some other mnemonic if you wish.

KwikNet Library Construction KADAK Copyright © 1999-2000 KADAK Products Ltd. 81

4.2 Software Development Tools
To construct the KwikNet Libraries you will need a make utility, a C compiler and an
object module librarian (archiver). The porting examples provided with the KwikNet
Porting Kit can be used with either Microsoft or Borland make utilities. Examples are
also provided for using several different compilers for different target processors.

Be aware that KADAK has observed that not all compilers operate correctly with every
version of the Microsoft or Borland make utilities. If the make process inexplicably fails,
it will most frequently be because of incompatibilities between these tools.

None of the modules provided with KwikNet are coded in assembly language. Hence, you
will not need an assembler to build the KwikNet Libraries. However, you will need an
assembler if your C compiler requires it for object module generation. You will also
require an assembler if your OS Interface Module KN_OSIF.C is complemented by one or
more assembly language modules.

Make Utility

To construct the KwikNet Libraries, you will require a make utility such as Microsoft
NMAKE or Borland MAKE. The construction process is initiated by executing your make
utility from within subdirectory MAKE in the KwikNet installation directory.

The make files provided with KwikNet purposely avoid the use of constructs which might
not be readily portable. The exception is the use of the !include, !ifdef, !ifndef,
!else and !endif constructs which are supported by both Microsoft and Borland. All
other potentially non-portable syntax has been isolated to the KwikNet tailoring file which
will be described in Chapter 4.3.

If your make utility rejects any of the KwikNet make files because of the syntax used, you
will have to edit that make file to adapt it for your use. Note that the KwikNet Network
Library Make File, say NETLIB.MAK, is actually generated by the KwikNet Configuration
Builder from the Network Library Template File KN713LIB.MT. It is the template file
which you may have to edit for compatibility with your make utility.

C Compiler

KwikNet is coded entirely in the C language. You must provide a C compiler which can
be invoked by your make utility using a command line directive. The command line
string used to run your C compiler must be defined in your KwikNet tailoring file (see
Chapter 4.3).

If you have not already done so, be sure to edit your KwikNet compiler configuration file
KNZZZCC.H as described in Chapter 3 to match your compiler's capabilities.

You must be aware of the conditions which will exist when your C compiler is invoked
by the make utility. When making KwikNet Libraries, the current directory will always be
one directory level below the KwikNet installation directory KNT713. For example, when a
KwikNet C source file in directory KNT713\INET is being compiled, that directory will be
the current directory when your C compiler is executed.

82 rev2 KADAK KwikNet Library Construction

Object Module Librarian

To construct the KwikNet Libraries, you will require an object module librarian,
sometimes called an archiver. The librarian must be able to combine a set of object
modules produced by your C compiler into a single library module. The command used
to run your librarian must be defined in your KwikNet tailoring file (see Chapter 4.3).

Object librarians expect you to provide a list of the object modules which are to be
collected together to form a library module. The object module list is often specified in a
text file which KADAK refers to as a Library Specification File. A separate Library
Specification File is required for each of the KwikNet Libraries.

KN713IP.LBM KwikNet IP Library
KN713TCP.LBM KwikNet TCP Library
KN713PPP.LBM KwikNet PPP Library (optional)
KN713FTP.LBM KwikNet FTP Library (optional)
KN713WEB.LBM KwikNet HTTP Web Server Library (optional)
KN713SNM.LBM KwikNet SNMP Agent Library (optional)
KN713TEL.LBM KwikNet TELNET Library (optional)
KN713TFT.LBM KwikNet TFTP Library (optional)

The following sets of sample Library Specification Files are included with the porting
examples in the KwikNet Porting Kit. The file sets are located in the following
subdirectories within directory KNT713\EXAMPLES.

MSDOS Microsoft librarian for 16-bit, real mode 80x86
DOS4GW WATCOM librarian for 32-bit, protected mode 80386 and up
XRTOS Mentor Graphics (Microtec) 68000 librarian
XOS Mentor Graphics (Microtec) 68000 librarian

You must be aware of the conditions which will exist when your librarian is invoked by
the make utility. When making KwikNet Libraries, the current directory will always be
one directory level below the KwikNet installation directory KNT713. For example when
the KwikNet TCP Library is being built, directory KNT713\TCP will be the current
directory when your librarian is executed.

KwikNet Library Construction KADAK rev2 83

4.3 The KwikNet Tailoring File
The KwikNet Libraries are constructed using your make utility, C compiler and object
module librarian. The make process is guided by your Network Library Make File, say
NETLIB.MAK, which is generated by the KwikNet Configuration Builder.

A file which KADAK calls a tailoring file is used to tailor the library construction
process for the particular C compiler and object librarian which you are using. It is the
tailoring file which provides the make commands to compile a C module or to construct a
library module. Obviously, the tailoring file must use the make syntax which is
acceptable to your make utility.

Two sets of tailoring files are provided with the KwikNet Porting Kit, one for use with
Borland MAKE and one for use with Microsoft NMAKE. These tailoring files will be found
in installation directory KNT713\EXAMPLES. Borland compatible tailoring files will be
found in subdirectory TF_BORLD. Those for Microsoft are located in subdirectory
TF_MSOFT. If you are not using either of these make utilities, pick a tailoring file suited to
one of them and edit it to match the syntax required by your particular make utility.

The following tailoring files provided with the KwikNet Porting Kit examples illustrate
proper usage with the following make utilities, target processors and C compilers.

Tailoring Make Target Compiler
File Utility Processor

Microsoft
M__86MC.15 NMAKE 80x86 (real mode) Microsoft 16-bit Visual C/C++ v1.5, v1.52
M_386WC.110 NMAKE 80x86 (protected mode) WATCOM 32-bit C/C++ v11.0
M_68KMR.45 NMAKE 68000 Mentor Graphics (Microtec) C/C++ v4.5G

Borland
B__86MC.15 MAKE 80x86 (real mode) Microsoft 16-bit Visual C/C++ v1.5, v1.52
B_386WC.110 MAKE 80x86 (protected mode) WATCOM 32-bit C/C++ v11.0
B_68KMR.45 MAKE 68000 Mentor Graphics (Microtec) C/C++ v4.5G

Pick the tailoring file which most closely matches your choice of make utility, target
processor and C compiler. Copy that file to your working directory and rename it
KNZZZCC.INC. This is the tailoring file which will be used to create your KwikNet
Libraries.

84 rev2 KADAK KwikNet Library Construction

The following growing list of tailoring files, although created and tested for use with
KwikNet and the AMX Real-Time Multitasking Kernel, are provided with the KwikNet
Porting Kit. Replace m_ in the filename with M_ for use with Microsoft NMAKE or B_ for
use with Borland MAKE.

