17

ILMI

ATM Forum ILMI specification 4.0 1996-0

IETF RFC 115, May 1990; RFC 1213, March 1991; RFC 1157, May 1990

ATM Forum UNI 3.0; “Managing Internetworks with SNMP” by Mark A. Miller,
M&T Books, 1993

The Simple Network Management Protocol (SNMP) and an ATM UNI
Management Information Base (MIB) are required to provide any ATM user
device with status and configuration information concerning the virtual path
and channel connection available at its UNI. In addition, their global
operations and network management information may facilitate diagnostic
procedures at the UNL.

The Interim Local Management Interface (ILMI) provides bi-directional
exchange of management information between UNI Management Entities
(UMEs). Both UMEs must contain the same MIB, even though the
semantics of some MIB objects may be interpreted differently. Many types
of equipment use this ATM UNI ILMI, e.g., high layer switches,
workstations, computers with ATM interface, ATM network switches and
more.

280 ILMI

MIB Names

The following is a list, in tree form, of MIB names.
enterprises
353 atmForum
1 atmForumAdmin
2 atmfTransmissionTypes
1 atmfUnknownType
2 atmfSonetSTS3c
3 atmfDs3
4 atmf4B5B
5 atmf8B10B
3 atmfMediaTypes
1 atmfMediaUnknownType
2 atmfMediaCoaxCable
3 atmfMediaSingleMode
4 atmfMediaMultiMode
5 atmfMediaStp
6 atmfMediaUtp
4 atmTrafficDescrTypes
1 atmfNoDescriptor
2 atmfPeakRate
3 atmfNoClpNoScr
4 atmfClpNoTaggingNoScr
5 atmfClpTaggingNoScr
6 atmfNoClpScr
7 atmfClpNoTaggingScr
8 atmfClpTaggingScr
5 atmfSrvcRegTypes
1 atmfSrvcReglecs
2 atmForumUni
1 atmfPhysical Group
1 atmfPortTable
1 atmfPortEntry
1 atmfPortIndex
2 atmfPortAddress
3 atmfPortTransmissionType
4 atmfPortMediaType
5 atmfPortOperStatus

MIB Names 281

6 atmfPortSpecific
2 atmfAtmLayerGroup
1 atmfAtmlLayerTable
1 atmfAtmLayerEntry
1 atmfAtmILayerIndex
2 atmfAtmlLayerMaxVPCs
3 atmfAtmILayerMaxVCCs
4 atmfAtmLayerConfiguredVPCs
5 atmfAtmLayerConfiguredVCCs
6 atmfAtmLayerMaxVpiBits
7 atmfAtmLayerMaxVciBits
8 atmfAtmLayerUniType
3 atmfAtmStatsGroup
1 atmfAtmStatsTable
1 atmfAtmStatsEntry
1 atmfAtmStatsIndex
2 atmfAtmStatsReceivedCells
3 atmfAtmStatsDroppedReceivedCells
4 atmfAtmStatsTransmittedCells
4 atmfVpcGroup
1 atmVpcTable
1 atmVpcEntry
1 atmVpcPortIndex
2 atmfVpcVpi
3 atmfVpcOperStatus
4 atmfVpcTransmitTrafficDescriptorType
5 atmfVpcTransmitTrafficDescriptorParam1
6 atmfVpcTransmitTrafficDescriptorParam?2
7 atmfVpcTransmitTrafficDescriptorParam3
8 atmfVpcTransmitTrafficDescriptorParam4
9 atmfVpcTransmitTrafficDescriptorParam5
10 atmfVpcReceiveTrafficDescriptorType
11 atmfVpcReceiveTrafficDescriptorParam1
12 atmfVpcReceiveTrafficDescriptorParam?2
13 atmfVpcReceiveTrafficDescriptorParam3
14 atmfVpcReceiveTrafficDescriptorParam4
15 atmfVpcReceiveTrafficDescriptorParam5
16 atmfVpcQoSCategory
17 atmfVpcTransmitQoSClass
18 atmfVpcReceiveQoSClass
5 atmfVecGroup

