SGCP 571

The command line is composed of:

* Name of the requested verb.

* Transaction identifier, correlates commands and responses. Transaction
identifiers may have values between 1 and 999999999 and transaction
identifiers are not reused sooner than 3 minutes after completion of the
previous command in which the identifier was used.

* Name of the endpoint that should execute the command (in
notifications, the name of the endpoint that is issuing the notification).

* Protocol version.

These four items are encoded as strings of printable ASCII characters,
separated by white spaces, i.e. the ASCII space (0x20) or tabulation (0x09)
characters. It is recommended to use exactly one ASCII space separator.

572 TCP/IP Suite

DNS

RFC 1035 1987-11 http:/ /www.cis.ohio-state.edu/htbin/tfc/rfc1035.html
RFC 1706 1994-01 http:/ /www.cis.ohio-state.edu/htbin/tfc/rfc1706.html

The Domain Name Service (DNS) protocol searches for resources using a
database distributed among different name servers.

The DNS message header structure is shown in the following illustration:

16 21 28 32 bits
ID Q| Query |A[T|R|V] B | Rcode
Question count Answer count
Authority count Additional count

DNS message header structure

16-bit field used to correlate queries and responses.

1-bit field that identifies the message as a query or response.

4-bit field that describes the type of message:
0 Standard query (name to address).

1 Inverse query (address to name).

2 Server status request.

Authoritative Answer. 1-bit field. When set to 1, identifies the response as
one made by an authoritative name server.

Truncation. 1-bit field. When set to 1, indicates the message has been
truncated.

1-bit field. Set to 1 by the resolve to request recursive service by the name
setvet.

DNS 573

1-bit field. Signals the availability of recursive service by the name server.

3-bit field. Reserved for future use. Must be set to 0.

Response Code. 4-bit field that is set by the name server to identify the
status of the query:

0

U A~ LW -

No error condition.

Unable to interpret query due to format error.
Unable to process due to setver failure.
Name in query does not exist.

Type of query not supported.

Query refused.

16-bit field that defines the number of entries in the question section.

16-bit field that defines the number of resource records in the answer
section.

16-bit field that defines the number of name server resource records in the
authority section.

16-bit field that defines the number of resource records in the additional
records section.

574 < TCP/IP Suite

NetBIOS/IP

IETF RFC 1002 http:/ /www.cis.ohio-state.edu/htbin/tfc/tfc1002.html

NetBIOS/IP is a standard protocol to support NetBIOS services in a
TCP/IP environment. Both local network and Internet operations are
supported. Various node types are defined to accommodate local and
Internet topologies and to allow operation with or without the use of IP
broadcast.

NetBIOS types may be Name Service, Session or Datagram.

The format of the header is shown in the following illustration:

16 21 28 32 bits
Name_trn_id Opcode | Nm flags | Rcode
Qdcount (16 bits) Ancount (16 bits)
Nscount (16 bits) Arcount (16 bits)

NetBIOS /IP header structure

Transaction ID for the Name Service Transaction.

Packet type code: Possible values are:
Query.

Registration.

Release.

WACK.

Refresh.

o J N ur O

Flags for operation.

Result codes of request.

Unsigned 16 bit integer specifying the number of entries in the question
section of a name.

NetBIOS/IP 575

Unsigned 16 bit integer specifying the number of resource records in the
answer section of a name service packet.

Unsigned 16 bit integer specifying the number of resource records in the
authority section of a name service packet.

Unsigned 16 bit integer specifying the number of resource records in the
additional records section of a name service packet.

576 TCP/IP Suite

FTP

IETF RFC 959 1985-10 http:/ /www.cis.ohio-state.edu/htbin/tfc/tfc959.html

The File Transfer Protocol (FTP) provides the basic elements of file sharing

between hosts. FTP uses TCP to ctreate a virtual connection for control
information and then creates a separate TCP connection for data transfers.
The control connection uses an image of the TELNET protocol to
exchange commands and messages between hosts.

Commands

FTP control frames are TELNET exchanges and can contain TELNET

commands and option negotiation. However, most FTP control frames are

simple ASCII text and can be classified as FTP commands or FTP
messages. The standard FTP commands are as follows:

Command

ABOR

ACCT <account>
ALLO <bytes>
APPE <filename>
CDUP <dir path>
CWD <dir path>
DELE <filename>
HELP <command>
LIST <name>

MODE <mode>

MKD <directory>
NLST <directory>
NOOP

PASS <password>
PASV

PORT <address>
PWD

QUIT

REIN

Description

Abort data connection process.

Account for system privileges.

Allocate bytes for file storage on server.
Append file to file of same name on server.
Change to parent directory on server.
Change working directory on server.
Delete specified file on server.

Return information on specified command.
List information if name is a file or list files if
name is a directory.

Transfer mode (S=stream, B=block,
C=compressed).

Create specified directory on server.

List contents of specified directory.

Cause no action other than acknowledgement
from server.

Password for system log-in.

Request server wait for data connection.

IP address and two-byte system port 1D.
Display current working directory.

Log off from the FTP setver.

Reinitialize connection to log-in status.

