
1

M PROTOCOL AGENT
NAMING CONVENTIONS..2

HOW THE AGENT WORKS ..2

USING THE M PROTOCOL AGENT IN YOUR APPLICATION ..2
ADDRESSING..4
DATABASE STRUCTURE ..4
COORDINATION BETWEEN AGENT AND APPLICATION ..5
ELEMENT STATES (AN EXAMPLE) ..6

KEYBOARD ..7
PTZ ...7

HANDLING ERRORS IN THE AGENT...8
RECEIVING A MESSAGE...10
CONTROL BITS ..13
SPECIAL DATA TYPES IN THE AGENT...14

Bits..14
Strings...15
Word Groups ...15

AGENT RULES AND REQUIREMENTS ..16

THE BUS MASTER (A SPECIALIZED AGENT) ..16

BUS MASTER RULES AND REQUIREMENTS..18

APPLICATION REQUIREMENTS ..18

VARIABLE AND STRUCTURE DESCRIPTIONS ..18

BUSMASTER ONLY ...18
AGENT...18
LIST OF STATIC VARIABLES ...19
STRUCTURE DESCRIPTIONS..20

2

NAMING CONVENTIONS
m_ precedes all global agent variables, structures and functions
bm_ precedes all global variables, structures and functions used only by the Bus Master
M_ precedes all agent constants
BM_ precedes all constants used only by Bus Master
_s attached to the end of variable, signifies the variable is static

All variables, structures and functions are lower case. All constants and macros are upper case.
Local variables do not follow naming conventions.

HOW THE AGENT WORKS
The M protocol agent is called by invoking the function m_agent(). This function is a state machine
that handles interaction between the M protocol port and the application. The state machine is used
as a method of keeping track of what needs to be done next without waiting for something to
happen. If the agent has nothing to do, it will return control to the application as soon as possible.
Calling the m_agent function allows the agent processing time and must be done in a timely
manner.

The majority of the agent’s time is spent parsing data from the M protocol port of the device. The
application is expected to place data received from the M protocol port into a ring buffer via a serial
interrupt. The ring buffer is then analyzed by the agent through a call to m_look_for_message().

If the agent is not in control of the bus, the agent waits for the bus token - it’s turn to control the bus.
Once the agent has determined it has the token, it will scan the databases for changes. If it finds any
elements that need to be read or written, it will form a message to one device, otherwise it will
simply pass the token in a “null” message. If the message is a write, it will pass the token with the
message, otherwise if it is a read or a write with verify on the local bus, the agent will wait for a
reply, then pass the token upon receipt of any message without the grant bit set. If the grant bit is set
it is considered an error where the Bus Master was forced to take over the bus.

Any time a message is sent external to the local bus the token is passed since there is no guarantee of
a timely response when dealing with anything outside of the local bus. If there are no requests by
the application, the token is simply passed on to the next device in a null message.

The agent handles all communication with the M protocol port and interfaces with an application
using the element states associated with each element of a database. Element states enable the
application to tell the agent which elements of a database need to be read or written. In turn, the
agent tells the application which elements have been written, which are waiting for a response or
verification, and which have failed to be read or written.

USING THE M PROTOCOL AGENT IN YOUR APPLICATION
The M protocol agent must be set up for each application. It must be told which databases are being
used and how to access these databases. While the structure of each database and the access of each
element within the structure of the database are pre-defined in the agent, it is still necessary to
provide the agent with pointers to the databases in memory. The agent must also be told which
databases it has and how many of each type it must deal with. Each database is placed in an array
containing pointers to instances of the database with an associated four byte network address. This
allows the agent to relate a database with a particular device on the network. Databases belonging to
the agent are included in this structure and have an address matching the agent’s address.

3

It is the responsibility of the application to set up the database pointers and addresses in the
structures mentioned above. For this reason, the application may refer to the databases explicitly by
name. The agent will not have this luxury, as the databases are defined on an application by
application basis (except for database 0).

The following is a list of items that must be done for each application:
In your main code:
1. Call m_agent() from the main loop.
2. Initialize agent_address.device (perhaps from a dip switch). The upper three address bytes are

defaulted to 0xFF (invalid). The Bus Master will provide the upper 3 bytes of address when it
turns the device on.

3. CHECK ALL DATABASES FOR CHANGE OF STATE FROM THE AGENT and clear the
element state when done or you will not receive any new data in that element.

In agent.h:
1. Define M_VERSION and M_REVISION to the version and revision levels of your application.

These values are placed in database 0 and may be accessed by the outside world along with the
finished good product number m_fingood[].

2. Make sure the definitions for M_BYTE, M_WORD and M_DWORD are accurate for your
processor, they should be 8, 16 and 32 bits respectively.

3. Define M_BIG_ENDIAN if the architecture is big endian, otherwise do not define this constant.
4. For each database there is a conditional compiler option that must be set if the database type is

to be used. The options are M_USE_DATABASEx where x is the number of the database. For
instance all applications must have at least one instance of the agent database, database 0,
therefore every application has M_USE_DATABASE0 defined as default.

5. The agent needs to be told the M_TOTAL_NUMBER_OF DATABASES which is used for
indexing through the database array.

6. Next, for each instance of a database an external declaration for the database should be present
for global access to the database. This declaration allows all files with agent.h included to
access the database. Here’s an example:

 extern struct m_db0_type m_agent_db;
7. Adjust M_MAX_NUMBER_DATA_FIELDS. This is the size of the buffer containing header

information for each data field (contains database, element and length). This constant limits the
number of separate fields allowed by the agent in the outgoing data section.

