
1

Camera Pointing

21 November 2006

TABLE OF CONTENTS

Section Page

1 Introduction . 3
2 How to Point a Camera . 3

2.1 Available D Protocol Controlled Motion Commands 3
2.2 Determining a Pointing Angle . 5
2.3 Some Solved Examples . 5
2.4 Sample Worked Problems . 8

2.4.1 Point Camera #1 at Target #1 . 8
2.4.2 Point Camera #1 at Target #2 . 9
2.4.3 Point Camera #1 at Target #3 . 9
2.4.4 Point Camera #2 at Target #3 . 9

APPENDIX A
A Calculating Camera Bearings . A-1

A.1 Sample Algorithm Fragment . A-3

APPENDIX B
B Converting Latitude and Longitude Locations to Radians B-1

APPENDIX C
C Interpreting Pan and Tilt D Protocol Readout Replies . C-1

C.1 Sample Pan Angle Correction Software . C-2

APPENDIX D
D Web References . D-1

APPENDIX E

LIST OF FIGURES

Figure Page

1 Pelco Buildings 1, 2, 3 and 8 (partial) . 6
C-1 D Protocol Tilt Readout Positions . C-1
C-2 D Protocol Pan Readout Positions . C-4

1$Header: d:/Angles/RCS/CamPoint.tex,v 1.5 2006-11-21 12:09:10-08 Hamilton Exp Hamilton $

21 November 2006 — 12:10

2 LIST OF TABLES

LIST OF TABLES

Table Page

1 Camera and Target Locations expressed in Latitude and Longitude. 7
2 Distance and Bearings between Cameras and Targets. 7

21 November 2006 — 12:10

3

1 Introduction

From time to time questions are asked about how to point a camera. This is an attempt to answer that
question. Specifically an approach will be outlined here for solving the problem of: “If some one points
at a location on a map, how do we get a camera to point at that location?” The method of determining
the correct pointing angles for a Pelco camera requires some basic trignometry in converting from locations
specified as Latitude/Longitude (or any other type of X/Y coordinates) pairs into the polar coordinate
system that Pelco uses.

If there are any additional questions about the mathematics behind the solutions in this note, the reader
should consult with a member of the nearest school’s mathematics department.

2 How to Point a Camera

Pelco cameras are moved by several different methods:

1. Under an operator’s direct control with a joy stick, or equivalent.

2. Under an operator’s indirect control by any of:

2.1. Sending a previously set preset command.

2.2. Requesting a previously saved pattern.

2.3. Responding to previously saved alarm response when an alarm occurs. This may result in a
preset or pattern command being executed.

3. Via an external command to move to a different angular position. These commands usually are
generated by a computer.

All of the above methods of causing a camera to move are operator intensive actions, except for the last
one. Computer caused motion is the subject for this note.

2.1 Available D Protocol Controlled Motion Commands

There are several commands available for use with direct computer control of Pelco cameras. In this
list commands that are usually sent by a joy stick, or equivalent, are omitted. (For more details, see the D
Protocol document.)

N.B.: Between the time that a value is set and the time that it is read out, an operator may have made
an inadvertent change. This may happen by them using a joy stick at the same time that commands are
being sent from a computer. The internal logic of Pelco cameras is that the most recent valid command is
acted on. Thus if some commands are coming in in serial, (RS-422) and other commands are coming in via
the video connection (Coaxitron), then some things may not work as expected.

1. EC SET ZERO, 0x49 7310: Sets the on-screen display to have “zero degrees” be the current pan
position. Does not change the values returned or used by any commands except for EC EVEREST
sub-opcode ECS EVEREST AZIMUTH ZERO QRY which reads out the difference between the position
set with this command and cal0.

2$Header: d:/Angles/RCS/Intro.inc,v 1.2 2006-11-21 12:09:11-08 Hamilton Exp Hamilton $
3$Header: d:/Angles/RCS/Pointing.inc,v 1.5 2006-11-21 12:09:11-08 Hamilton Exp Hamilton $

21 November 2006 — 12:10

4 2 HOW TO POINT A CAMERA

2. EC SET PAN, 0x4B 7510: Set pan angular position in hundredths of degrees from cal0. Range is
0 → 35999. Values increase in a clockwise direction as viewed from above a normally installed
unit. (This includes an ExSite in inverted position.)