Command

REST <offset>
RETR <filename>
RMD <directory>
RNFR <old path>
RNTO <new path>
SITE <params>
SMNT <pathname>
STAT <directory>

STOR <filename>
STOU <filename>
STRU <type>
SYST

TYPE <data type>
USER <username>

Messages

FTP 577

Description

Restart file transfer from given offset.
Retrieve (copy) file from server.

Remove specified directory on server.
Rename from old path.

Rename to new path.

Site specific parameters provided by server.
Mount the specified file structure.

Return information on current process or
directory.

Store (copy) file to server.

Store file to server name.

Data structure (F=file, R=record, P=page).
Return operating system used by server.
Data type (A=ASCII, E=EBCDIC, I=binary).
User name for system log-in.

FTP messages are responses to FTP commands and consist of a response
code followed by explanatory text. Standard FTP messages are as follows:

Response Code
110

120
125
150
200
202
211
212
213
214
215
220
221
225
226
227
230

Explanatory Text

Restart marker at MARK yyyy=mmmm (new file
pointers).

Service ready in nnn minutes.

Data connection open, transfer starting.
Open connection.

OK.

Command not implemented.

(System status reply).

(Directory status reply).

(File status reply).

(Help message reply).

(System type reply).

Service ready.

Log off network.

Data connection open.

Close data connection.

Enter passive mode (IP address, port 1D).
Log on network.

578 TCP/IP Suite

Response Code
250
257
331
332
350
421
425
426
450
451
452
500
501
502
503
504
530
532
550
551
552
553

Explanatory Text

File action completed.

Path name created.

Password required.

Account name required.

File action pending.

Service shutting down.
Cannot open data connection.
Connection closed.

File unavailable.

Local error encountered.
Insufficient disk space.
Invalid command.

Bad parameter.

Command not implemented.
Bad command sequence.
Parameter invalid for command.
Not logged onto network.
Need account for storing files.
File unavailable.

Page type unknown.

Storage allocation exceeded.
File name not allowed.

TFTP 579

TFTP

IETF RFC 1350 1992-07 http:/ /www.cis.ohio-state.edu/htbin/tfc/rfc1350.html
IETF RFC 783 http://www.cis.ohio-state.edu/htbin/tfc/tfc783. html

The Trivial File Transfer Protocol (TFTP) uses UDP. TFTP supports file
writing and reading; it does not support directory service of user
authorization.

Commands

The following are TFTP commands:

Command Description

Read Request Request to read a file.

Write Request Request to write to a file.

File Data Transfer of file data.

Data Acknowledge = Acknowledgement of file data.

Error Error indication.

Parameters

TFTP Read and Write Request commands use the following parameters:

Parameter Description

Filename The name of the file, expressed in quotes, where
the protocol is to perform the read or write
operation.

Mode Datamode. The format of the file data that the
protocol is to transfer. The following formats are
possible:

NetASCIT Standard ASCII character format.
Octet Eight-bit binary data.
Mail Standard ASCII character format

with username in place of filename.

TFTP data and data acknowledge commands use the following parameters:

Command Description

Block Block number or sequence number of the current
frame of file data.

Data First patt of the file data displayed for TFTP data

frames.

580 < TCP/IP Suite

Command

TFTP Etrrors

Description

TFTP error frames contain an error code in
parentheses followed by the error message, as
follows:

(0000) Unknown Error.
(0001) File not found.

(0002) Access violation.
(0003) Out of disk space.
(0004) Illegal TFTP operation.
(0005) Unknown Transfer ID.
(0006) Filename already exists.

(0007) Unknown user.

Finger 581

Finger

RFC 1288 http:/ /www.cis.ohio-state.edu/htbin/rfc/rfc1288.html

The Finger user information protocol is a simple protocol which provides
an interface to a remote user information program. It is a protocol for the
exchange of user information, based on the Transmission Control Protocol,
using TCP port 79 decimal (117 octal). The local host opens a TCP
connection to a remote host on the Finger port. An RUIP becomes
available on the remote end of the connection to process the request. The
local host sends the RUIP a one line query based upon the Finger query
specification, and waits for the RUIP to respond. The RUIP receives and
processes the query, returns an answer, then initiates the close of the
connection. The local host receives the answer and the close signal, then
proceeds closing its end of the connection.

The Finger protocol displays data. Any data transferred must be in ASCII
format, with no parity, and with lines ending in CRLF (ASCII 13 followed
by ASCII 10). This excludes other character formats such as EBCDIC, etc.
This also means that any characters between ASCII 128 and ASCII 255
should truly be international data, not 7-bit ASCII with the parity bit set.
Note: if ASCII 13 followed by ASCII 10 transferred, the character won’t
display (because the only meaning is to end the line).

582 TCP/IP Suite

Gopher

RFC 1436 http:/ /www.cis.ohio-state.edu/htbin/tfc/rfc1436.html

The Internet Gopher protocol and software follow a client-server model.
This protocol assumes a reliable data stream; TCP is assumed. Gopher
servers listen on port 70 (port 70 is assigned to Internet Gopher by IANA).
Documents reside on many autonomous servers on the Internet. Users run
client software on their desktop systems, connecting to a server and sending
the server a selector (a line of text, which may be empty) via a TCP
connection at a well-known port. The server responds with a block of text
terminated by a period on a line by itself and closes the connection. No state
is retained by the server.