8. Adjust M_MAX_DATA_COUNT. This is the size of the buffer for the data section without the
header information of each field. This is the raw data being sent. The header information
contains pointers into this structure to associate the raw data with the header.

9. M_MAX_TX_BUF is based upon the last two values since only one message may be prepared to
be sent at a time. Make sure this amount of RAM is acceptable. Do the same for
M_MAX_RX_BUF.

In agentdat.c:
1. Each instance of each database must be declared here. The following must be declared for the

example above:
 struct m_db0_type m_agent_db;
2. Update m_copyright[] and m_fingood[]. These are copied to database 0 and are accessible

along with the application’s version and revision. It is suggested that these arrays be made
ROM instead of RAM to save space. For purposes of being generic to different compilers, these
were defined as data.

In agentdb.c:
1. There is an array of structures named m_db_array[]. Each element of the array contains a

network address, a database type, a number of elements in the database, and a pointer to a
database of the database type. The network address is used by the agent to determine which

4

database to use when speaking with a particular device on the network. The network address
and pointer to the database must be provided by the application. While it is possible to change
these during execution of the program, it is important to initialize this structure. A good
location for this is in init_database (). The following example is for database 0 and similar
code should be in all applications:

m_db_array[0].address.network = agent_network_address;
m_db_array[0].address.hub = agent_hub_address;
m_db_array[0].address.bus = agent_bus_address;
m_db_array[0].address.device = agent_local_address;
m_db_array[0].db_type = M_DATABASE0;
m_db_array[0].number_elements = M_NUMBER_ELEMENTS_DB0;
m_db_array[0].db = &m_agent_db; /* point to first instance of database 0 */

where the addresses are provided by the application and is the address of the application in the
case of the agent database. Note that the index in the above example happens to be 0, this is not
relevant to the type of the database. It is suggested that databases that will be used heavily be
placed nearest to the beginning of the database array.

In comm.c:
1. All routines in this file are left as examples and should be changed for your hardware platform.

In agent.c
1. The macros INTS_ON and INTS_OFF are used to turn interrupts on and off. These should be

filled in with appropriate statements for your hardware configuration.

There are several functions that must be changed for each hardware configuration. These routines
deal with the uart and hardware interrupts. The following is a list of the routines that need to be
looked at closely and changed for hardware differences:

Function Name File Reason
tx_m_message() agent.c enables transmit in uart and transmit interrupt, disables receive

interrupt if Bus Master
m_put_data() agent.c INTS_ON and INTS_OFF are hardware dependent
m_get_data() agent.c INTS_ON and INTS_OFF
enable_m_rx() busmast.c deals directly with bits in uart (Bus Master only)
disable_m_rx() busmast.c deals directly with bits in uart (Bus Master only)

ADDRESSING
Database 0, which is a required database for each application, contains a structure of type
m_network_address which contains the four bytes of network address. The upper three bytes of the
network address are provided by the Bus Master and are write only. The upper three bytes are write
only to prevent a device from reading these bytes into their own database 0 and destroying their own
addressing. The lower byte or device address is provided by the application, perhaps by a dip switch,
and is read only. The information in Database 0 is used for communication. The working network
address is called m_agent_address and is updated from Database 0 when Database 0 is changed
through the network.

DATABASE STRUCTURE
All databases have the same initial structure in the agent, meaning that the first few entries are
common across databases. The first byte of each database is a cos or change of state byte. One bit

5

within this byte is used to tell the agent that an element state in the database has changed and the
agent needs to scan through the database. Another bit in the cos byte is used to tell the application
that the agent has changed an element state and that the application needs to scan through the
database. The remaining six bits of the cos byte are undefined.

After the cos byte is an array of varying size called m_element_states. There is one byte in the array
for every element in the database containing the current state of the element. Using this commonality
between databases, the agent may look through the element states of databases in the m_db_array[]
structure using a cast to database 0 to the pointer in the database array. Database 0 is known to exist
in all applications so the structure is always known. Because of this method of looking at element
states, the database array must also contain the number of elements the database being pointed to
contains and the type of the database.

Besides being in every agent, database 0 is special in other ways. There is always an instance of
database 0 which has been named m_agent_db in the agent code. All writes and reads made to
m_agent_db are completely handled by the agent. It is okay to have another instance of database 0,
but this other instance will not be managed by the agent in the same way, but rather it will be treated
as any other remote database. The m_agent_db is used to provide error codes, in essence giving the
protocol more commands (acknowledge and negative acknowledge in error_code with locations of
where errors occurred in error_string). The address portion of database 0 is used for communication
purposes and must be kept separately from the database as well to allow the outside world to change
the upper three bytes of the address.

The Bus Master also handles a special database 1 called bus_master_db in much the same way an
agent handles m_agent_db. The Bus Master is a specialized agent, since the Bus Master code
becomes integrated with the agent code rather than simply calling agent routines, but the integration
is minimized and clearly separated with if defines. Database 1 may also have other remote instances,
just like database 0, but neither will they be managed by the Bus Master.

It should be pointed out that all database elements that are not M_READ_ONLY can be written over
by another device on the network, unless the element state of the element is kept in a state to prevent
this from happening, which means that there is no history for the data. If a history of the data is
required, it is up to the application to provide.

Note: The agent does not allow multiple instances of local databases. In other words, if a unit has a
local database 2, it cannot have another local database 2 because the address for both databases is the
same, making the target database for a message either or both. When a message comes in and a
database of a particular type is found in the m_db_array[] with the correct address, this is the only
database that will be accessed for that message (this could be changed, but so far we have not thought
of a reason to do so or how the conflict should be handled). The same would hold true for remote
databases of the same type with the same address, but since there are no local multiples with the same
address, this is not a problem. For now, the rule is the first database found that matches is used.