Tailoring Target Compiler
File Processor

m__86MC.15 80x86 (real mode) Microsoft 16-bit Visual C/C++ v1.5, v1.52
m__86TC.50 80x86 (real mode) Borland 16-bit C/C++ v5.0
m__86PD.50 80x86 (real mode) Paradigm 16-bit C/C++ v5.0, v6.0
m__86WC.110 80x86 (real mode) WATCOM 16-bit C/C++ v11.0

m_386BCB.50 80x86 (protected mode) Borland 32-bit C/C++ v5.0
m_386MCB.10 80x86 (protected mode) Microsoft 32-bit Visual C/C++ v1.0
m_386MCB.42 80x86 (protected mode) Microsoft 32-bit Visual C/C++ v4.2
m_386MCB.50 80x86 (protected mode) Microsoft 32-bit Visual C/C++ v5.0
m_386MWB.331 80x86 (protected mode) MetaWare High C/C++ v3.31
m_386MWB.360 80x86 (protected mode) MetaWare High C/C++ v3.60
m_386WCB.110 80x86 (protected mode) WATCOM 32-bit C/C++ v11.0
m_386PD.60 80x86 (protected mode) Paradigm 32-bit C/C++ v5.0, v6.0

m_68KDA.42 68000 Diab-SDS C/C++ v4.2, v4.3
m_68KIM.842 68000 TASKING (Intermetrics) C/C++ v8.4.2
m_68KIM.92 68000 TASKING (Intermetrics) C/C++ v9.2r0
m_68KME.20 68000 Metrowerks C/C++ v2.0
m_68KMR.45 68000 Mentor Graphics (Microtec) C/C++ v4.5G
m_68KMR.51 68000 Mentor Graphics (Microtec) C/C++ v5.1

m_CFDA.42 ColdFire Diab-SDS C/C++ v4.2, v4.3
m_CFME.25 ColdFire Metrowerks C/C++ v2.5

m_PPCDA.41 PowerPC Diab-SDS C/C++ v4.1, v4.2, v4.3
m_PPCME.42 PowerPC Metrowerks C/C++ v4.2
m_PPCME.50 PowerPC Metrowerks C/C++ v5.0
m_PPCMW.41 PowerPC MetaWare High C/C++ v4.1, v4.3

m_ARMMW.410 ARM MetaWare High C/C++ v4.1
m_ARMMW.420 ARM MetaWare High C/C++ v4.2
m_ARMRM.211 ARM ARM Ltd. C/C++ SDK v2.11
m_ARMRM.250 ARM ARM Ltd. C/C++ SDK v2.50
m_ARMRM.10 ARM ARM Ltd. C/C++ ADS v1.0, v1.1
m_ARBXXX.vvv Thumb (see vendors m_ARMXXX.vvv shown above)

m_M32MW.430 MIPS32 MetaWare High C/C++ v4.3e

m_BFAD.30 Blackfin Analog Devices C/C++ v3.0

KwikNet Library Construction KADAK Copyright © 1999-2000 KADAK Products Ltd. 85

Editing the KwikNet Tailoring File

You must edit your KwikNet tailoring file KNZZZCC.INC so that your make utility will be
able to run your software development tools.

Since you may be porting to a compiler and librarian with which KADAK has no
experience, it is impossible to specify the command line switches which you will have to
use to compile KwikNet C source files or to make library modules.

You should review the command line definitions used in the tailoring files provided with
the KwikNet Porting Kit. These examples illustrate proper usage of two different make
utilities and several target processors and C compilers.

Figures 4.3-1, 4.3-2 and 4.3-3 show a listing of the tailoring file M__86MC.15 provided for
use with Microsoft NMAKE. It illustrates the use of the Microsoft 16-bit Visual C/C++
compiler (CL) to compile KwikNet C source files for use on a 16-bit 80x86 target
processor. It also shows how a KwikNet library is built using the Microsoft object
librarian (LIB).

The tailoring file must define the filename extensions which your software development
tools use for different types of files. The extensions are defined as macros (see Figure
4.3-1). Other commonly encountered extensions are .O, .S and .A.

The make file must be able to copy a file, erase a file and change the current working
directory. Since some make utilities balk if they encounter an empty rule, the make file
must also be able to issue a command that does nothing. Macros CMDCOPY, CMDDEL,
CMDCD and CMDNOP (see Figure 4.3-1) define the operating system dependent commands
which the make utility can execute to perform these operations.

Some make utilities require that you specify the filename extensions which are permitted
in implicit rules. Microsoft and Borland both allow use of the .SUFFIXES directive for
this purpose.

Macro CCCOMPILE is defined to be the command which the make utility can execute to
invoke your C compiler. The macro is used in the subsequent definition of the implicit
rule which the make utility must follow to compile a C source file. Several definitions of
macro CCCOMPILE are provided (see Figure 4.3-2) to allow the C compilation rules to be
easily adjusted via the make command line. Since this macro is only used in the implicit
rule for running the compiler, you are free to revise this adaptation methodology to best
suit your own needs.

Another C compilation macro CSCOMPILE (see Figure 4.3-2) is defined for use in the
construction of KwikNet sample programs. This macro gives the C compiler access to the
header files located in the sample program make directory SAM_MAKE. The construction
of a KwikNet sample program is described in Chapter 5.

Finally, two implicit rules must be defined in the tailoring file (see Figure 4.3-3). The
first implicit rule provides the command(s) to be executed by the make utility to compile
a KwikNet C source file to generate an object module. The second implicit rule provides
the command(s) to be executed to generate a KwikNet Library module from a collection of
the compiled object modules.

86 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet Library Construction

The C Compilation Implicit Rule

You must be aware of the conditions which will exist when your C compiler is invoked
by the implicit rule to compile a KwikNet module. When making KwikNet Libraries, the
current directory will always be one directory level below the KwikNet installation
directory KNT713. For example, when a KwikNet C source file in directory KNT713\INET
is being compiled, that directory will be the current directory when your C compiler is
executed. In some cases, directory KNT713\MAKE may be the current directory.

Your C compiler will require access to C header files from the then current directory and
from KwikNet directories ..\INET and ..\TCP. It will also require access to the standard
C header files required by your C compiler. How you provide such access will depend
upon the operating environment in which you are doing your software development. In
the tailoring file example shown in Figure 4.3-2, access to the KwikNet directories is
provided using the compiler's /I command line switch.

Since the current directory is always one level below the KwikNet installation directory,
you may be able to redirect compiler warnings and error messages to the KwikNet error
directory at ..\ERR as illustrated in the tailoring file example in Figure 4.3-3.

The Library Build Implicit Rule

You must be aware of the conditions which will exist when your librarian is invoked by
the implicit rule to create a KwikNet Library module. When making KwikNet Libraries, the
current directory will always be one directory level below the KwikNet installation
directory KNT713. For example when the KwikNet TCP Library is being built, directory
KNT713\TCP will be the current directory when your librarian is executed.