The first character on each line tells whether the line describes a2 document,
directoty, ot search setvice (characters ‘0°, 1°, “7°; there are a handful more
of these characters described later). The succeeding characters up to the tab
form a user display string to be shown to the user for use in selecting this
document (or directory) for retrieval. The first character of the line is really
defining the type of item described on this line. In nearly every case, the
Gopher client software will give the users some sort of idea about what type
of item this is (by displaying an icon, a short text tag, or the like).

The characters following the tab, up to the next tab form a selector string
that the client software must send to the server to retrieve the document (or
directory listing). The selector string should mean nothing to the client
software; it should never be modified by the client. In practice, the selector
string is often a pathname or other file selector used by the server to locate
the item desired. The next two tab delimited fields denote the domain-name
of the host that has this document (or directory), and the port at which to
connect. If there are yet other tab delimited fields, the basic Gopher client
should ignore them. A CR LF denotes the end of the item.

The client software decides what items are available by looking at the first
character of each line in a directory listing. Augmenting this list can extend
the protocol. A list of defined item-type characters follows:

0 Item is a file.

1 Item is a directory.

2 Item is a CSO phone-book server.

3 Error.

[S2T N

O 00 1 &N

—0a o o+

Gopher 583

Item is a BinHexed Macintosh file.

Item is DOS binary archive of some sort. The client must read until
the TCP connection closes.

Item is a UNIX uuencoded file.

Item is an Index-Search server.

Item points to a text-based telnet session.

Item is a binary file. The client must read until the TCP connection
closes.

Item is a redundant server

Item points to a text-based tn3270 session.

Item is a GIF format graphics file.

Item is some kind of image file. The client decides how to display.

Characters ‘0’ through “Z’ are reserved. Local experiments should use other
characters. Machine-specific extensions are not encouraged. Note that for
type 5 or type 9 the client must be prepared to read until the connection
closes. There will be no period at the end of the file; the contents of these
files are binary and the client must decide what to do with them based
perhaps on the .xxx extension.

584 < TCP/IP Suite

HTTP

RFC 1945 http:/ /www.cis.ohio-state.edu/htbin/tfc/rfc1945.html

The Hypertext Transfer Protocol (HTTP) is an application-level protocol
with the lightness and speed necessary for distributed, collaborative,
hypermedia information systems. Messages are passed in a format similar to
that used by Internet Mail and the Multipurpose Internet Mail Extensions

(MIME).

Request Packet

The format of the Request packet header is shown in the following
illustration:

| Method | Request URI | HTTP version |

HTTP request packet structure

The method to be performed on the resource.

The Uniform Resource Identifier, the resource upon which to apply the
request, i.e. the network resource.

The HTTP version being used.

Response Packet

The format of the Response packet header is shown in the following
illustration:

| HTTP version | Status code | Reason phrase |

HTTP response packet structure

The HTTP version being used.

HTTP 585

A 3 digit integer result code of the attempt to understand and satisfy the
request.

A textual description of the status code.

586 TCP/IP Suite

S-HTTP

draft-ietf-wts-shttp-06

Secure HTTP (S-HTTP) provides secure communication mechanisms
between an HTTP client-server pair in order to enable spontaneous
commercial transactions for a wide range of applications. S-HTTP provides
a flexible protocol that supports multiple orthogonal operation modes, key
management mechanisms, trust models, cryptographic algorithms and
encapsulation formats through option negotiation between parties for each
transaction. Syntactically, S-HTTP messages are the same as HTTP,
consisting of a request or status line followed by headers and a body.
However, the range of headers is different and the bodies are typically
cryptographically enhanced.

IMAP4 587

IMAP4

RFC 2060 http:/ /www.cis.ohio-state.edu/htbin/tfc/rfc2060.html

The Internet Message Access Protocol, Version 4 revision 1 (IMAP4) allows
a client to access and manipulate electronic mail messages on a server.
IMAP4 permits manipulation of remote message folders, called mailboxes,
in a way that is functionally equivalent to local mailboxes. IMAP4 also
provides the capability for an offline client to resynchronize with the server.

IMAP4 includes operations for creating, deleting, and renaming mailboxes;
checking for new messages; permanently removing messages; setting and
clearing flags; parsing; searching; and selective fetching of message
attributes, texts, and portions thereof. Messages in IMAP4 are accessed by
the use of numbers. These numbers are either message sequence numbers
or unique identifiers.

IMAP4 consists of a sequence of textual messages which contain
commands, status messages, etc. Each message ends with <crlf>(carriage
return and line feed). For example:

Server Message :"a002 OK [READ-WRITE] SELECT
completed<crlf>"

Client Message :"a001 login mrc secret<crlf>"

There are no other predefined fields.

588 TCP/IP Suite

IPDC

Internet Drafts: — draft-taylor-ipdc-00.txt and draft-calhoun-diameter-07.txt.
http:/ /www.ietf.org/internet-drafts/draft-taylor-ipdc-00.txt
http://www.ietf.org/internet-drafts/draft-calhoun-diameter-07.txt

The IP Device Control IPDC) is a family of protocols which is proposed as
a protocol suite, components of which can be used individually or together
to perform connection control, media control, and signalling transports. It
tulfils a need for one or more protocols to control gateway devices which sit
at the boundary between the circuit- switched telephone network and the
internet and terminate circuit- switched trunks. Examples of such devices
include network access servers and voice-over-IP gateways. The need for a
control protocol separate from call signalling, arises when the service control
logic needed to process calls lies partly or wholly outside the gateway
devices.