COORDINATION BETWEEN AGENT AND APPLICATION
Every element in a database has an element state associated with it. Each database contains an array
named m_element_states[]. The state of an element may be found by indexing into this array by the
number of the element. If any of the element states in a database change, the cos byte for the database
is set to indicate a change in the database. There are two cos bits in each database, one to notify the
agent that there is something in the database for the agent’s attention called M_COS_FOR_AGENT
and one to notify the application that there is something in the database for the application’s attention
called M_COS_FOR_APP.

6

The following element states are defined:

NAME OF STATE IDENTIFIER DESCRIPTION
M_NORMAL_STATE 0 Normal - no action required.
M_AGENT_CHANGED 1 Agent wrote into the element.
M_APP_WRITE_REQ 2 Application wishes agent to send this element.
M_APP_WRITE_REQ_W_ACK 3 Application wishes agent to send this element and

requires and acknowledgement for receiver.
M_PENDING_WRITE 4 Agent has written to remote database and is waiting for

an acknowledge.
M_WRITE_DONE 5 Write to remote element is completed.
M_WRITE_FAILED 6 Write to this remote element failed.
M_TEMP_WRITE_FAILED 7 Write to this remote element failed temporarily

(element state would not allow a write).
M_APP_READ_REQ 8 Application wishes agent to request this element from

remote database.
M_PENDING_READ 9 Agent has asked remote for information and is waiting

for a response.
M_READ_DONE 10 Read from remote element is completed.
M_READ_FAILED 11 Read from this remote element failed.
M_TEMP_READ_FAILED 12 Read from this remote element failed temporarily

(element state would not allow a read).
M_APP_LOCK 13 Application has locked this element from being read or

written.

If the application wishes to write a particular element, the application must change the associated
element state to M_APP_WRITE_REQ (if the application wants to verify the write it may make it
M_APP_WRITE_REQ_W_ACK) and the agent must be notified that the database has something in it
for its attention by the application setting M_COS_FOR_AGENT in the associated database. When
the agent sees the M_COS_FOR_AGENT, it will scan through the database and find the
M_APP_WRITE_REQ and form a message to the remote device. The element state will then be
changed to M_WRITE_DONE and the M_COS_FOR_AGENT will be cleared. The agent will then
set M_COS_FOR_APP so that the application will be notified that the write is done.

ELEMENT STATES (an example)
There are two examples provided with the released source code. KEYBOARD translates D protocol
input from serial port 0 to M protocol on serial port 1. PTZ takes M protocol from serial port 1 and
translates it to D protocol on serial port 0. Simply define KEYBOARD or PTZ in agent.h to create
the application. These examples run as is on the CM9760-ALM board which contains 2 serial ports.
Serial port 0 may be configured for EIA232 or EIA422. Serial port 1 may be configured for EIA422
or EIA485 (and may also be used as single wire 485 which is perfect for M protocol).

Either one of the applications, KEYBOARD or PTZ, may also be a Bus Master by simply defining
M_BUS_MASTER in agent.h along with KEYBOARD or PTZ, however serial port 0 will be used for
the applications and will not be available for diagnostics as when M_BUS_MASTER is defined by
itself. The diagnostics are text driven commands that allow read and write commands to be sent,
shows which devices are active or failed, and displays when a read or write comes across the bus.

The dip switches on the CM9760-ALM board are used as follows:

Dip Switch 1:

7

Baud0 Baud0 Baud1 Baud1 Baud1 db addr db addr db addr EIA232 Diag
00 = 2400,
01 = 4800,
10 = 9600,
11 = 19200

000 = 2400,
001 = 4800,
010 = 9600,

011 = 19200,
100 = 38400,
101 = 57600,
110 = 115200,
111 = 230400

This is the address of all remote
databases. PTZ_ADDR in

code. This is how the
KEYBOARD knows which

address the PTZ is at, therefore
the PTZ address must be in

range 0 - 7.

If ON
port is
EIA232,
else
EIA422.

If ON
diag
mode
is on in
Bus
Master.

Baud1 is for port 1, which is the M protocol port. Port 0 is used for diagnostics or serial
communications in D protocol.

For Dip Switch 2, levers 1-8 are the device’s local address, levers 9-10 are unused. For the PTZ, this
local address is also the address of it’s local pt_db and lens_db unless the PTZ is a Bus Master, which
means the local databases will have address 0.

KEYBOARD
In the example code, serial0.c contains a function called D_to_M_agent() which is called if
KEYBOARD is defined. This function translates serial input in D protocol to M protocol. This is a
good example of one way communication (only writes occur from the KEYBOARD to the PTZ).
Each time a command is interpreted from D protocol an element of the database is involved. The
D_to_M_agent() function changes the database element itself, then changes the element state and
finally changes the cos byte for the database. Here’s an example where a preset set command from
the D protocol is being translated to M protocol:

case CMD_PRS_SET:
pt_db.preset_save = cmd_data_s[3]; /* change db value */
/* tell agent to send it */
pt_db.element_state[M_EL_PRESET_SAVE] = M_APP_WRITE_REQ;
pt_db.cos |= M_COS_FOR_AGENT; /* tell agent to look at db */
break;

Note that the function does not pay any attention to what the database values currently are or what the
element state is before the write occurs - this is okay since this application does not care. Your
application may need to be more careful. You may wish to verify that the element state is not
M_AGENT_CHANGED before writing to it, otherwise you will lose the changes made by the agent
to the element that you may have requested. How you handle the element states and values within the
database will depend upon your application and is left up to you.