The object modules to be inserted into the library will be in the directory specified by the
make macro expansion $(KL). It is recommended that the object modules be copied to
the current directory so that path information can be omitted from the object module list
in your Library Specification File. Be sure to delete the object modules from the current
directory after the library has been built.

If the library module is created in the current directory, be sure to copy it to the
destination directory with the correct library filename. You may also wish to save a copy
of the library summary report, if any, produced by the librarian. These operations are
illustrated in the example in Figure 4.3-3.

Since the current directory is always one level below the KwikNet installation directory,
you may be able to redirect librarian warnings and error messages to the KwikNet error
directory at ..\ERR as illustrated in the tailoring file example in Figure 4.3-3.

KwikNet Library Construction KADAK rev2 87

------------------- Make specific INCLUDE file ----------------------
These make directives require Microsoft NMAKE v1.40 or compatible.
The make command directives are valid for use under DOS or Windows.

Define the file extensions required by your tools
AEXT is the file extension for assembler source files
OEXT is the file extension for object files
LEXT is the file extension for library files
XEXT is the file extension for executable load module files
LNKS is the file extension for link specification files
LBMS is the file extension for library specification files

AEXT = ASM
OEXT = OBJ
LEXT = LIB
XEXT = EXE
LNKS = LKS
LBMS = LBM

Define the commands which the make utility can execute to
perform the following operations:

Copy srcfile destfile
CMDCOPY = copy

Delete file X
CMDDEL = erase

Make path X the current directory
CMDCD = cd

No operation
CMDNOP = rem

To avoid conflicts with implicit rules established by the make utility
for its predefined list of suffixes, clear the suffixes list with an
empty .SUFFIXES command.
.SUFFIXES :

If required by the make utility, define extensions which
can be used in implicit rules.
.SUFFIXES : .$(LNKS) .c .$(AEXT) .$(LBMS)

Figure 4.3-1 KwikNet Tailoring File (Part 1)

88 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet Library Construction

Note: The following make macros can be defined by the user
on the make command line when the make utility is invoked
to construct KwikNet.
#
These macros can also be injected by providing the macro
definitions in a file. The file name must be provided by
defining macro "CCCFILE=filename" on the make command line.
#
Define "CCFLAGS=switches" if you wish to override the default
C compile switches provided in this module.
#
Define DBGINFO if you wish modules to be compiled for debugging.
Define "CCDEBUG=switches" if you wish to override the default
C debug compile switches provided in this module.

Define C compilation switches and debug switches to be used
unless overidden by definitions on the make command line or
in the file specified by macro CCCFILE.

!ifndef DBGINFO
Compile WITHOUT debug information
!ifndef CCFLAGS
CCCOMPILE = CL /c /G1 /Gs /Gt256 /Alfw /Ze /W3 /I..\INET /I..\TCP
CSCOMPILE = CL /c /G1 /Gs /Gt256 /Alfw /Ze /W3 /I..\SAM_MAKE
!else
CCCOMPILE = CL $(CCFLAGS)
CSCOMPILE = CL $(CCFLAGS) /I..\SAM_MAKE
!endif

!else
Compile WITH debug information
!ifndef CCDEBUG
CCCOMPILE = CL /c /G1 /Gs /Gt256 /Alfw /Ze /Z7 /W3 /I..\INET /I..\TCP
CSCOMPILE = CL /c /G1 /Gs /Gt256 /Alfw /Ze /Z7 /W3 /I..\SAM_MAKE
!else
CCCOMPILE = CL $(CCDEBUG)
CSCOMPILE = CL $(CCDEBUG) /I..\SAM_MAKE
!endif
!endif

Figure 4.3-2 KwikNet Tailoring File (Part 2)

KwikNet Library Construction KADAK Copyright © 1999-2000 KADAK Products Ltd. 89

Note: Microsoft NMAKE defines the following filename macros which
are used in the implicit rules defined in this module.
Macro $(@B) specifies the target filename with no path or extension.
Macro $@ specifies the target filename including path and extension.

Create object file from C file in current source directory.
Move object file to the library directory specified by $(O).
{.}.c{$(O)}.$(OEXT):

$(CCCOMPILE) /Fo$(@B).$(OEXT) $(@B).C >..\ERR\$(@B).E
copy $(@B).$(OEXT) $@
erase *.$(OEXT)

Create library file from object files and library command file
in the library directory specified by $(KL).
.$(LBMS).$(LEXT):

erase $@
erase $(@B).$(LEXT)
copy $(KL)\$(@B).$(LBMS)
copy $(KL)*.$(OEXT)
LIB @$(@B).$(LBMS) >..\ERR\$(@B).LBE
copy $(@B).$(LEXT) $@
copy $(@B).RPT $(KL)\$(@B).RPT
erase *.$(LBMS)
erase *.$(OEXT)
erase *.$(LEXT)
erase *.RPT

------------------- End of INCLUDE file -----------------------------

Figure 4.3-3 KwikNet Tailoring File (Part 3)

90 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet Library Construction

4.4 Making the KwikNet Library
KwikNet is provided in source form ready to create customized KwikNet Libraries which
meet your particular network needs. The libraries are constructed using your make
utility, C compiler and object module librarian (archiver). The make utility takes as input
a make file, called the Network Library Make File, which specifies how the libraries are
to be built.

Network Library Make File

The KwikNet Configuration Builder is used to create and edit your Library Parameter File,
say NETLIB.UP. It is this file which describes the KwikNet options and features which
your application requires. From this parameter file, the Configuration Builder generates
the Network Library Make File, say NETLIB.MAK. This process is described in Chapter
2.1 of the KwikNet TCP/IP Stack User's Guide.

The Network Library Make File NETLIB.MAK is a make file which can be used to create
the KwikNet Libraries tailored to your specifications. This make file is suitable for use
with either Borland's MAKE or Microsoft's NMAKE utility.

Gathering Files

The block diagram in Figure 1.1-2 summarizes the components which are required to
build the KwikNet Libraries. Several of these components are the files which you have
edited to port KwikNet to your operating environment.

All of your updated porting files must be copied from your working directory to the
appropriate KwikNet installation directories prior to making the KwikNet Libraries. Each of
the following files must be moved to the indicated destination directory.

Source Destination File Purpose
File Directory

NETLIB.UP MAKE KwikNet Library Parameter File
NETLIB.MAK MAKE KwikNet Library Make File

KN_OSIF.C INET OS Interface Module for your RT/OS
KN_OSIF.H INET OS Interface Header File for your RT/OS

KN_OSIF.INC TOOLUU OS Interface Make Specification for your RT/OS
KNZZZCC.INC TOOLUU Tailoring File (for use with your make utility)
KNZZZCC.H TOOLUU Compiler Configuration Header File

KN713IP.LBM TOOLUU\LIB KwikNet IP Library Specification File
KN713TCP.LBM TOOLUU\LIB KwikNet TCP Library Specification File
KN713*.LBM TOOLUU\LIB Library Specification Files

(for optional KwikNet Libraries)

 KN_BOARD.C TOOLUU\DRIVERS Board driver for your target hardware

KwikNet Library Construction KADAK rev2 91

Creating the KwikNet Libraries

The KwikNet Libraries must be constructed from within directory MAKE in the KwikNet
installation directory. Your Library Parameter File, say NETLIB.UP, and your Network
Library Make File, say NETLIB.MAK, must be present in the KwikNet MAKE directory.

