

Telemetry Control Protocol.

20mA Twisted Pair and up-the-coax

Building Block Video Ltd.,

Unit 1, Avocet Way, Diplocks Industrial Estate, Hailsham, East Sussex, UK. Tel: +44 (0)1323 842727

Fax: +44 (0)1323 842728

Introduction

Each receiver is star-wired from the telemetry transmitter. Multi-drop addressed receivers are not supported with this protocol. The telemetry information frames are identical for both up-the-coax telemetry and twisted pair telemetry.

20mA twisted pair telemetry

Frame Coding

The frame is coded as an asynchronous serial data word, comprising;

- 1 Start bit
- 8 Data bits
- 1 Parity bit (Even)
- 1 Stop bit

Baud Rate = 1200

Up-the-coax telemetry

Transmission Line Coding

The transmitted telemetry information is coded as a sequence of sequential data frames.

Bit Coding

The individual bits are coded as two FSK frequencies superimposed onto the video signal in the frame blanking period.

Logic 0: 222Khz

Logic 1: 250Khz

Frame Coding

The frame is coded as an asynchronous serial data word, comprising;

- 1 Start bit
- 8 Data bits
- 1 Parity bit (Even)
- 1 Stop bit

Approx. 320uS of carrier (preamble) is transmitted to ensure that the PLL in the FSK decoder has locked. The data rate is a nominal 19.8Kbit (-0.4K + 0.7K). This yields a nominal bit time of 50.5uS.

<u>Telemetry Frame Data</u>
The frame consists of four frame ID bits and four data bits.

	7	6	5	4	3	2	1	0
Ī	Frame ID				Frame Data			

Transmission Frame Data Formats

The format of each transmitted data frame is as follows:

Frame ID	D3	D2	D1	D0			
0	Focus	Focus	Zoom	Zoom			
	Near = 1	Active = 1	In = 1	Active = 1			
	Far = 0		Out = 0				
1	Not used	Lights	Iris	Iris			
		On = 1	Open = 1	Active = 1			
		Off = 0	Close = 0				
2	Tilt	Tilt	Pan	Pan			
	Down = 1	Active = 1	Right = 1	Active = 1			
	Up = 0		Left = 0				
3	Wash	Wipe	AutoPan	Not used			
4	Spare 4	Spare 3	Spare 2	Spare 1			
see note							
5	Spare 8	Spare 7	Spare 6	Spare 5			
6 (Not used)							
7 (Not used)							
8 (Not used)							
9 (Not used)							
10 (Not used)							
11 (Not used)							
12	Tilt Speed						
13	Pan Speed						
14	Select Operation Preset Number						
15 Code Function							

Spare 1 – 4 (Frame 4)

Allows access to extended functions with certain BBV receivers. In addition when used with Rx100/dome interface, allows navigation of dome's menu structure.

Tilt Speed (Frame 12)

The head tilt speed is specified in frame 12, 0 = slowest speed, 15 = fastest speed. Actual speed will depend upon the pan/tilt head and receiver speed settings.

Pan Speed (Frame 13)

The head pan speed is specified in frame 13. Range is as frame 12.

Preset Number (Frame 14)

Specifies the preset number when a command requires it, see frame 15 below.

Code Function Table (Frame 15)

This table shows the function codes provided to the telemetry receiver using frame 15. When a command from this frame is required it is inserted into the normal transmission sequence for a single cycle.

Function Code (Hex)	Operation
0	No Action
1	Program Iris Level
2 (Note 1)	Goto Preset
3 (Note 1)	Program Preset
4	Initiate Self Test
5 (Note 1)	Erase Preset
6 (Note 1)	Remove Preset from Patrol 1
7 (Note 1)	Remove Preset from Patrol 2
8	Start Patrol 1
9	Start Patrol 2
A (Note 2)	Set Patrol 1 Delay Time
B (Note 2)	Set Patrol 2 Delay Time
С	Unused
D	Unused
E	Unused
F	Unused

Note 1: The preset number is specified in frame 14.

Note 2: The delay time is based on value transmitted in frame 14.

0, delay = random time 0 - 100 seconds

1 - 15, delay = (n - 1) * 12 seconds, i.e. 1 = 12 seconds, 2 = 24 seconds etc

Frame Sequencing

Under idle conditions frames 0, 1, 2, 3, 12 & 13 are transmitted repeatedly. If a function command is required then frames 14 & 15 are inserted into the sequence at the next available slot. These will only be transmitted once before the normal sequence is resumed. Additionally if a 'Spare' command is required then frame 4 or 5 will be transmitted once in the sequence.

When the state of a frame changes then it is elevated to the next frame transmission slot to improve response time.