PTZ
The other side of this translator is called PTZ, which translates M protocol to D protocol. Continuing
with the above example where a preset is set ; once the agent in the PTZ application receives a write
to its corresponding pt_db through the M protocol, the agent will first check the element state of the
preset set element of pt_db. If the element is in a state where the agent may write to the element, then
the agent performs the write to the database, changes the element state appropriately, and marks the
database so that the application knows an element has been changed by the agent. This takes place in
the function write_data_parser().

8

Since PTZ has been defined, the function M_to_D(), found in serial0.c, will be called. This function
looks for the changes in the cos byte of each database to indicate changes for the application. If any
database needs the attention of the application then this function will scan the element state of each
element. The following code detects a change to the preset set element of the pt_db and forms the D
protocol command to send out:

if (pt_db.cos & M_COS_FOR_APP)
{

/* check each element of this instance */
for (elmnt = 0; elmnt < M_NUMBER_ELEMENTS_DB4; elmnt++)
{

/* if the agent has changed this element */
if (pt_db.element_state[elmnt] == M_AGENT_CHANGED)
{

switch (elmnt)
{

….
case M_EL_PRESET_SAVE:

cmd1 = 0x00;
cmd2 = CMD_PRS_SET;
cmd3 = 0x00;
cmd4 = pt_db.preset_save;
something_changed |= 0x02;
break;

}
}

}
pt_db.cos &= ~COS_FOR_APP;

}

HANDLING ERRORS IN THE AGENT
When receiving data, the agent may write into a database element as long as the element state is
M_NORMAL_STATE, M_PENDING_WRITE, or M_PENDING_READ, all other states of the
element will cause an error code to be sent back to the sender of the message. A read into a database
is allowed as long as the element state is not M_APP_LOCK, which will also cause an error code to
be sent back. Note that in truth, error messages are only sent back if the Read bit in the command
byte of the original message is set, signifying that a response is expected. If a write command is
rejected and the read bit is not set, then the message simply disappears.

The error message is handled by writing to Database 0 of the sender. Database 0, which is a required
database for each device, contains a field called error_code. The error_code field is used to receive
acknowledgements and negative acknowledgements. For a list of error codes see the Millennium
System Protocol Database manual.

When the application marks an element to be read, it changes the element state to be
M_APP_READ_REQ. The agent scans the database, finds the element state requiring it’s attention,
forms a message, and changes the element state to M_PENDING_READ. When the response to the
read request is written back, M_PENDING_READ transitions to M_READ_DONE. Each time the
agent changes the element state, the application is notified of the change through the change of state
bit in the database. Likewise, during a write operation, if the error code is an acknowledgement (80
00), then all states in the M_PENDING_WRITE state transition to M_WRITE_DONE.

9

However, if the agent has elements in PENDING states and receives an error code, the agent must
decide what to do with the elements now that an error has occurred. When an error is received, the
highest bit of the error code is set for an error during a write operation, and clear for an error that
occurred during a read operation. This tells the agent which elements to look at; elements in the
M_PENDING_WRITE or M_PENDING_READ state. The agent then searches through databases
associated with the source address for PENDING elements of the correct type. When a PENDING
element is found, the table below displays the actions of the agent. The error string element provides
additional information in the form of where the error took place (database number and element
number). The information in error string is only expected to be sent for certain errors, for example, a
general error does not provide this information and may not be able to since the message may have
not been formed correctly.

ERROR CODE OPERATION ELEMENT
STATE

NEW ELEMENT
STATE

M_NO_ERROR Read M_PENDING_
READ

M_READ_DONE

M_NO_ERROR Write M_PENDING_
WRITE

M_WRITE_DONE

M_GENERAL_ERROR Read M_PENDING_
READ

M_READ_FAILED

M_GENERAL_ERROR Write M_PENDING_
WRITE

M_WRITE_FAILED

M_WRONG_DEVICE_TYPE Read or
Write

M_PENDING_
READ

M_READ_FAILED

M_WRONG_DEVICE_TYPE Read or
Write

M_PENDING_
WRITE

M_WRITE_FAILED

M_INVALID_OPERATION Read M_PENDING_
READ

Failed Element -> M_READ_FAILED
Not Failed Element -> M_APP_READ_REQ

M_INVALID_OPERATION Write M_PENDING_
WRITE

Before Failed Element -> M_WRITE_DONE
Failed Element -> M_WRITE_FAILED
After Failed Element -> M_APP_WRITE_REQ_W_ACK

M_TEMP_INVALID_
OPERATION

Read M_PENDING_
READ

Failed Element -> M_TEMP_READ_FAILED
Not Failed Element -> M)APP_READ_REQ

M_TEMP_INVALID_
OPERATION

Write M_PENDING_
WRITE

Before Failed Element -> M_WRITE_DONE
Failed Element -> M_TEMP_WRITE_FAILED
After Failed Element -> M_APP_ WRITE_REQ_W_ACK

M_ELEMENT_DOES_NOT_
EXIST

Read M_PENDING_
READ

Failed Element -> M_READ_FAILED
Not Failed Element -> M_APP_READ_REQ

M_ELEMENT_DOES_NOT_
EXIST

Write M_PENDING_
WRITE

Before Failed Element -> M_WRITE_DONE
Failed Element -> M_WRITE_FAILED
After Failed Element -> M_APP_ WRITE_REQ_W_ACK

M_DEVICE_FAILED Read or
Write

M_PENDING_
READ

M_READ_FAILED

M_DEVICE_FAILED Read or
Write

M_PENDING_
WRITE

M_WRITE_FAILED

M_DEVICE_FAILED Read or
Write

M_APP_READ_
REQ

M_READ_FAILED

M_DEVICE_FAILED Read or
Write

M_APP_WRITE
_REQ

M_WRITE_FAILED

M_DEVICE_FAILED Read or
Write

M_APP_WRITE
_REQ_W_ACK

M_WRITE_FAILED

NOTE: It is the responsibility of the application to clear any element state that is in a state other
than those handled by the agent (APP requests or PENDING states are handled by the agent). Also,
if something is PENDING and no response ever comes in for that element, it will remain PENDING
unless the application does something with it since there is no timeout for a PENDING element (it is
not feasible to have a timer for each element).