IPDC was built on the base structure provided by the DIAMETER
protocol which was specifically written for authentication, authorization and
accounting applications.

Thete are two different types of IPDC/DIAMETER messages: header-only
messages and messages containing Attribute-Value Pairs (AVPs) in addition
to headers. Header-only messages are used for explicitly acknowledging
packets to the peer. An AVP is a data object encapsulated in a header. The
general format of the header is shown in the following illustration:

8 13 16 32 hits
Radius PCC | Pkt flags | Ver | Packet length
Identifier
Next sent I Next received
Attributes
IPDC header structure

Radius packet compatibility code, used for Radius backward compatibility.
In order to easily distinguish DIAMETER /IPDC messages from Radius, a
special value has been reserved and allows an implementation to support

IPDC 589

both protocols concurrently using the first octet in the header. The Radius
PCC field must be set to 254 for DIAMETER/IPDC messages.

Packet flags. Used to identify any options. This field must be initialized to
zero. The Window-Present flag may be set (0x1), thus indicating that the
Next Send and Next Received fields are present. This flag must be set unless
the underlying layer provides reliability (i.e., TCP).

Indicates the version number associated with the packet received. This field
is set to 1 to indicate IPDC version 1.

Indicates the length of the message including the header fields. Thus the
message AVP content cannot exceed 65,528 octets. For messages received
via UDP, octets outside the range of the length field should be treated as
padding and are ignored upon receipt.

Aids in matching requests and replies.

Present when the Window-Present bit is set in the header flags. The Next
Send (Ns) is copied from the send sequence number state variable, Ss, at the
time the message is transmitted.

This field is present when the Window-Present bit is set in the header flags.
Nr is copied from the receive sequence number state variable, Sr, and
indicates the sequence number, Ns, +1 of the highest (modulo 2°16) in-
sequence message teceived.

IPDC Attributes carry the specific commands and parameters which must
be exchanged between IPDC protocol endpoints to perform the tasks
associated with Media Gateway control.

590 < TCP/IP Suite

ISAKMP

RF(C2408 http:/ /www.cis.ohio-state.edu/htbin/tfc/rfc2408 html

The Internet Security Association and Key Management Protocol, version
4revl (ISAKMP), defines procedures and packet formats to establish,
negotiate, modify and delete Security Associations (SA). SAs contain all the
information required for execution of various network security services,
such as the IP layer services (such as header authentication and payload
encapsulation), transport or application layer services, or self-protection of
negotiation traffic. ISAKMP defines payloads for exchanging key generation
and authentication data. These formats provide a consistent framework for
transferring key and authentication data which is independent of the key
generation technique, encryption algorithm and authentication mechanism.

The format of the header is shown in the following illustration:

8 12 16 24 32 bits
Initiator cookie (8 bytes)

Responder cookie (8 bytes)

Next payload | MjVer | MnVer | Exchange type | Flags
Message ID
Length

ISAKMP header structure

Cookie of entity that initiated SA establishment, SA notification, or SA
deletion.

Cookie of entity that is responding to an SA establishment, SA notification,
ot SA deletion.

Indicates the type of the first payload in the message. Possible types are:
0 None.

1 Security Association (SA).

2 Proposal (P).

ISAKMP 591

3 Transform (T).

4 Key Exchange (KE).

5 Identification (ID).

6 Certificate (CERT).

7 Certificate Request (CR).
8 Hash (HASH).

9 Signature (SIG).
10 Nonce (NONCE).
11 Notification (N).
12 Delete (D).

13 Vendor ID (VID).

14 - 127 Reserved.
128 - 255 Private use.

Major Version, indicates the major version of the ISAKMP protocol in use.
Implementations based on RFC2408 must set the Major Version to 1.
Implementations based on previous versions of ISAKMP Internet- Drafts
must set the Major Version to 0. Implementations should never accept
packets with a major version number larger than its own.

Minor Version - indicates the minor version of the ISAKMP protocol in
use. Implementations based on RFC2408 must set the minor version to 0.
Implementations based on previous versions of ISAKMP Internet- Drafts
must set the minor version to 1. Implementations should never accept
packets with a minor version number larger than its own.

The type of exchange being used. This dictates the message and payload
orderings in the ISAKMP exchanges. Possible values are:

0 None

1 Base

2 Identity Protection
3 Authentication Only
4 Aggressive

5 Informational

6-31 ISAKMP Future Use
32 - 239 DOI Specific Use
240 - 255 Private Use

592 TCP/IP Suite

Specific options that are set for the ISAKMP exchange.

E(ncryption bit) (bit 0) - Specifies that all payloads following the header are
encrypted using the encryption algorithm identified in the ISAKMP SA.
C(ommit bit) (bit 1) - Signals key exchange synchronization. It is used to
ensure that encrypted material is not received prior to completion of the SA
establishment.

A(uthentication Only Bit) (bit 2) - Intended for use with the Informational
Exchange with a Notify payload and will allow the transmission of
information with integrity checking, but no encryption.

All remaining bits are set to 0 before transmission.