All of the compilers and librarians used at KADAK were tested under Windows® NT.
Most can also be used with Windows 2000 and Windows XP.

To create the KwikNet Libraries, proceed as follows. From the Windows NT Start menu,
choose the MS-DOS Command Prompt from the Programs folder. From the Windows 2000
or XP Start menu, choose the Command Prompt from the Programs (or All Programs) folder.
The Command Prompt may be located in the Accessories folder. Make the KwikNet
installation MAKE directory the current directory.

To use Microsoft's NMAKE utility, issue the following command.

NMAKE -fNETLIB.MAK "TOOLSET=UU" "OSPATH=yourospath" "KPF=NETLIB.UP"

To use Borland's MAKE utility, issue the following command.

MAKE -fNETLIB.MAK -DTOOLSET=UU -DOSPATH=yourospath -DKPF=NETLIB.UP

In each case, the make symbol TOOLSET is defined to be the toolset mnemonic UU. The
symbol OSPATH is defined to be the string yourospath, the full path (or the path relative
to directory INET) to the directory containing your RT/OS components (header files,
libraries and/or object modules).

The make symbol KPF is defined to identify the name of the Library Parameter File
NETLIB.UP from which the Network Library Make File NETLIB.MAK was generated.
Both of these files must be present in the KwikNet MAKE directory.

By default, the KwikNet Libraries will be created in toolset dependent directory
TOOLUU\LIB. You can force the libraries to be created elsewhere by defining symbol
NETLIB=libpath on the make command line. The string libpath is the full path (or the
path relative to directory INET) to the directory in which you wish the libraries to be
created. You must copy all library specification files (*.LBM) from toolset UU directory
TOOLUU\LIB to your alternate library directory libpath.

92 rev2 KADAK KwikNet Library Construction

Generated KwikNet Library Modules

All KwikNet source files will be compiled and the resulting object modules will be placed
in directory TOOLUU\LIB. The following KwikNet Libraries will be created from these
object files and placed in directory TOOLUU\LIB. Only those libraries needed to meet
your library requirements will be created. Note that the library file extension will be .A
or .LIB or some other extension as dictated by the toolset which you are using.

KN713IP.A KwikNet IP Library
KN713TCP.A KwikNet TCP Library
KN713OPT.A KwikNet Library for optional KwikNet component OPT where

OPT may be one of PPP, FTP, WEB, SNM, TEL or TFT.

In addition to the library modules and the object modules used to create them, the
following files will also be created in directory TOOLUU\LIB.

KN_LIB.UP KwikNet Library Parameter File
KN_LIB.MAK KwikNet Network Library Make File
KN_LIB.H KwikNet Library Configuration Module

File KN_LIB.UP is a copy of the Library Parameter File NETLIB.UP which you identified
on your make command line. It is copied to the LIB directory so that you have a record
of the parameters used to produce the libraries present in the directory.

File KN_LIB.MAK is a KwikNet Network Library Make File which can be used to reproduce
the libraries. It is generated in the LIB directory so that you have a record of the make
file used to produce the libraries present in the directory. This file is derived from the
KwikNet Library Make Template file KN713LIB.MT and the parameters in Library
Parameter File KN_LIB.UP. It should match the make file NETLIB.MAK which you passed
to your make utility to start the make process.

File KN_LIB.H is the KwikNet Library Configuration Module, a C header file generated by
the make process. This file is derived from the KwikNet Library Configuration Template
file KN713LIB.HT and the parameters in Library Parameter File KN_LIB.UP.

A copy of header file KN_LIB.H will also be found in the INET directory. The make
process copies the file there so that it is available for inclusion in the compilation of all C
files in the libraries.

A copy of the toolset dependent header file TOOLUU\KNZZZCC.H will also be found in the
INET directory. The make process copies the file there so that it is also available for
inclusion in the compilation of all C files in the libraries.

Note

If your library specification requires KwikNet components
which you have not purchased and installed, the make
process will terminate because of the missing source files.

KwikNet Application Construction KADAK Copyright © 1999-2000 KADAK Products Ltd. 93

5. KwikNet Application Construction

5.1 Building an Application
Now that you have ported KwikNet to your operating environment and are able to
construct the KwikNet Libraries, you are ready to build an actual KwikNet application. The
sample program(s) provided with KwikNet and its optional components are working
examples which you can use either for guidance or as a starting point for your own
application.

To build a KwikNet application you must perform the following steps.

1. Using the KwikNet Configuration Builder, create and/or edit a Library Parameter File
to select the KwikNet features which your application requires. On the Debug property
page, enable some or all of KwikNet's debug features to assist you during initial
testing. Use the builder to generate your KwikNet Network Library Make File. Using
that file, create your KwikNet Libraries following the procedure described in
Chapter 4.4.

2. If none of the available KwikNet device drivers meet your needs, create a custom
device driver as described in the KwikNet Device Driver Technical Reference Manual.

3. If necessary, adapt the KwikNet board driver KN_BOARD.C to accommodate your target
processor, device interfaces and interrupt management scheme.

4. Using the KwikNet Configuration Builder, create and/or edit a Network Parameter File
to describe your network interfaces and their associated device drivers. Use the
builder to generate a KwikNet Network Configuration Module, a C file describing your
networks.

5. Finally, create a make file which your make utility can use to build your application.
It must compile your application modules, your KwikNet device drivers, your KwikNet
board driver and your KwikNet Network Configuration Module. It can then link the
resulting object modules with your KwikNet libraries, your RT/OS libraries and your C
run-time library to create an executable load module.

6. Use your software debugger and/or in-circuit emulator tools to transfer your load
module to your target hardware. When testing, you should execute your application
with a breakpoint on KwikNet procedure kn_bphit() so that you can readily detect
fatal configuration or programming errors (hopefully none) or unusual operation of
the KwikNet TCP/IP Stack.

94 rev2 KADAK KwikNet Application Construction

5.2 KwikNet Sample Programs
An overview of a KwikNet application was presented in Chapter 1 and illustrated as a
block diagram in Figure 1.1-1. You should review that material now.

The KwikNet TCP/IP Stack includes a sample program, a working application that you can
use to confirm the operation of your KwikNet port. Other sample programs are provided
with optional KwikNet components such as the FTP, TELNET and TFTP Options and the
HTTP Web Server.