10

RECEIVING A MESSAGE
A device may contain both local and remote databases. Local databases belong to the device itself,
while remote databases are images of databases on other devices and are used to communicate with
the other devices. All databases have a network address associated with them. When a message is
received with the Remote Database Bit set the agent knows that the message deals with the database
corresponding to the source address of the message, otherwise the destination address is used to find
the database. If the message is an all call, it is always destined for the unit’s own database so the
agent’s own address is used to find the correct database. The following graphically portrays which
database a message is written to:

Message
received

Local
Database

Read W rite

All Call?

Remote

Remote
Database bit

Operation

CLEAR

YES

SET

NO

Once again, a Local database is defined as a database that is “owned” by a particular application
while a Remote database belongs to a device outside of the application somewhere on the network and
is nothing more than a reflection of that remote device’s database. Remote database are used to
communicate with the remote device. The agent associates databases with network addresses in order
to form messages to send through the network, and the application uses the element states of the
database to inform the agent that it wants a particular element sent.

11

The following table shows which database writes are valid. Reads may only be performed upon a
device’s local database. LOCAL refers to a database belonging to the application with the agent in
question, REMOTE refers to a database belonging to another application somewhere on the network.

12

FROM TO ACTION
LOCAL LOCAL Application writes to its own database.
LOCAL REMOTE If an application asks the agent to send an element or elements of a

local database, the agent must send the message as all call since no
destination address is present.

In the case of a read operation where the remote queries a local
database the return address is provided in the protocol message and
the write is valid. In both cases the remote database bit is set in the
response to indicate the information is associated with the sender’s
address.

REMOTE LOCAL Application informs agent to send an element or elements. Agent
knows where to send information since the destination address will
be equal to the Remote database’s address.

REMOTE REMOTE Not allowed.

If an application changes the element state of any element in a Local database to APP_WRITE_REQ
then the agent will send the element out in an all call message. This is implied since the agent does
not have a destination address to write the data.

13

CONTROL BITS
The following table shows combinations of control bits, whether or not they are valid on both the
local bus and when sent outside the local bus. If the combination is valid, the returned control byte is
shown in the same order.

Control Byte

R
e
a
d

W
r
i
t
e

G
r
a
n
t

R
e
m
o
t
e

B
i
t

L
o
c
a
l

B
u
s

Response
X = invalid

Description

1 0 0 0 1 0101 Immediate response read of destination's local DB

1 0 0 0 0 X Network cannot immediately respond to a read

1 0 0 1 1 X Cannot read a remote DB (no network address)

1 0 0 1 0 X Cannot read a remote DB

1 0 1 0 1 X Cannot delay a read on a local bus. Device must be able to respond immediately
to a read since there is no buffering.

1 0 1 0 0 0101 Delayed Delayed response read of destination's local DB. This is OK since the device may
respond immediately (grant bit on different bus is ignored).

1 0 1 1 1 X Cannot read a remote DB. Cannot delay a read on a local bus.

1 0 1 1 0 X Cannot read a remote DB

1 1 0 0 1 0101 Immediate response write of destination's local DB w/verify

1 1 0 0 0 X Network cannot immediately respond to a write w/verify

1 1 0 1 1 0100 Write to destination's remote DB w/verify

1 1 0 1 0 X Network cannot immediately respond to a write w/verify

1 1 1 0 1 X Cannot delay a read on a local bus.

1 1 1 0 0 0101 Delayed Delayed response write of destination's local DB w/verify

1 1 1 1 1 X Cannot delay a read on a local bus.

1 1 1 1 0 0100 Delayed Delayed response write of destination's remote DB w/verify

0 0 0 0 1 Reserved 00 in read/write reserved

0 0 0 0 0 Reserved 00 in read/write reserved

0 0 0 1 1 Reserved 00 in read/write reserved

0 0 0 1 0 Reserved 00 in read/write reserved

0 0 1 0 1 Reserved 00 in read/write reserved

0 0 1 0 0 Reserved 00 in read/write reserved

0 0 1 1 1 Reserved 00 in read/write reserved

0 0 1 1 0 Reserved 00 in read/write reserved

0 1 0 0 1 Next Message Local DB write message

0 1 0 0 0 Next Message Local DB write message

0 1 0 1 1 Next Message Remote DB write message

0 1 0 1 0 Next Message Remote DB write message

0 1 1 0 1 Next Device Local DB write message with grant

0 1 1 0 0 Next Device Local DB write message with grant

0 1 1 1 1 Next Device Remote DB write message with grant

0 1 1 1 0 Next Device Remote DB write message with grant

14

Note:
A “null” message, useful for passing the token, will always have the write bit set by default. The agent
knows the message is null since there is no data section. While having the write bit set in a null message
is a contradiction, it leaves open ‘00’ in the command bits (read and write bits) for future use.

SPECIAL DATA TYPES IN THE AGENT
There are several data types handled by the agent that need further explanation. These are Bits, Strings
and Word Groups. This section details how the agent implements each data type.

Keep in mind that for each database type there is a structure of type element_access which is an array of
descriptions of each element within the database type. The element_access array is indexed into by the
element number. This description contains the type of the element, an offset from the database in
memory, and additional information for special data types called type_info. Type_info contains the bit
mask for bits, the length for strings and the length in words for word groups. Since type_info is a single
byte, the length of strings and word groups is limited.