3. EC SET TILT, 0x4D 7710: Set tilt angular position in hundredths from the horizontal. Range is
0 → 35999. Horizontal is 0, down is 9000 which is displayed on the screen as -90o, up is 27000
which displays as 90o.

4. EC SET ZOOM, 0x4F 7910: Sets the zoom position as a ratio based on the current zoom limit setting.
Usually not a worthwhile command.

5. EC QUERY PAN, 0x51 8110: Requests the unit’s current pan angular offset from cal0. Reads out in
hundredths of a degree. Returns an EC PAN RESP response.

6. EC QUERY TILT, 0x53 8310: Requests the unit’s current tilt angular offset from the horizontal.
Reads out in hundredths of a degree. Returns an EC TILT RESP response.

7. EC QUERY ZOOM, 0x55 8510: Requests the current zoom position ratio. Returns an EC ZOOM RESP
response.

8. EC PAN RESP, 0x59 8910: Response to a EC QUERY PAN command. Has the pan angular offset from
cal0 in hundredths of a degree in it.

9. EC TILT RESP, 0x5B 9110: Response to a EC QUERY TILT command. Has the tilt angular offset
from the horizontal in hundredths of a degree in it.

10. EC ZOOM RESP, 0x5D 9310: Response to a EC QUERY ZOOM command. Has the ratio of the zoom in
it.

11. EC SET MAG, 0x5F 9510: Sets the zoom position as a “times” (x2, x8, x7.3, etc.) value. The zoom
position is specified in hundredths of a zoom power. I.e. 123 = ×1.23.

12. EC QUERY MAG, 0x61 9710: Requests the current value of the zoom settings in hundredths of a zoom
power. Returns an EC MAG RESP response.

13. EC MAG RESP, 0x63 9910: Response to a request for the current zoom power. Is in hundredths of
a zoom power. I.e. 234 = ×2.34.

14. EC EVEREST, 0x75 11710: Everest project special op-code. Of the various sub-op-codes that Everest
commands use, the following are the most important for computer controlled motion:

14.1. ECS EVEREST AZIMUTH ZERO QRY, 0x00 0010: Request the current displayed pan offset from
cal0. Returns a value from 0 → 35999 in hundredths of a degree.

14.2. ECS EVEREST AZIMUTH ZERO RSP, 0x01 0110: This is the response to an
ECS EVEREST AZIMUTH ZERO QRY command.

15. From time to time other commands may be added to the protocol. For full details, and any
more recent information, see the D Protocol specification. None of these motion commands for
computer use are implemented in any other protocol. This includes P Protocol and Coaxitron.

21 November 2006 — 12:10

2.2 Determining a Pointing Angle 5

2.2 Determining a Pointing Angle

Determining a pointing angle is basically an exercise in trigonometry. In a “normal” case, the user will
know the location of the camera and be requested to point the camera at a target.

Typically the camera’s (C) position is not moving and is well known at a location that may be specified
as CamLat and CamLon (Camera Latitude and Camera Longitude).

The target’s position (T) is a variable location and is at TgtLat, TgtLon.
The problem is now: “What angle do we now tell the camera to rotate to in pan?” A similar, but simpler,

problem also exists for tilt.
A simplified explanation of what has to be done:

1. During installation, have the camera properly set up to point to “true north” by using the EC -
SET ZERO op-code. Or use the menu command SET AZIMUTH option. In an ideal world this will
never change and the rest of this algorithm assumes that it does not change.

2. Use the calculations outlined in Appendix A, page A-1 to determine the target’s bearing angle
from the camera.

3. Use EC EVEREST with an sub-opcode of ECS EVEREST AZIMUTH ZERO QRY to get the cal0 offset. If
there is no chance that the camera has not had the value changed since its original installation,
this value may have been calculated once during installation. However sometimes the camera may
be replaced and asking the camera each time through is usually a good idea. The important point
here is to have the offset available for the rest of the calculations.