Sample Program Directories and Files

When KwikNet is installed, the following subdirectories on which the sample program
construction process depends are created within directory KNT713.

CFGBLDW KwikNet Configuration Builder; template files
ERR Construction error summary
TOOLUU Toolset specific files
TOOLUU\DRIVERS KwikNet Device Drivers
TOOLUU\LIB Toolset specific libraries will be built here
TOOLUU\SAM_MAKE Sample program make directory

TOOLUU\SAM_TCP KwikNet TCP/IP Sample Program directory containing:
KNSAMPLE.MAK TCP/IP Sample Program make file
KNSAMPLE.C TCP/IP Sample Program
KNZZZAPP.H Application Header
KNSAMLIB.UP Library Parameter File
KNSAMNCF.UP Network Parameter File
KNSAMPLE.LKS Link Specification File

TOOLUU\SAM_COMN Common sample program source files:
KNSAMOS.C Application OS Interface
KNSAMOS.H Application OS Interface header file
KNRECORD.C Message recording services
KNCONSOL.C Console driver
KNCONSOL.H Console driver header

Console driver serial I/O support:
KN8250S.C INS8250 (NS16550) UART driver

Other sample program subdirectories such as SAM_FTP, SAM_TEL, SAM_TFTP and SAM_WEB
will also be present within directory TOOLUU if you have purchased the corresponding
optional KwikNet components.

A single toolset specific directory TOOLUU will be present. This directory will be used to
house modules which are specific to the software development tools which you are using.
KADAK uses a two or three character mnemonic to identify each of the toolset
combinations which it supports. The software toolset for the KwikNet Porting Kit has
been assigned the mnemonic UU. You can use some other mnemonic if you wish.

KwikNet Application Construction KADAK rev2 95

The Application OS Interface

All KwikNet sample programs share a common implementation strategy. The application
interacts directly with KwikNet. However, for portability, the application interacts with
your RT/OS through the Application OS Interface. One such module, KNSAMOS.C, is
provided with each of the porting examples in the KwikNet Porting Kit.

If you port the KwikNet sample program(s) to your operating environment, you will have
to edit the Application OS Interface KNSAMOS.C and its header file KNSAMOS.H. Edit the
copy of these files which you transferred to your working directory when you selected the
set of files for a particular porting example.

Editing the Application OS Interface

The Application OS Interface module KNSAMOS.C includes the main() function used by
all KwikNet sample programs. This function may have to be altered to properly start up
and shut down your RT/OS. The main() function calls the various application and
RT/OS initialization and termination procedures as recommended in the RT/OS Interface
description presented in Chapter 2.

All KwikNet sample programs call procedure sam_osshutdown() after KwikNet has been
shutdown. The purpose of the call is to terminate execution of your RT/OS so that the
application can gracefully return to the main() function. For most single threaded
applications, procedure sam_osshutdown() can be empty.

The KwikNet data logging procedure sam_record() is located in the Application OS
Interface, giving you full control over the dispatch of messages generated by KwikNet and
its sample programs. All of the examples provided with the KwikNet Porting Kit use the
data recording service in module KNRECORD.C to record such messages. However, the
implementation varies according to the way the RT/OS operates as indicated by the
explanations provided in each of the sample KNSAMOS.C files. One way or another, the
message to be logged is passed to procedure kn_logmsg() in the data recording module
KNRECORD.C.

96 rev2 KADAK KwikNet Application Construction

RTOS Services in the Application OS Interface

When used with a multitasking RTOS, the Application OS Interface must provide the
following task management service. Procedure sam_ostkprep() must create an RTOS
compatible instance of a task. Procedure sam_ostkstart() must force that task to begin
execution at the earliest possible opportunity. The RT/OS independent task definition
structure used by the sample programs can be found in the sample specific header file
KNZZZAPP.H.

If a task automatically begins to execute when it is created, procedure sam_ostkprep()
should ignore the request and let procedure sam_ostkstart() create and start the task.
If tasks cannot be dynamically created, you will have to predefine a set of tasks and
activate one of these tasks each time the application calls procedure sam_ostkstart() to
start a task. None of the KwikNet sample programs require more than five such tasks.

Data Recording

A data recording service is provided with the KwikNet sample programs. Procedure
kn_logmsg() in module KNRECORD.C can be used to record messages generated by
KwikNet and the application. Procedure sam_record() in the Application OS Interface
acts as a funnel to deliver each KwikNet message to procedure kn_logmsg() which then
records the message into its string array kn_recordlist[].

KwikNet messages will only be logged through procedure sam_record() if data logging is
enabled on the Application property page of your KwikNet Network Parameter File. Be
sure to enter sam_record as the name of the logging function in the field provided.

The data recording service can be adapted to your needs by editing the definitions in the
sample program's application header file KNZZZAPP.H. A unique header file is provided
with each KwikNet sample program. Symbol KN_REC_MEMORY must be set to 1 to enable
recording of messages into a character array. Symbol KN_REC_MEMSIZE defines the size
of that array. Symbol KN_REC_NUM defines the maximum number of message strings
which can be recorded into the array.

Procedure kn_loginit() in module KNRECORD.C must be called by the application
before the data recording service can be used by KwikNet or the application. For this
reason, the main() function in the Application OS Interface module KNSAMOS.C calls
kn_loginit() as one of its earliest operations.

Some of the KwikNet sample programs implement a dump command to display the
recorded messages. These applications call procedure kn_loggets() to extract each
message string from the recording array. After displaying all messages in the order in
which they were recorded, procedure kn_loginit() is called to reset the array.

Warning

The procedures in the recording module KNRECORD.C are
NOT reentrant. Hence, in multitasking systems, you must
ensure that, if one task calls any one of these procedures,
no other task can execute any of the procedures until that
task completes its use of the recording service.

KwikNet Application Construction KADAK Copyright © 1999-2000 KADAK Products Ltd. 97

Console Device Use

The KwikNet sample programs provide support for a simple, interactive console device.
The console driver in module KNCONSOL.C can be adapted to use any of several possible
console devices, including a terminal connected by a serial UART interface, a PC screen
and keyboard or a remote Telnet terminal.

To select a particular console device, edit the sample program's application header file
KNZZZAPP.H and change the definition of symbol KN_CS_DEVTYPE as instructed in the
file. Note that a unique application header file KNZZZAPP.H is provided with each
KwikNet sample program.

The basic KwikNet TCP/IP Sample Program uses the console device for displaying
messages logged by KwikNet and the application. The data recording procedure
kn_logmsg() in module KNRECORD.C echoes each message it receives to the console
device. You can disable this display of recorded messages by setting the value of symbol
KN_REC_CONSOLE to 0 in the sample program's application header file KNZZZAPP.H.