Unique Message Identifier used to identify protocol state during Phase 2
negotiations. This value is randomly generated by the initiator of the Phase 2
negotiation. In the event of simultaneous SA establishments (i.e., collisions),
the value of this field will likely be different because they are independently
generated and, thus, two security associations will progress toward
establishment. However, it is unlikely there will be absolute simultaneous
establishments. During Phase 1 negotiations, the value must be set to 0.

Length of total message (header + payloads) in octets. Encryption can
expand the size of an ISAKMP message.

NTP 593

NTP

RFC 1305 http://www.cis.ohio-state.edu/htbin/tfc/tfc1305.html

The Network Time Protocol (NTP) is a time synchronization system for
computer clocks through the Internet network. It provides the mechanisms
to synchronize time and coordinate time distribution in a large, diverse
internet operating at rates from mundane to light wave. It uses a returnable
time design in which a distributed sub network of time servers, operating in
a self-organizing, hierarchical master-slave configuration, synchronize logical
clocks within the sub network and to national time standards via wire or
radio.

The format of the header is shown in the following illustration:

| LI | VN | Mode | Stratum | Poll | Precision
2 3 3 7 6 7 bits
INTP header structure

A 2-bit code warning of impending leap-second to be inserted at the end of
the last day of the current month. Bits are coded as follows:

00 No warning.

01 +1 second (following minute has 61 seconds).

10 -1 second (following minute has 59 seconds).

11 Alarm condition (clock not synchronized).

Version number 3 bit code indicating the version number.

The mode: This field can contain the following values:

0 Reserved.

1 Symmetric active.
2 Symmetric passive.
3 Client.

4 Server.

5 Broadcast.

6

NTP control message.

594 < TCP/IP Suite

An integer identifying the stratum level of the local clock. Values are defined
as follows:

0 Unspecified.

1 Primary reference (e.g. radio clock).

2..n Secondary reference (via NTP).

Signed integer indicating the maximum interval between successive
messages, in seconds to the nearest power of 2.

Signed integer indicating the precision of the local clock, in seconds to the
nearest power of 2.

POP3 595

POP3

RFC 1939 http:/ /www.cis.ohio-state.edu/htbin/tfc/rfc1939.html

The Post Office Protocol version 3 (POP3) is intended to permit a
workstation to dynamically access a maildrop on a server host. It is usually
used to allow a workstation to retrieve mail that the server is holding for it.

POP3 transmissions appear as data messages between stations. The
messages are either command or reply messages.

596 TCP/IP Suite

Radius

RFC 2138 http:/ /www.cis.ohio-state.edu/htbin/tfc/rfc2138.html
RFC 2139 http://www.cis.ohio-state.edu/htbin/tfc/tfc2139.html

Radius is a protocol which manages dispersed serial line and modem pools
for large numbers of users. Since modem pools are by definition a link to
the outside world, they require careful attention to security, authorization
and accounting. This is achieved by managing a single database of users,
which allows for authentication (verifying user name and password) as well
as configuration information detailing the type of service to deliver to the

user (for example, SLIP, PPP, telnet, rlogin).

Key features of RADIUS include:

e C(Client/server model.

* Network security.

* Flexible authentication mechanisms.
* Extensible protocol.

The format of the header is shown in the following illustration:

8 16 32 bits

Code | Identifier | Length

Authenticator
(16 bytes)

Radius header structure

The message type.

The identifier matches requests and replies.

The message length including the header.

A field used to authenticate the reply from the radius server and in the

password hiding algorithm.

RLOGIN 597

RLOGIN

Remote LOGIN (RLOGIN) allows UNIX users of one machine to connect
to other UNIX systems across an Internet and interact as if their terminals
are directly connected to the machines. This protocol offers essentially the

same services as TELNET.

598 TCP/IP Suite

RTSP

RFC 2326 http:/ /www.cis.ohio-state.edu/htbin/tfc/rfc2326.html

RTSP (Real Time Streaming Protocol) is an application level protocol for
control over the delivery of data with real-time properties. RTSP provides
an extensible framework to enable controlled, on-demand delivery of real-
time data, such as audio and video. Sources of data can include both live
data feeds and stored clips. This protocol is intended to control multiple
data delivery sessions, provide a means for choosing delivery channels such
as UDP, multicast UDP and TCP, and provide a means for choosing
delivery mechanisms based upon RTP.

The streams controlled by RTSP may use RTP, but the operation of RTSP

does not depend on the transport mechanism used to carry continuous

media. The protocol is intentionally similar in syntax and operation to

HTTP/1.1 so that extension mechanisms to HT'TP can in most cases also

be added to RTSP. However, RTSP differs in a number of important

aspects from HTTP:

* RTSP introduces a number of new methods and has a different protocol
identifiet.

* An RTSP server needs to maintain state by default in almost all cases, as
opposed to the stateless nature of HTTP.

* Both an RTSP server and client can issue requests.

* Data is carried out-of-band by a different protocol.

* RTSP is defined to use ISO 10646 (UTF-8) rather than ISO 8859-1,
consistent with current HTML internationalization efforts.

* The Request-URI always contains the absolute URL Because of
backward compatibility with an historical blunder, HTTP/1.1 carties
only the absolute path in the request and puts the host name in a
separate header field.