Bits
The protocol writes bits by sending a bit mask of the affected bits followed by the values of the
bits. If only one bit is to be sent, this means that two bytes must be sent in the protocol.
However, eight bit elements may also be changed in a single write.

For example if the Bus Master wishes to tell device one to be on-line, it must set the
device_status bit of the remote unit’s database 0. This message would appear as follows:

Preamble Control Dest Source Count DB EL Length Mask Data CKSM
0xFF 0xFF 0x0C 0x01 0x00 0x05 0x00 0x05 0x02 0x80 0x80 ? ?

Note that the above message includes an acknowledge in the control byte since both the read and
write bits are set.

When reading bits, the protocol requires that the entire byte be sent back. The message written
back will have the mask set for each valid bit within the byte. Note that if an element is read that
is in the middle of a set of bits within a byte, the entire byte is sent back but the bit mask will not
include those elements within the byte that are before the element requested.

Read request of bits from database 0 starting at Cycle Power:

Preamble Control Dest Source Count DB EL Length CKSM
0xFF 0xFF 0x08 0x01 0x00 0x05 0x00 0x06 0x01 ? ?

The response from device one should look something like this:

Preamble Control Dest Source Count DB EL Length Mask Data CKSM
0xFF 0xFF 0x24 0x01 0x00 0x05 0x00 0x05 0x02 0x60 0x80 ? ?

Note that the control byte in the response includes the remote database bit. The mask includes
elements six and seven which are Cycle Power and Reset. The data, 0x80 shows that the device
is on line and has not been told to Cycle Power or Reset. The on line portion is sent with the data
even though it was not requested, but it will not be written to the database since the mask does
not show that bit to be valid. Cycle Power and Reset bits in the database will be set to zero.

15

Strings
Strings are always preceded by a length. This means it is not necessary to write the entire string.
However it is necessary to include the entire possible length of the string when requesting the
string. This is needed in order for the data section parser to know if any data beyond the string is
being requested. For example, if the Bus Master wished to request the Fin_Good_Num from
device three, the message would look like this:

Preamble Control Dest Source Count DB EL Length CKSM
0xFF 0xFF 0x08 0x03 0x00 0x03 0x00 0x0D 0x10 ? ?

If there was a one byte element beyond the Fin_Good_Num in the database (which there is not)
we could read it by changing the length to 0x11. Since the length of the string is part of the
string it is included in the length when requesting or writing the string.

Word Groups
Word groups are preceded by an offset in words (one byte) and a count in words (one byte).
Unlike a string, the agent treats this as a separate word from the data, not as part of the data.
The definition of a word group in the agent database is very strict. The offset_length part of the
word group should be a word in memory that in contiguous with the word group itself which
should be defined as an array of words. The status_timeout of the Bus Master Database is the
only example presently. Note in the definition of db1_type, the offset_length is defined
separately from the word group status_timeout. This is done for ease of indexing in the
status_timeout array. If someone wants to read the status and timeout of device zero, the offset
would be zero and the length would be one (word). For instance, if a device (say a hub at address
6) wanted to read the status information from the bus master for devices 4 through 5 (devices
start at 0), the message would be as follows:

Preamble Control Dest Source Count DB EL Length Offset Len cksm
0xFF 0xFF 0x08 0x00 0x06 0x05 0x01 0x02 0x06 0x04 0x02 ? ?

Note the Length field value of 0x06. This is the number of bytes we are requesting from the
word group including the offset and length bytes. This number is calculated by multiplying the
length portion of the offset and length word by two and adding two for the offset and length bytes
that will be returned. If the length were greater than six this would be requesting data beyond the
word group (another element) as well as the word group.

The response:

Preamble Control Dest Source Count DB EL Len Offset Len Data cksm
0xFF 0xFF 0x24 0x06 0x00 0x09 0x01 0x02 0x06 0x04 0x02 0x80 0x0a 0x80 0x0a ? ?

Whenever a change is made to a word within a word group, not including the offset-length word,
the MSB of the word group is set to indicate that the word has been changed by the agent. The
element state of the entire word group is also changed. This completes communication from the
agent to the application.

For communication from the application to the agent, the offset-length word is used to inform the
agent which parts of the word group to send. The element state is still used to inform the agent
of the need to send some or all of the word group element.

16

Important note:
In order for the application to tell the agent which part of the word group to send, the application
must alter the offset and length bytes of the word group. There is no default that writes the entire
word group when it is requested to be sent. Whatever values are left in offset and length will be
the ones used to determine which part of the word group to write.

AGENT RULES AND REQUIREMENTS
• Agent will set grant bit for any message written outside the local bus be it read or write.
• The preamble is not included in the checksum.
• Check sum is calculated on the compressed data.
• Length of the data field is in bytes not element numbers.
• Count is count of compressed data.
• The application is not involved in the response process. If a write with acknowledgement occurs, the

agent performs the write regardless of the value (no range limits in agent) and responds whether or
not the write was performed.

THE BUS MASTER (A SPECIALIZED AGENT)
The Bus Master bypasses the m_agent() loop of the agent for expediency. The Bus Master is a
specialized agent with its own state machine, which is responsible for keeping the bus going at all
times. It must keep track of timeout values for devices on its bus, time out devices that fail to
respond, substitute messages for devices that have failed, and pass the token to devices where a gap in
active devices on the bus exists. The Bus Master is also responsible for activating and deactivating
devices on the bus.