282 ILMI

1 atmfVccTable
1 atmfVccEntry
1 atmVecPortIndex
2 atmfVecVpi
3 atmfVecVci
4 atmfVecOperStatus
5 atmfVecTransmitTrafficDescriptorType
6 atmfVccTransmitTrafficDescriptorParam1
7 atmfVecTransmitTrafficDescriptorParam2
8 atmfVecTransmitTrafficDescriptorParam3
9 atmfVecTransmitTrafficDescriptorParam4
10 atmfVecTransmitTrafficDescriptorParam5
11 atmfVccReceiveTrafficDescriptorType
12 atmfVccReceiveTrafficDescriptorParam1
13 atmfVccReceiveTrafficDescriptorParam?2
14 atmfVccReceiveTrafficDescriptorParam3
15 atmfVecReceiveTrafficDescriptorParam4
16 atmfVccReceiveTrafficDescriptorParam5
17 atmfVecQoSCategory
18 atmfVecTransmitQoSClass
19 atmfVccReceiveQoSClass
8 atmfSrvcRegistryGroup
1 atmfSrvcRegTable
1 atmfSrvcRegEntry
1 atmfSrvcRegPort
1 atmfSrvcRegServicel D
1 atmfSrvcRegATMAddress
1 atmfSrvcRegAddressIndex

SNMP - 283

SNMP

RFC 1157: http:/ /www.cis.ohio-state.edu/htbin/tfc/tfc1157. html

ILMI uses SNMP, which is designed to be simple and has a very
straightforward architecture. The SNMP message is divided into two
sections: a version identifier plus community name and a PDU.

The version identifier and community name are sometimes referred to as the
authentication header. The version number assures that both manager and
agent are using the same version of SNMP. Messages between manager and
agent containing different version numbers are discarded without further
processing. The community name authenticates the manager before allowing
access to the agent. The community name, along with the manager’s IP
address, is stored in the agent’s community profile. If there is a difference
between the manager and agent values for the community name, the agent
will send an authentication failure trap message to the manager.

GetRequest and GetResponse PDUs

The manager uses the GetRequest PDU to retrieve the value of one or more
object(s) from an agent. Under error-free conditions, the agent generates a
GetResponse PDU. On both Request and Response PDUs there is a
Request Index field that correlates the manager’s request to the agent’s
response, an Error Status field which is set to noError, and an Error Index
field which is set to zero. In this process, four errors are possible:

1. If a variable does not exactly match an available object, the agent returns
a GetResponse PDU with the Error Status set to NoSuchName and the
Error Index set the same as the index of the variable in question.

2. If a variable is of aggregate type, the Response is the same as above.

3. If the size of the appropriate GetResponse PDU would exceed a local
limitation, the agent returns a GetResponse PDU of identical form,
where the value of the Error Status is set to tooBig and the Error Index
is set to 0.

4. If the value of a requested variable cannot be retrieved for any other
reason, then the agent returns a GetResponse PDU, with the Error
Status set to genErr and the Error Index set the same as the index of the
variable in question.

284 ILMI

The following is an example of a GetRequest PDU decode:

=] Capture Buffer Display - =1l[=] Capture Buffer Display
Protocol: [ILMI EHE Protocol: [ILMI FEE
LL +| Il [TLMT 3.
Captured at:+00:00.000 TINI ErrorIndex::= INTEGER { <02>
Length: 96 From: User j ILMI Length: 1
Status: Ok ILKI Error Indes: 00 <00>
ILKI i
IINI: Hessage::= SEQUENCE { <305 TINI VarBindList ::= SEQUENCE { <305
ILMI: Length: 43 ILMI Length 20
ILMI: Version::- INTEGER { <0z> ILKI Length error checking : OK
ILKI Length: 1 ILKI Hib Ho 1
IIKI: Version: 00 <005 TINI VarBind ::= SEQUENCE { <30»
TIIMI 1. TIMI Length
ILMI: Community::= STRING { <04> ILKI Hame ::= Object ID { <065
ILKI Length: 4 ILKI Length @ 14
IIMI: Conmmnity: TIMT <494C4D4T > TINI Mib Tree :1.3.6.1.4.1.45.1.4.2.10.3.2.1.0
ILKI: . ILKI ¥ .
ILMI: Command ::= Get-Request <al> ILKI Data ::= Null { <05>
ILKI Length @ 32 ILKI Length © 0
IINI: RequestID ::= INTEGER { <025 TINI 33
ILHI: Length: 2 ILKI ¥l
IIMI: RequestId: 17E3 <17E3> ILKI Total Object length check : OK
ILKI . ILMI: } .
IINI: ErrorStatus::= INTEGER { <025 IIMI: SHHP ended correctly
IIHI: Length. 1 User Data
ILMI: Error Status: No Erzor OFFST DaTa ASCII
ILKI } . +1||||oo0a 00”00 oo 0o 0o 00 0o 00 i
Oglinns...l Search... I Done I Ogtions...l Search... I Done I
GetReguest PDU