This makes virtual hosting easier, where a single host with one IP address
hosts several document trees.

SMTP 599

SMTP

RFC 821 http:/ /www.cis.ohio-state.edu/htbin/tfc/rfc821. html

The Simple Mail Transfer Protocol (SMTP) is a mail service modeled on the
FTP file transfer service. SMTP transfers mail messages between systems
and provides notification regarding incoming mail.

Commands

SMTP commands are ASCII messages sent between SMTP hosts. Possible
commands are as follows:

Command Description

DATA Begins message composition.

EXPN <string> Returns names on the specified mail list.

HELO <domain> Returns identity of mail server.

HELP <command> Returns information on the specified command.

MAIL FROM <host> Initiates a mail session from host.

NOOP Causes no action, except acknowledgement from
server.

QUIT Terminates the mail session.

RCPT TO <user> Designates who receives mail.

RSET Resets mail connection.

SAML FROM <host> Sends mail to user terminal and mailbox.
SEND FROM <host> Sends mail to user terminal.

SOML FROM <host> Sends mail to user terminal or mailbox.
TURN Switches role of receiver and sender.
VRFY <user> Verifies the identity of a user.

600 < TCP/IP Suite

Messages

SMTP response messages consist of a response code followed by
explanatory text, as follows:

Response Code
211
214
220
221
250
251
354
421
450
451
452
500
501
502
503
504
550
551
552
553
554

Explanatory Text

(Response to system status or help request).
(Response to help request).

Mail service ready.

Mail service closing connection.
Mail transfer completed.

User not local, forward to <path>.
Start mail message, end with <CRLF><CRLF>.
Mail service unavailable.

Mailbox unavailable.

Local error in processing command.
Insufficient system storage.
Unknown command.

Bad parameter.

Command not implemented.

Bad command sequence.

Parameter not implemented.
Mailbox not found.

User not local, try <path>.

Storage allocation exceeded.
Mailbox name not allowed.

Mail transaction failed.

SNMP 601

SNMP

RFC 1157: http:/ /www.cis.ohio-state.edu/htbin/tfc/tfc1157. html

The Internet community developed the Simple Network Management
Protocol (SNMP) to allow diverse network objects to participate in a global
network management architecture. Network managing systems can poll
network entities implementing SNMP for information relevant to a
particular network management implementation. Network management
systems learn of problems by receiving traps or change notices from
network devices implementing SNMP.

SNMP Message Format

SNMP is a session protocol which is encapsulated in UDP. The SNMP
message format is shown below:

| Version | Community | PDU |

SNMP message format

SNMP version number. Both the manager and agent must use the same
version of SNMP. Messages containing different version numbers are
discarded without further processing.

Community name used for authenticating the manager before allowing
access to the agent.

There are five different PDU types: GetRequest, GetNextRequest,
GetResponse, SetRequest, and Trap. A general description of each of these
is given in the next section.

602 TCP/IP Suite

PDU Format

The format for GetRequest, GetNext Request, GetResponse and
SetRequest PDUs is shown here.

PDU type | Request Error Error Object 1, | Object 2,
ID status index value 1 value 2

SNMP PDU format

Specifies the type of PDU:
0 GetRequest.

1 GetNextRequest.

2 GetResponse.

3 SetRequest.

Integer field which correlates the manager’s request to the agent’s response.

Enumerated integer type that indicates normal operation or one of five error
conditions. The possible values are:

0 noError: Proper manager/agent operation.

1 tooBig: Size of the required GetResponse PDU exceeds a local
limitation.

2 noSuchName: The requested object name does not match the names
available in the relevant MIB View.

3 badValue: A SetRequest contains an inconsistent type, length and

value for the variable.
4 readOnly: Not defined in RFC1157.
5 genErr: Other errors, which are not explicitly defined, have occurred.

Identifies the entry within the variable bindings list that caused the error.

Variable binding pair of a variable name with its value.

Trap PDU Format
The format of the Trap PDU is shown below:

SNMP 603
PDU | Enterp | Agent Gen Spec Time | Obj1, | Obj1,
type addr trap trap stamp | Vall Val 1
SNMP trap PDU

Specifies the type of PDU (4=Trap).

Identifies the management enterprise under whose registration authority the
trap was defined.

IP address of the agent, used for further identification.

Field describing the event being reported. The following seven values are

defined:

0

1

[SV]

coldStart: Sending protocol entity has reinitialized, indicating that the
agent’s configuration or entity implementation may be altered.
warmStart: Sending protocol has reinitialized, but neither the agent’s
configuration nor the protocol entity implementation has been altered.
linkDown: A communication link has failed.

linkUp: A communication link has come up.

authenticationFailure: The agent has received an improperly
authenticated SNMP message from the manager, i.e., community name
was incorrect.

egpNeighborLoss: An EGP peer neighbor is down.

enterpriseSpecific: A non-generic trap has occurred which is further
identified by the Specific Trap Type and Enterprise fields.

Used to identify a non-generic trap when the Generic Trap Type is
enterpriseSpecific.

Value of the sysUpTime object, representing the amount of time elapsed
between the last (re-)initialization and the generation of that Trap.

Variable binding pair of a variable name with its value.