If the device to be created is going to be a Bus Master, the following need to be done in each
application above and beyond the requirements stated above for an agent:

In your main code:
1. Call bus_master() instead of m_agent() from the main loop.
2. Initialize bus_master_db.address. The full network address should be available to the Bus

Master since it must supply this information to the devices on it’s bus.

In a timer interrupt:
1. Decrement bm_poll_timer every millisecond if not 0.
2. Decrement bm_message_timer every millisecond if not 0.

Communication routines:
1. Make sure m_tx_in_prog is handled correctly. In the example code it is set in tx_m_message()

and cleared in serial1_tei(). This means that the flag is set during the entire time of
transmission and when the last bit is transmitted the flag is cleared. The routine serial1_txi()
pulls data from the transmit buffer and places it in the uart, during which time the Bus Master is
waiting in M_ST_WAIT_TRANSMIT. When the flag m_tx_in_prog is cleared, the Bus Master
sets the bm_message_timer. The receiver is disabled during transmit so that we do not receive
our own transmission. If we receive our own transmission, it will be parsed by the
m_look_for_message() routine which resets bm_message_timer to one character time (thinking
that the message we are timing out has started to arrive).

In agent.h:
1. BUS_MASTER must be defined. This will define M_USE_DATABASE1 and make

M_NUMBER_INSTANCES_DB0 = 1, but will not increment
M_TOTAL_NUMBER_OF_DATABASES (which is left to you).

17

2. Make sure M_ONE_CHARACTER_TIME is set to something reasonable, based upon baud rate
preferrably. This constant is used by the receive data parser m_look_for_message() to reset the
bm_message_timer to time out in between bytes of a message.

3. Make sure BM_LOCAL_TIMEOUT is set to something reasonable. This is the amount of dead
time allowed on the bus for each device before it must start transmitting, then
M_ONE_CHARACTER_TIME takes over for in between bytes. M_LOCAL_TIMEOUT is
written into the bus master’s database status_timeout for each device, however the status_timeout
element of the bus master’s database may be changed by the outside world.

The database of the bus master contains status information for each device on the bus called
status_timeout which is a Word Group. Each word represents information for the corresponding
device number. The low byte of each word is the timeout. The high byte of each word is status
information. Under normal conditions the bus master will start up with all status bits equal to zero
except its own. The bus master will then poll each device and if it finds a device active it will set the
appropriate status bit in its database. However, the status information may be changed externally.
The following table describes the actions carried out by the bus master when it is time for the bus
master to poll and when the status information for a particular device changes externally.

STATUS
BITS
BEFORE
POLL

ACTION BY BUS MASTER ON
POLL

TEMP
STATUS
BITS

STATUS
BITS IF
POLL
SUCCEEDS

STATUS
BITS IF
POLL FAILS

L
A

L
F

N
E

L
O

L
A

L
F

N
E

L
O

L
A

L
F

N
E

L
O

L
A

L
F

N
E

L
O

0 0 0 0 Send Device off, Listen only off 0 0 0 0
1 x 0 0 Poll with Listen Only off 0 x 0 0 1 0 0 0 0 x 0 0
x 1 0 0 Poll with Listen Only off 0 1 0 0 1 0 0 0 0 1 0 0
x x 0 1 Poll with Listen Only on 0 x 0 1 1 0 0 1 0 x 0 0
x x 1 x If Not Exist is set, clear all other bits

Send Device off, Listen only off
0 0 1 0

Where “LA” is Local Active, “LF” is Local Failed, “NE” is Not Exist and “LO” is Listen Only. Local
Active means that the device is on line and is expected to get the token when it’s turn occurs. Local
Failed means that a device that was on line and failed to take the token or respond to queries 3 times
in a row. Local Active and Local Failed are considered read only, even though the outside world can
manipulate them. Not Exist is used to keep a device from responding or being polled. Listen only is
used to keep a device from getting the token, yet the device is allowed to respond to queries from
other devices.

As it can be seen from the table, anytime Not Exist is set externally, all other bits are set to zero since
they are not considered valid. Anytime Listen Only is set externally, Local Active and Local Failed
are cleared.

In the non bus master agent, there are two bits corresponding to Local Active and Listen Only in
database 0.

LOCAL ACTIVE
(DEVICE ON)

LISTEN ONLY ACTION ON
RECEIVE WRITE

ACTION ON
RECEIVE READ

ACTION ON APPLICATION
REQUEST TO WRITE

0 0 Perform write No response Fail Write
0 1 Perform write Respond Fail Write
1 0 Perform write Respond Write
1 1 Perform write Respond Fail Write

18

BUS MASTER RULES AND REQUIREMENTS
• The bus master must know it’s full network address. This can be provided by three 8 lever dip

switches (or a user interface) since it is always device address 0.
• The bus master must provide the upper 3 bytes of network address to each unit when it turns a unit on

line.
• Bus master does not timeout messages outside of the local bus.
• If the grant bit is on and failure occurs or the next device to receive the token is failed, the Bus master

must substitute the source address of device that has failed for its own address in the null message so
that the next device knows it is its turn to take the token.

• If the grant bit is off and failure occurs the Bus master must substitute a message for the failed device.
The Bus master must use the destination address of the last message as the source address so that the
device with the token knows which address to associate failures with and will be able take any
outstanding element states (PENDING) to the address and place them in the FAILED element state.

• The bus master keeps a single variable for the highest address it has seen talking on the bus. It also
keeps 3 bits for each possible address on the local bus that is the counter of the number of times in a
row that device has failed. If the counter of any device reaches three a message is sent to a provided
address indicating the failure.