The GetNextRequest PDU is used to retrieve one or mote objects from an
agent. Under error-free conditions, the agent generates a GetResponse
PDU, with the same Request Index. The Variable Bindings contain the
name and value associated with the lexicographic successor of each of the
object identifiers (OIDs) noted in the GetNextRequest PDU. The main
difference between GetRequest and GetNextRequest PDUs is that the
GetNextRequest PDU retrieves the value of the next object within the
agent’s MIB view. Three possible errors may occur in this process:

1. If a variable in the Variable Bindings field does not lexicographically
proceed the name of an object that may be retrieved, the agent returns a
GetResponse with the Error Status set to noSuchName and the Error
Index set to the same as the variable in question.

2. If the size of the appropriate GetResponse PDU would exceed a local
limitation, the agent returns a GetResponse PDU of identical form, with
the Error Status set to tooBig and the Error Index set to zero.

3. If the value of the lexicographic successor to a requested variable cannot
be retrieved for any other reason, the agent returns the GetResponse
PDU, with the Error Status set to genErr and the Error Index set the
same as the index of the variable in question.

SNMP - 285

SetRequest PDU

The SetRequest PDU is used to assign a value to an object residing in the
agent. When the agent receives the SetRequest PDU, it alters the values of
the named objects to the values in the variable binding. Under error-free
conditions, the agent generates a GetResponse PDU of identical form,
except that the assigned PDU type is 2. Four different errors may occur in
this process:

1. If a variable is not available for set operations within the relevant MIB
view, the agent returns a GetResponse PDU with the Error Status set to
NoSuchName (or readOnly) and the Error Index set the same as the
index of the variable in question.

2. If a variable does not conform to the ASN.1 type, length and value, the
agent returns a GetResponse with the Error Status set to badValue and
the same Error Index.

3. If the size of the appropriate GetResponse PDU exceeds a local
limitation, the agent returns a GetResponse PDU of identical form, with
the Error Status set to tooBig and the Error Index set to zero.

4. If the value of a requested variable cannot be altered for any other
reason, the agent returns a GetResponse PDU, with the Error Status set
to genErr and the Error Index set the same as the index of the variable
in question.

Trap PDU

The last PDU type is the Trap PDU which has a different format from the

other four PDUs. It contains the following fields:

* Enterprise field, which identifies the management enterprise under
whose registration authority the trap was defined.

* Generic trap type, which provides more specific information on the
event being reported. There are seven unique values for this field:
coldStart, warmStart, linkDown, linkUp, authenticationFailure,
egpNeighborloss, and enterpriseSpecific.

* Specific Trap Type field, which identifies the specific Trap.

* Timestamp field, which represents the amount of time elapsed between
the last initialization of the agent and the generation of that Trap.

* Variable bindings.

286 ILMI

The following is an example of the Trap decode:

JE Capture Buifer Display 10| ||| §§& Capture Butfer Display —1olx]

Filter: [Frames ST | e [N Frames EE

Protocol... | Protacal... |

TINI: Hessage: = SEQUERCE { 30> A || [rzeT Specific Trap ::- INTEGER { <0z -

TIMI: Length: 44 TIHI Length: 1

IIMI: Version::= INTEGER { 02> TINI Specific trap type ¢ 00 <00>

TIHI Length: 1 M1 .

IIMI: Version: 00 <005 TIHI TineStamp ::= TimeTicks { 43>

TIMI: . TIHI Length: 3

IMI: Community::= STRING { 04> TINI Zgent kddress : 043618 <043618>

TIHI Length: 4 M1 Y.

IIMI: Conmmmity: IIHT <434C4D43> TIHI VarBindList ::= SEQUENCE { 30>

TIMI: . TIHI Length

IIMI: Coamand ::= Trap al> TINI Tength error checking : OK

TIHI Length © 33 21> M1 Mib No 1

IIMI: Emterprise ::= Object ID { TIHI YarBind ::= <00>

TIMI Length : 12 TIMI ERROR: Typs should be ssquence

IIMI: Entexprise : 1.3.1.6.1.4.1,36.2.15.14.1.1 TIHI Tength : 0

TIHI . M1 Name ::= <00>

IIMI: AgentAddr ::- Ipaddress { <« TIHI ERROR: Type should be Objest ID

IIMI: Length: 4 TIHT Tength : 0

IIMI: Kgent Address : 00000000 <00000000> o (e Hib Tree :0 00> =l
l)ptinns...l Search... Restart Setup... Done | Omlnns...l Search... Restart Setup... Done |

Trap PDU

SMI

SMI (Structure of Management Information) is the standard used for
defining the rules of managed object identification. The SMI organizes,
names, and describes information so that logical access can occur. The SMI
states that each managed object must have a name, a syntax , and an
encoding. The name or OID uniquely identifies the object. The syntax
defines the data type, such as an integer or a string of octets. The encoding
describes how the information associated with the managed object is
serialized for transmission between machines.