604 < TCP/IP Suite

‘Caplule Buffer Display

Filter: All Frames
Protocol: SNMP j|

LF
Captured at:+00:00.000
Length: 185
Status: Ok
SHHF: Message:: = SEQUENCE <30
SHMF: Length: 140
SHME ¥Yersion::= INTEGER 02>
SHHMF : Length: 1
SHME Version: 00 <00
SHHP : Community::= STRING <04y
SHHP: Length: 6
SHHP: Community: public <7075626C6963
SHHP: Command ::= Get-Request <Al
SHHP: Length @ 127
SHHF: RequestID ::= IHTEGER <02:

hd

Se_an:h...l Restart | Setup... Done |

SNMP decode

TACACS + 605

TACACS +

draft-grant-tacacs-02.txt
http:/ /www.ietf.org/internet-drafts /draft-grant-tacacs-02.txt
RFC 1492 http:/ /www.cis.ohio-state.edu/htbin/rfc/tfc1492.html

TACACS+ (Terminal Access Controller Access Control System) is a
protocol providing access control for routers, network access servers and
other networked computing devices via one or more centralized servers.
TACACS+ provides separate authentication, authorization and accounting
services.

The format of the header is shown in the following illustration:

4 8 16 24 32 hits
Major | Minor | Packet type | Sequence no. | Flags
Session ID (4 bytes)
Length (4 bytes)

TACACS+ header structure

The major TACACS+ version number.

The minor TACACS+ version number. This is intended to allow revisions
to the TACACS+ protocol while maintaining backwards compatibility.

Possible values are:

TAC_PLUS_AUTHEN:= 0x01 (Authentication).
TAC_PLUS_AUTHOR:= 0x02 (Authotization).
TAC_PLUS_ACCT:= 0x03 (Accounting).

The sequence number of the current packet for the current session. The first
TACACS+ packet in a session must have the sequence number 1 and each
subsequent packet will increment the sequence number by one. Thus clients
only send packets containing odd sequence numbers, and TACACS+
daemons only send packets containing even sequence numbers.

606 TCP/IP Suite

This field contains various flags in the form of bitmaps. The flag values
signify whether the packet is encrypted.

The ID for this TACACS+ session.

The total length of the TACACS+ packet body (not including the header).

TELNET - 607

TELNET

IETF RFC 854 1983-05 http:/ /www.cis.ohio-state.edu/htbin/tfc/tfc854.html
IETF RFC 855 1983-05 http://www.cis.ohio-state.edu/htbin/tfc/rfc855.html
IETF RFC 857 1983-05 http://www.cis.ohio-state.edu/htbin/tfc/rfc857. html

TELNET is the terminal emulation protocol of TCP/IP. Modetn TELNET
is a versatile terminal emulation due to the many options that have evolved
over the past twenty years. Options give TELNET the ability to transfer
binary data, support byte macros, emulate graphics terminals, and convey
information to support centralized terminal management.

TELNET uses the TCP transport protocol to achieve a virtual connection
between server and client. After connecting, TELNET server and client
enter a phase of option negotiation that determines the options that each
side can support for the connection. Each connected system can negotiate
new options or renegotiate old options at any time. In general, each end of
the TELNET connection attempts to implement all options that maximize
performance for the systems involved.

In a typical implementation, the TELNET client sends single keystrokes,
while the TELNET server can send one or more lines of characters in
response. Where the Echo option is in use, the TELNET server echoes all
keystrokes back to the TELNET client.

Dynamic Mode Negotiation

During the connection, enhanced characteristics other than those offered by
the NVT may be negotiated either by the user or the application. This task is
accomplished by embedded commands in the data stream. TELNET
command codes are one or more octets in length and are preceded by an
interpret as command (IAC) character, which is an octet with each bit set
equal to one (FF hex). The following are the TELNET command codes:

Commands Code No. Description
Dec Hex
data All terminal input/output data.
End subNeg 240 FO End of option subnegotiation command.
No Operation 241 F1 No operation command.

Data Mark 242 F2 End of urgent data stream.

608

TCP/IP Suite

Commands Code No.
Dec Hex
Break 243 F3
Int process 244 T4
Abort output 245 F5
You there? 246 Fo6
Erase char 247 F7
Erase line 248 F8
Go ahead! 249 F9
SubNegotiate 250 FA
Will Use 251 FB
Won’t Use 252 FC
Start use 253 FD
Stop Use 254 FE
TAC 255 FF

Description

Operator pressed the Break key or the
Attention key.

Interrupt current process.

Cancel output from current process.
Request acknowledgment.

Request that operator erase the previous
character.

Request that operator erase the previous
line.

End of input for half-duplex
connections.

Begin option subnegotiation.
Agreement to use the specified option.
Reject the proposed option.

Request to start using specified option.
Demand to stop using specified option.
Interpret as command.

Each negotiable option has an ID, which immediately follows the command
for option negotiation, that is, IAC, command, option code. The following
is a list of TELNET option codes:

Option ID Option Codes

Dec Hex
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 A
11 B
12 C

Binary Xmit
Echo Data

Reconnect
Suppress GA
Message Sz
Opt Status
Timing Mark

R/C XmtEcho

Line Width
Page Length
CR Use
Hotiz Tabs
Hor Tab Use

Description

Allows transmission of binary data.
Causes server to echo back all
keystrokes.