Other KwikNet sample programs (FTP Option, Web Server, etc) provide a simple
command interpreter which allows you to interact with the program to control its
operation. Since the console device is used by the application, it cannot be used by the
recording service to display KwikNet messages. Hence, for these programs, symbol
KN_REC_CONSOLE is defined to be 0 in the sample program's application header file
KNZZZAPP.H.

The interactive KwikNet sample programs implement a dump command to display the
recorded messages. These applications call procedure kn_loggets() in module
KNRECORD.C to extract all of the message strings from the recording array. The extracted
messages are displayed on the console device.

Warning

The message recording services are not reentrant. Hence,
the dump command implemented by some KwikNet sample
programs should only be used when KwikNet is not active
since the extraction of messages for display may occur
concurrently with the generation of messages by KwikNet.

If you use the Telnet console device, the dump command
must be used with caution. Since KwikNet must be active
for the Telnet console driver to operate, KwikNet may
generate several messages for every message that is
dumped, especially if you have enabled most of the KwikNet
debug and trace options.

98 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet Application Construction

5.3 Tailoring File Enhancements
The KwikNet tailoring file is a file used to tailor the KwikNet Library construction process
for the particular C compiler and object librarian which you are using. Tailoring files are
described in Chapter 4.3. It is the tailoring file which provides the make commands to
compile a C module or to construct a library module. Obviously, the tailoring file must
use the make syntax which is acceptable to your make utility.

A make file is provided with each KwikNet sample program. The make file can be used
with your make utility to generate the sample program load module as described in the
next chapter. To use these make files, the KwikNet tailoring file must be adapted to
specify the make commands needed to compile the sample program C modules and to
link the resulting object modules with various libraries to create the sample program load
module.

Editing the KwikNet Tailoring File

You must edit your KwikNet tailoring file KNZZZCC.INC so that your make utility will be
able to run your software development tools to compile the sample program modules and
link them to create a load module.

Tailoring files were described in Chapter 4. Figures 4.3-1, 4.3-2 and 4.3-3 show a listing
of the tailoring file M__86MC.15 provided for use with Microsoft NMAKE. It illustrates the
use of the Microsoft 16-bit Visual C/C++ compiler (CL) to compile C source files for use
on a 16-bit 80x86 target processor.

Macro CSCOMPILE (see Figure 4.3-2) is defined for use in the construction of KwikNet
sample programs. It defines the command which the make utility can execute to invoke
your C compiler. This macro gives the C compiler access to the header files located in
the sample program make directory SAM_MAKE.

Macro CSCOMPILE is used in the subsequent definition of the implicit rule which the make
utility must follow to compile a sample program C source file. Several definitions of
macro CSCOMPILE are provided (see Figure 4.3-2) to allow the C compilation rules to be
easily adjusted via the make command line.

Finally, two implicit rules must be defined in the tailoring file (see Figure 5.3-1). The
first implicit rule provides the command(s) to be executed by the make utility to compile
a sample program C source file to generate an object module. The second implicit rule
provides the command(s) to be executed to create a load module by linking the collection
of the compiled object modules with the KwikNet Libraries and other application libraries.

KwikNet Application Construction KADAK Copyright © 1999-2000 KADAK Products Ltd. 99

The C Compilation Implicit Rule

You must be aware of the conditions which will exist when your C compiler is invoked
by the implicit rule to compile a sample program module. When making a sample
program, the current directory will always be one directory level below the KwikNet
toolset directory KNT713\TOOLUU. For example, when one of the common C source files
in directory KNT713\TOOLUU\SAM_COMN is being compiled, that directory will be the
current directory when your C compiler is executed.

Your C compiler will require access to C header files from the then current directory and
from the KwikNet sample construction make directory ..\SAM_MAKE. It will also require
access to the standard C header files required by your C compiler. How you provide such
access will depend upon the operating environment in which you are doing your software
development. In the tailoring file example shown in Figure 4.3-2, access to the KwikNet
directory ..\SAM_MAKE is provided using the compiler's /I command line switch.

Since the current directory is always one level below the KwikNet toolset directory, you
may be able to redirect compiler warnings and error messages to the KwikNet error
directory at ..\..\ERR as illustrated in the tailoring file example in Figure 5.3-1.

The Implicit Rule for Assembly

None of the KwikNet sample program source files are coded in assembly language. Hence
there is usually no need for the make utility to run an assembler to build sample program
object modules. However, an example of such an implicit rule (see Figure 5.3-1) is
included with each of the tailoring files provided with the KwikNet Porting Kit. You are
free to revise this rule to meet your application requirements.

The Implicit Rule for Linking

You must be aware of the conditions which will exist when your linker is invoked by the
implicit rule to create a sample program load module. When making a sample program,
the current directory will always be one directory level below the KwikNet toolset
directory KNT713\TOOLUU. For example, when the KwikNet TCP/IP Sample Program is
being built, directory KNT713\TOOLUU\SAM_TCP will be the current directory when your
linker is executed. The object modules to be linked will be in this directory.

Most program linkers allow you to define a command file which specifies the list of
object files and libraries to be linked. KADAK calls such a file a Link Specification File
and gives it the file extension LKS. Examples are included with each of the porting
examples provided with the KwikNet Porting Kit. For example, the Link Specification
File for the KwikNet TCP/IP Sample Program is file KNSAMPLE.LKS.

The Link Specification File for the sample program must be edited to match the syntax
required by your program linker. The sample program object modules listed in the file
will not have path information appended because the directory in which they reside is
always current at the time your linker is invoked. For the same reason, the KwikNet
Libraries can always accessed via the path ..\LIB. So, for example, the KwikNet IP
Library can be identified as file ..\LIB\KN713IP.LIB. If necessary, be sure to adjust the
filename extensions for object modules and libraries in the Link Specification File to
match those defined in your tailoring file.

100 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet Application Construction

The implicit rule for linking the sample program is illustrated in Figure 5.3-1. The rule is
invoked by the dependency on a file with extension matching macro expansion $(LNKS).
The rule constructs a load module with extension matching macro expansion $(XEXT).
The macros LNKS and XEXT are defined in your tailoring file as shown in Figure 4.3-1 in
Chapter 4.3

Since the current directory is always one level below the KwikNet toolset directory, you
may be able to redirect linker warnings and error messages to the KwikNet error directory
at ..\..\ERR as illustrated in the tailoring file example in Figure 5.3-1.