• A device added to the system always comes up as inactive. It must wait for the bus master to "poll" it.
The bus master will therefore "poll" for an added device occasionally. The poll includes a write to the
Device On element of database 0, a write to the Listen Only element of database 0, and a write to the
upper 3 bytes of database 0 to provide the full network addressing. The read bit is set for
acknowledgement of the command. If the command is successful, the device is added to the list of
active devices in the bus master database.

• When the bus master comes up, it assumes control of the bus. This might be a problem if we wish to
have a redundant bus master?

APPLICATION REQUIREMENTS
• The application must clear all element states and database change of state bits that are not handled by

the agent.
• Initialize databases.
• Initialize agent address.

VARIABLE AND STRUCTURE DESCRIPTIONS

BUSMASTER ONLY
bus_master_db An instance of database 1. Necessary for Bus Master.
bm_message_timer A timer used by the Bus Master to time out "dead time" on the bus. Dead time

is the amount of time devices have to begin sending data on the bus when they
receive the token or need to respond to a read request.

bm_poll_timer A timer used by the Bus Master. When the timer reaches 0 and the Bus Master
has the token, it will initiate a "poll".

AGENT
agent_db An instance of database 0. All applications should have this database as it is

used in acknowledgements by the agent.
m_agent_address The agent’s working network address. Database 0 contains this information for

communication.

19

m_current_msg Contains control, source, destination, and count of last message seen on bus.
Also updated in transmit routines since data that we transmit is no longer
parsed by our own receive.

m_data_section_begin Pointer into m protocol receive ring buffer to beginning of data section (after
count byte).

m_data_section_end Pointer into m protocol receive ring buffer to end of data section (before
checksum).

m_dbX_access[] Where X is the type of database, this array contains access information for each
element of the database type. This information can be used for all databases of
the same type no matter how many instances of the database exist.

m_loop_state Current processing state of agent.
m_message_ready Flag to indicate that a message has been prepared and is waiting for transmit.
m_rx_buf Receive ring buffer for M protocol port.
m_rx_head Pointer into m protocol receive ring buffer indicating where data should be

added to the ring buffer and where the last data was added in the ring buffer.
m_rx_tail Pointer into M protocol receive ring buffer indicating data that has not yet been

processed. This is incremented after data is parsed.
m_tx_buf Transmit ring buffer for M protocol port.
m_tx_head Pointer into M protocol transmit ring buffer indicating where data should be

added into the ring buffer and where the last data was added in the ring buffer.
m_tx_in_prog Flag to indicate transmission is occurring. Also used to initiate tranmit

interrupt.
m_tx_tail Pointer into M protocol transmit ring buffer indicating data that has not yet

been transmitted.
m_next_loop_state Used to transition the agent to a different processing state.
m_outgoing_data[] An array of raw data ready for transmit. Used in conjunction with

out_data_header[].
m_outgoing_data_head A pointer into the outgoing_data array indicating where data should be added

and the last position where data was added.
m_outgoing_data_tail A pointer into the outgoing_data array indicating last processed data.
m_out_data_header[] Used in buffering data for transmit. This is an array of header information for

fields to be transmitted.
m_out_data_header_indexIndex into out_data_header array. Used to indicate position where next field

should be added. Subtract one for current field.
m_update_address_from_db0

A flag that indicates that the network address in database 0 has been changed
by another device on the network and it is time to update our working address.

LIST OF STATIC VARIABLES
outgoing_database_s In buffer_outgoing_data() remembers which database we are

buffering for the next call to the function.
outgoing_element_s In buffer_outgoing_data() remembers which element we are buffering

for the next call to the function.
last_bitmask_position_ptr_s In m_buffer_outgoing_data() remembers position of last bit mask in

case the next call to the function buffers another bit within the same
byte.

compress_count_s In m_compress_outgoing_data() this counts the number of 0xFF bytes
sent to the function in a row after do_compress is set.

do_compress_s In m_compress_outgoing_data() this signals that we have received a
0xFF and must start counting them for compression.

parser_state_s Serial data from the M protocol port is parsed one byte at a time, this
variable keeps the state of the parser m_look_for_message() through
each call to the function.

20

msg_in_prog_s Message information for data that is currently being parsed from the
M protocol port by m_look_for_message().

rcvd_data_count_s In m_look_for_message() this is the actual count of data received
which is compared with count of data byte (or word - may be
extended) so that we know when to stop looking for data section.

c0_s In m_look_for_message() this is the received checksum that is
updated after every byte is received.

c1_s Same as C0, second byte of checksum.
run_length_next_s Used to decompress during parsing in m_look_for_message().
run_length_s Used to decompress during parsing in m_look_for_message().
c0_tx_s Checksum that is calculated each call to prep_send_m_message().
c1_tx_s Same as C0_TX, second byte of checksum.
tx_cntrl_s Remembers control byte information for message being sent out in

m_prep_send_m_message().
decompress_next_s When parsing data section, this signals we have received a 0xFF and

must decompress information on the next call to
m_get_next_data_byte().

decompress_length_s When parsing data section, this is the number of 0xFF we must return
in decompressing the data section.

next_state_after_tx_wait_s In the Bus Master this is the next state to transition to after leaving
state M_ST_TX_WAIT.

STRUCTURE DESCRIPTIONS
m_dbX_type Actual definition of database type X, where X is the type of the database.
m_db_instance An element of db_array[]. Defines an instance of a database by providing a

network address, database type, number of elements and pointer to the database
in memory.

m_element_access Contains element type, an offset for the element from the beginning of the
database, and a bit mask if the element is a bit or string length if the element is
a string.

m_outgoing_header Contains header information for a field of the data section with pointer into the
outgoing data buffer to which data is associated with the field.

m_message_info Contains message information such as control byte, destination. source and
count of bytes in message.

m_network_address Four bytes of network address.