Reconnects to another TELNET host.
Disables Go Ahead! command.
Conveys approximate message size.
Lists status of options.

Marks a data stream position for
reference.

Allows remote control of terminal
printers.

Sets output line width.

Sets page length in lines.

Determines handling of carriage returns.
Sets horizontal tabs.

Determines handling of horizontal tabs.

Option ID
Dec Hex
13 D
14 E
15 F
16 10
17 11
18 12
19 13
20 14
21 15
22 16
23 17
24 18
25 19
26 1A
27 1B
28 1C
29 1D
30 1E
31 1F
32 20
33 21
34 22
255 FF

Option Codes

FF Use

Vert Tabs
Ver Tab Use
Lf Use

Ext ASCII
Logout

Byte Macro
Data Term

SUPDUP
SUPDUP Outp
Send Locate
Term Type
End Record
TACACS ID

Output Mark

Term Loc#
3270 Regime

X.3 PAD
Window Size

Term Speed
Remote Flow
Linemode

Extended
options list

TELNET -~ 609

Description

Determines handling of form feeds.
Sets vertical tabs.

Determines handling of vertical tabs.
Determines handling of line feeds.
Defines extended ASCII characters.
Allows for forced log-off.

Defines byte macros.

Allows subcommands for Data Entry to
be sent.

Allows use of SUPDUP display
protocol.

Allows sending of SUPDUP output.
Allows terminal location to be sent.
Allows exchange of terminal type
information.

Allows use of the End of record code
(0xEF).

User ID exchange used to avoid more
than 1 log-in.

Allows banner markings to be sent on
output.

A numeric ID used to identify terminals.
Allows emulation of 3270 family
terminals.

Allows use of X.3 protocol emulation.
Conveys window size for emulation
screef.

Conveys baud rate information.
Provides flow control (XON, XOFF).
Provides linemode bulk character
transactions.

Extended options list.

610 < TCP/IP Suite

X-Window

The X-Window protocol provides a remote windowing interface to
distributed network applications. It is an application layer protocol which
uses TCP/IP or DECnet protocols for transport.

The X-Window networking protocol is client-server based, where the server
is the control program running on the user workstation and the client is an
application running elsewhere on the network. An X-server control program
running on a workstation can simultaneously handle display windows for
multiple applications, with each application asynchronously updating its
window with information carried by the X-Window networking protocol.

To provide user interaction with remote applications, the X-server program
running on the workstation generates events in response to user input such
as mouse movement or a keystroke. When multiple applications display, the
system sends mouse movements or click events to the application currently
highlighted by the mouse pointer. The current input focus selects which
application receives keystroke events. In certain cases, applications can also
generate events directed at the X-server control program.

Request and Reply Frames

Request and reply frames can use the following commands:

Command Description

BackRGB Background colors listed in red, green and blue
components.

BackPM Pixel map used for the window background.

BellPitch Bell pitch.

BellVol Bell volume in percent.

BM Bit mask assigned to a drawable item.

BordPM Border pixel map. Pixel map used for the window
bordet.

b Border width of the drawable item.

Click Key click volume in percent.

Ord Click order. Drawable clip order, as <Unsorted>,
<Y-sorted>, <YX-sorted> or <YX-banded>.

CMap Color map. Code representing the colors in use

for a drawable.

Command

CID
Cur

d
DD

D

Exp
Fam

Font
Font(a,d)

ForeRGB

Fmt
GC

T/O

X-Window 611

Description

Context ID. Identifier for a particular graphics
context.

Cursor. Reference code identifying a specific
cursor.

Depth. Current window depth.

Destination drawable. Target item in a bitmap
copy.

Drawable. Reference code used to identify a
specific window or pixel map.

Exposures. Drawable currently exposed.
Protocol family in use, as Internet, DECnet, or
CHAOSnet.

Reference code used to specify a font.

Font ascent/descent. The vertical bounds of a
font.

Foreground colors listed in red, green, and blue
components.

Format of the current window.

Graphics context. Reference code used to identify
a particular graphical definition.

Height of the drawable item.

Key code. Specific key code value.

Code used to identify the family of key codes in
use.

X-Windows minor operation code.
X-Windows major operation code.

Number of drawable items in the list.

Parent window. Window that produced the
current window.

Pixel map. Reference code used to identify a
bitmap region.

Plane. Bit plane in use.

Plane max. Bit plane mask assigned to a drawable
item.

Property. Specified window property.

Sibling window. Window produced from this
window.

Source drawable. Source item in a bitmap copy.
Screen saver time out.

Type of current window.

612 TCP/IP Suite

Command Description

W Width of drawable item.

W Window. Reference code used to identify a
particular window.

X X-coordinate for a drawable item.

Y Y-coordinate for a drawable item.

Event Frames

Event frames can have the following commands:

Command Description

Btn Button number pressed.

C Child window associated with the event.

F Event flags. Set flags display in upper-case and

inactive flags display in lower-case:
t.F Input focus applies to the event.
s,S Event is on the same screen.

Ey) Event location. The X and Y coordinates of the
event.

E Event window. Window where the event
occurred.

Key Key number. Number associated with the pressed
key.

O Owner of the window associated with the event.

R Root window associated with the event.

R(xy) Root location. X and Y coordinates of the root
position.

SN Sequence number used to serialize events.