Sample Program Construction Rules

!ifdef ULINK
Create object file from C file in current source directory.
Move object file to the sample program directory specified by $(ULINK).
{.}.c{$(ULINK)}.$(OEXT):

$(CSCOMPILE) /Fo$@ $(@B).C >..\..\ERR\$(@B).E

Create object file from assembly file in current source directory.
Move object file to the sample program directory specified by $(ULINK).
{.}.$(AEXT){$(ULINK)}.$(OEXT):

MASM $(@B).$(AEXT) /ML /N, $@ >..\..\ERR\$(@B).E

Link an executable file in current directory.
{$(ULINK)}.$(LNKS){$(ULINK)}.$(XEXT):

LINK $(@B).$(LNKS) >..\..\ERR\$(@B).LKE
!endif

------------------- End of INCLUDE file -------------------------------

Figure 5.3-1 Sample Program Tailoring File Enhancements

KwikNet Application Construction KADAK Copyright © 1999-2000 KADAK Products Ltd. 101

5.4 Making the Sample Program
The KwikNet sample programs are provided ready to be constructed using your make
utility, C compiler and link/locate utility. The make utility takes as input a sample
program make file which specifies how the program is to be built.

KwikNet Parameter Files

Two KwikNet parameter files are provided with each KwikNet sample program.

The Library Parameter File describes the KwikNet options and features illustrated by the
sample program. This file is used to construct the KwikNet Libraries for the sample
program.

The Network Parameter File describes the network interfaces and the associated device
drivers which the sample program needs to operate. This file is used to construct the
KwikNet Network Configuration Module for the sample program.

Building the KwikNet Libraries

Before you can construct any of the KwikNet sample programs, you must first build the
associated KwikNet Libraries.

Use the KwikNet Configuration Builder to edit the sample program Library Parameter
File. For example, to build the KwikNet Libraries for the KwikNet TCP/IP Sample
Program, edit Library Parameter File KNSAMLIB.UP. Use the Configuration Builder to
generate the Network Library Make File KNSAMLIB.MAK. This process is described in
Chapter 2.1 of the KwikNet TCP/IP Stack User's Guide.

Use the Network Library Make File KNSAMLIB.MAK to build the KwikNet Libraries.
Follow the directions provided in Chapter 4.4.

Porting Tip

The KwikNet Porting Kit includes a batch file which will
help you prepare to construct any of the sample programs
provided with KwikNet and its optional components. In the
KwikNet installation directory KNT713, run batch file
TOOLUU.BAT without parameters for a description of its
usage. Use the batch file to copy your ported files from
your working directory into the appropriate directories.

102 Copyright © 1999-2000 KADAK Products Ltd. KADAK KwikNet Application Construction

Gathering Files

The block diagram in Figure 1.1-1 summarizes the components which are fundamental to
any KwikNet application. Several of these components are the files which you have edited
to port KwikNet to your operating environment.

All of your updated porting files must be copied from your working directory to the
appropriate KwikNet toolset directories prior to making any of the KwikNet sample
programs. Some of the updated files will have already been copied to the appropriate
directories in order to create the sample program's KwikNet Libraries.

To build the KwikNet TCP/IP Sample Program using make file KNSAMPLE.MAK, each of the
following updated files must be present in the indicated destination directory. For other
KwikNet sample programs, replace the program name KNSAMPLE, the parameter file names
KNSAM*.UP and references to directory SAM_TCP with the appropriate names.

Source Destination File Purpose
File Directory

KN_OSIF.H INET OS Interface Header File for your RT/OS

KN_OSIF.INC TOOLUU OS Interface Make Specification for your RT/OS
KNZZZCC.INC TOOLUU Tailoring File (for use with your make utility)
KNZZZCC.H TOOLUU Compiler Configuration Header File

KNSAMOS.C TOOLUU\SAM_COMN Application OS Interface
KNSAMOS.H TOOLUU\SAM_COMN Application OS Interface header file

KNSAMPLE.LKS TOOLUU\SAM_TCP TCP/IP Sample Program Link Specification File

 KN_BOARD.C TOOLUU\DRIVERS Board driver for your target hardware

Porting Tip

Batch file TOOLUU.BAT provided with KwikNet will gather
all of these components for you. In the KwikNet installation
directory KNT713, run batch file TOOLUU.BAT without
parameters for a description of its usage. Use the batch file
to copy your ported files from your working directory into
the appropriate directories.

KwikNet Application Construction KADAK rev2 103

The Sample Program Make Process

Each KwikNet sample program must be constructed from within the sample program
directory in the KwikNet toolset directory. For example, the KwikNet TCP/IP Sample
Program must be built in directory TOOLUU\SAM_TCP.

All of the compilers and librarians used at KADAK were tested under Windows® NT.
Most can also be used with Windows 2000 and Windows XP.

To create the KwikNet TCP/IP Sample Program, proceed as follows. From the Windows
NT Start menu, choose the MS-DOS Command Prompt from the Programs folder. From the
Windows 2000 or XP Start menu, choose the Command Prompt from the Programs (or
All Programs) folder. The Command Prompt may be located in the Accessories folder.
Make the KwikNet toolset TOOLUU\SAM_TCP directory the current directory.

To use Microsoft's NMAKE utility, issue the following command.

NMAKE -fKNSAMPLE.MAK "TOOLSET=UU" "OSPATH=yourospath" "TPATH=toolpath"

To use Borland's MAKE utility, issue the following command.

MAKE -fKNSAMPLE.MAK -DTOOLSET=UU -DOSPATH=yourospath -DTPATH=toolpath

In each case, the make symbol TOOLSET is defined to be the toolset mnemonic UU. The
symbol OSPATH is defined to be the string yourospath, the full path (or the path relative
to directory TOOLUU\SAM_TCP) to the directory containing your RT/OS components
(header files, libraries and/or object modules).

The symbol TPATH is defined to be the string toolpath, the full path to the directory in
which your software development tools have been installed.

The make process uses the sample program Network Parameter File KNSAMNCF.UP to
create Network Configuration Module KNSAMNCF.C from the template file KN713CFG.CT
in directory CFGBLDW. The file is left in the sample program directory TOOLUU\SAM_TCP.

The KwikNet Sample Program load module KNSAMPLE.xxx is created in toolset directory
TOOLUU\SAM_TCP. The file extension of the load module will match your definition of
macro XEXT in your tailoring file (see Figure 4.3-1).

Note

For other KwikNet sample programs, replace the program
name KNSAMPLE, the Network Configuration Module name
KNSAMNCF and references to directory SAM_TCP with the
appropriate names.

104 rev2 KADAK KwikNet Application Construction

5.5 RT/OS Examples

5.5.1 Using a Custom RTOS
KwikNet can be used with any custom in-house or commercial multitasking RTOS. This
porting example interfaces to a non-existent RTOS deemed to have the functional
capabilities present in most reasonable RTOS implementations. The example has been
built using Mentor Graphics (Microtec) C/C++ software development tools targeted for a
68000 processor.

Since the RTOS does not exist, this example has never been executed. However, all of
the OS interface procedures have been implemented and will serve as excellent working
models for your port.

A hardware clock operating at 1 KHz has been assumed as the fundamental source of
timing for the RTOS and KwikNet. The KwikNet clock frequency has been defined to be
20 Hz. It has been assumed that a clock device driver provided by the RTOS will have
properly initialized the hardware clock when the RTOS begins execution. Furthermore,
the RTOS is assumed to provide a clock hook which will call an application function
coded in C whenever a clock interrupt is serviced.