SMI defines the syntax that retrieves and communicates information,
controls the way information is placed into logical groups, and the naming
mechanism, known as the object identifiers, that identify each managed
object. This can be extended to include MIBs, which store management
information. Managed objects are accessed via an MIB. Objects in the MIB
are defined using Abstract Syntax Notation One (ASN.1). Each type of
object (termed an object type) has a name, a syntax, and an encoding. The
name is represented uniquely as an OBJECT IDENTIFIER, which is an
administratively assigned name. The syntax defines the abstract data
structure corresponding to that object type. For example, the structure of a
given object type might be an INTEGER or OCTET STRING. The
encoding of an object type is simply how instances of that object type are
represented using the object’s type syntax.

SNMP - 287

An object identifier is a sequence of integers which traverse a global tree.
The tree consists of a root connected to a number of labeled nodes via
edges. Each node may, in turn, have children of its own which are labeled.
In this case we may term the node a subtree. This process may continue to
an arbitrary level of depth.

The root node is unlabeled, but has at least three children directly under it;
one node is administrated by the International Organization for
Standardization, with label iso(1); another is administrated by the
International Telegraph and Telephone Consultative Committee, with label
ccitt(0); and the third is jointly administered by the ISO and CCITT, joint-
iso-ccitt(2). Under the iso(1) node, the ISO has designated one subtree for
use by other (inter)national organizations, org(3). Of the children nodes
present, two have been assigned to the US National Institute of Standards
and Technology. One of these subtrees has been transferred by the NIST to
the US Department of Defense, dod(6). DoD will allocate a node to the
Internet community, to be administered by the Internet Activities Board
(IAB) as follows:

internet OBJECT IDENTIFIER:= {iso org(3) dod(6) 1} -> 1.3.6.1

In this subtree four nodes are present:

directory OBJECT IDENTIFIER::={ internet 1 }
mgmt OBJECT IDENTIFIER::={ internet 2 }
experimental ~ OBJECT IDENTIFIER:={ internet 3 }
ptivate OBJECT IDENTIFIER::={ intetnet 4 }

For example, the initial Internet standard MIB would be assigned
management document number 1. -> {mgmt1} -> 1.3.6.1.2.1

The private(4) subtree is used to identify objects defined unilaterally.
Administration of the private(4) subtree is delegated by the IAB to the
Internet Assigned Numbers Authority for the Internet. Initially, this subtree
has at least one child:

enterptises OBJECT IDENTIFIER:={ private 1 }

The enterprises(1) subtree is used to permit parties providing networking
subsystems to register models of their products.

Specific organizations have developed subtrees for private use for their
products. One such tree is the ATM UNI MIB. Vendors can define private
ATM UNI MIB extensions to support additional or proprietary features of

288 ILMI

their products. Objects in the MIB are defined using the subset of Abstract
Syntax Notation One (ASN.1) defined by the SMI. The syntax of an object
type defines the abstract data structure corresponding to that object type.
The ASN.1 language is used for this purpose. The SMI purposely restricts
the ASN.1 constructs which may be used. These restrictions are made for
simplicity. The structure of ATM UNI ILMI MIB is illustrated in the
following figure:

ATM UNI ILMI MIB

Physical ATM Virtual Virtual ATM Network Address
Layer Layer Path Channel Layer Prefix
Connection Connection Statistics

An entire tree group is either optional, conditionally required, or required. If
a group is required, then every element in the group is required. If a group is
conditionally required, every element in the group is required, if
implemented.

Protocol Limitations

The following are some known SNMP limitations:

* ATM messages must be formatted according to SNMP version 1, not
SNMP version 2.

* ALL SNMP messages will use the community name ILMI.

* In all SNMP Traps, the agent address field always has an IP Address
value of 0.0.0.0.

* The supported traps are coldStart and enterpriseSpecific.

* In all SNMP traps, the timestamp field contains the value of the agent’s
sysUpTime MIB object at the time of trap generation. In all of the
standard SNMP traps, the enterprise field in the Trap PDU contains the
value of the agents sysObjectID MIB object.

* The size of messages can be up to 484 octets.