The console driver for the custom RTOS porting example is configured to use a UART
serial driver connected to a terminal. File KN8250S.C in the common sample program
directory KNT713\TOOLUU\SAM_COMN is a simple device driver for an INS8250 or
NS16550 compatible UART.

Standard C is used for memory allocation. The KwikNet memory locking feature is
enabled to permit multiple tasks operating under the RTOS to use the non-reentrant C
library memory allocation functions.

Sample programs which require a file system are configured to use a custom, user
defined file system. The KwikNet file access locking feature is enabled to permit multiple
tasks operating under this RTOS to use the custom file I/O functions which are assumed
to be non-reentrant.

Source Files

The source files for the KwikNet custom RTOS porting
example are located in KwikNet installation directory
KNT713\EXAMPLES\XRTOS.

KwikNet Application Construction KADAK rev2 105

5.5.2 Using MS-DOS
KwikNet has been tested with MS-DOS v6.22 operating in real mode on PC compatible
hardware. This single threaded KwikNet porting example was constructed using Microsoft
16-bit software development tools.

The standard PC hardware clock operating at 18.2 Hz was used as the fundamental
source of timing for KwikNet and the application. The KwikNet clock frequency has been
defined to be 18 Hz. Microsoft C library function _chain_intr() is used by the clock
interrupt service routine kn_osclockisr() in the OS Interface Module KN_OSIF.C to
chain to the original clock handler.

The console driver for the MS-DOS porting example is configured to use the PC screen
and keyboard as a terminal.

Standard C is used for memory allocation. Memory locking is not required for single
threaded applications.

Sample programs which require a file system are configured to use standard C file
operations. The Microsoft C standard I/O library provides access to the underlying
MS-DOS file system. File access locking is not required for single threaded applications.

The KwikNet OS Interface Module KN_OSIF.C and Application OS Interface KNSAMOS.C.
should require little, if any, modification for use with your application.

Note that the Microsoft C library functions _dos_getvect() and _dos_setvect() are
used by procedure kn_osvaccess() in the OS Interface Module KN_OSIF.C to modify
entries in the processor interrupt table. Library function _chain_intr() is also used to
chain to the original clock handler after servicing the KwikNet clock.

Source Files

The source files for the KwikNet MS-DOS porting example
are located in KwikNet installation directory
KNT713\EXAMPLES\MSDOS.

106 rev2 KADAK KwikNet Application Construction

5.5.3 Using the DOS/4GW DOS Extender with MS-DOS
KwikNet has been tested with the Tenberry DOS/4GW DOS Extender operating with
MS-DOS v6.22 in protected mode on PC compatible hardware. This single threaded
KwikNet porting example was constructed using WATCOM (Sybase) 32-bit software
development tools.

The standard PC hardware clock operating at 18.2 Hz was used as the fundamental
source of timing for KwikNet and the application. The KwikNet clock frequency has been
defined to be 18 Hz. WATCOM C library function _chain_intr() is used by the clock
interrupt service routine kn_osclockisr() in the OS Interface Module KN_OSIF.C to
chain to the original clock handler.

The console driver for the DOS/4GW porting example is configured to use the PC screen
and keyboard as a terminal.

Standard C is used for memory allocation. Memory locking is not required for single
threaded applications.

Sample programs which require a file system are configured to use standard C file
operations. The WATCOM C standard I/O library provides access to the underlying
MS-DOS file system through the DOS/4GW DOS Extender. File access locking is not
required for single threaded applications.

The KwikNet OS Interface Module KN_OSIF.C and Application OS Interface KNSAMOS.C.
should require little, if any, modification for use with your application.

Note that the WATCOM C library functions _dos_getvect() and _dos_setvect() are
used by procedure kn_osvaccess() in the OS Interface Module KN_OSIF.C to modify
entries in the processor interrupt table. When used with the DOS/4GW DOS Extender,
these functions only support modification of vector entries 8 through 15 corrsponding to
PC interrupt requests IRQ0 to IRQ7.

Source Files

The source files for the KwikNet DOS/4GW porting
example are located in KwikNet installation directory
KNT713\EXAMPLES\DOS4GW.

KwikNet Application Construction KADAK rev2 107

5.5.4 Using KwikNet Without an OS
KwikNet can be used without any formal operating system (OS). However, even in this
case, a KwikNet OS interface must be provided. The interface must simply operate
without the benefit of conventional OS services. This porting example has been built
using Mentor Graphics (Microtec) C/C++ software development tools targeted for a
68000 processor.

Since the operating environment is unknown, this porting example has never been
executed. However, all of the OS interface procedures have been implemented and will
serve as excellent working models for your port.

A hardware clock operating at 1 KHz has been assumed as the fundamental source of
timing for your application and KwikNet. The KwikNet clock frequency has been defined
to be 20 Hz. It has been assumed that you will provide a clock device driver which will
properly initialize the hardware clock when your application begins execution.
Furthermore, it is assumed that the driver provides a clock hook which will call an
application function coded in C whenever a clock interrupt is serviced.

The console driver for this porting example is configured to use a UART serial driver
connected to a terminal. File KN8250S.C in the common sample program directory
KNT713\TOOLUU\SAM_COMN is a simple device driver for an INS8250 or NS16550
compatible UART.

Standard C is used for memory allocation. Memory locking is not required for single
threaded applications.

Sample programs which require a file system are configured to use a custom, user
defined file system. File access locking is not required for single threaded applications.

Source Files

The source files for the KwikNet custom non-OS porting
example are located in KwikNet installation directory
KNT713\EXAMPLES\XOS.

108 rev2 KADAK KwikNet Application Construction

This page left blank intentionally.

	Cover
	Table of Contents
	1. KwikNet Porting Kit Overview
	Introduction
	Getting Started

	2. KwikNet RT/OS Interface
	Introduction
	The Multitasking RTOS Interface
	The Single Threaded OS Interface
	RT/OS Interface Make File
	RT/OS Interface Procedures

	3. Target Processor and Compiler Use
	Introduction
	C Compiler Adaptation
	Low Level Services
	Code Fragment Implementation
	C Macro Using In-Line Assembly Language
	C Functions Coded in Assembly Language
	Simple C Macros
	C Functions Coded in C

	4. KwikNet Library Construction
	Preparation
	Software Development Tools
	The KwikNet Tailoring File
	Making the KwikNet Library

	5. KwikNet Application Construction
	Building an Application
	KwikNet Sample Programs
	Tailoring File Enhancements
	Making the Sample Program
	RT/OS Examples
	Using a Custom RTOS
	Using MS-DOS
	Using DOS/4GW DOS Extender
	Using KwikNet Without an OS