4. Modify the angle that was determined with the arccos function, by the cal0 offset value and send
that value back to the camera using the EC SET PAN command.

5. The camera will move to the desired location in a few seconds at “preset speed” of about 100o/sec.
(Slower for ExSite and Esprit systems.)

2.3 Some Solved Examples

For these examples, a section of the Pelco campus has been selected. A simplified map of the campus is
shown in Figure 1, page 6. The basic data was obtained by running Google Earth and zooming into Pelco’s
location on the Earth. The center of the image used in making this simplified map is about 119o 42’58.5”
W, 36o 47’18.8” N with an eye elevation at 1722 feet.

The two cameras and four targets used in the examples Are located as follows:

4$Header: d:/Angles/RCS/Pelco.inc,v 1.4 2006-11-21 12:09:11-08 Hamilton Exp Hamilton $

21 November 2006 — 12:10

6 2 HOW TO POINT A CAMERA

Building 2

Building 1

Building 3

Building 8

vC1

v
C2

j
T1

jT2

jT3

$RCSfile: Pelco.inc,v $

Figure 1. Pelco Buildings 1, 2, 3 and 8 (partial)

21 November 2006 — 12:10

2.3 Some Solved Examples 7

C1 Camera #1 36o 47’ 15.94” N 119o 42’ 55.33” W On top of building 3, south west
corner.

C2 Camera #2 36o 47’ 18.18” N 119o 42’ 55.39” W On top of building 3, north west
corner.

T1 Target #1 36o 47’ 17.94” N 119o 43’ 01.55” W Outside picnic area of the Blue
Pride Cafe.

T2 Target #2 36o 47’ 21.12” N 119o 43’ 02.10” W Entrance to building 1.
T3 Target #3 36o 47’ 19.78” N 119o 42’ 54.77” W California Memorial to 9-11.
T4 Target #4 36o 46’ 24.06” N 119o 43’ 17.51” W Airport Control Tower.

Table 1. Camera and Target Locations expressed in Latitude and Longitude.

Between Bearing Distance
C1 → T1 292 544
C1 → T2 314 759
C1 → T3 7 391
C1 → T4 199 5552

Table 2. Distance and Bearings between Cameras and Targets.

21 November 2006 — 12:10

8 2 HOW TO POINT A CAMERA

2.4 Sample Worked Problems

2.4.1 Point Camera #1 at Target #1

It is assumed that camera 1 has been assigned an address of 1 for all these steps.

1. Send the following command to the camera to get any possible offset of the readout vs. cal0.

0xFF Sync
0x01 Address
0x00 cmnd1 is set to ECS_EVEREST_AZIMUTH_ZERO_QRY
0x75 cmnd2 is set to EC_EVEREST
0x00 data1 is set to 0
0x00 data2 is set to 0
0x76 Checksum of all bytes except for Sync

2. The camera would send a response that might be similar to this:

0xFF Sync
0x01 Address
0x01 cmnd1 is set to ECS_EVEREST_AZIMUTH_ZERO_RSP
0x75 cmnd2 is set to EC_EVEREST
0x02 data1 is set to 0x02
0x00 data2 is set to 0x00
0x79 Checksum of all bytes except for Sync

This indicates that a EC SET ZERO (0x49) command has been sent and has changed the north
readout on the camera so that it is no longer at cal0 but is 0x0200 or 2.56o clockwise.

3. Solving the formulas in Appendix A, page A-1, we find that the target is about 544 feet away and
is on a bearing of 292o from the camera.

4. We now send the following to the camera to cause it to move to an azimuth angle of 292o:

0xFF Sync
0x01 Address
0x00 cmnd1 is set to 0x00
0x4B cmnd2 is set to EC_SET_PAN
0x70 data1 is set to 0x70 (See below)
0x10 data2 is set to 0x10 (See below)
0xCC Checksum of all bytes except for Sync

4.1. 292× 100 = 29200

4.2. 2920010 = 721016

4.3. 721016 − 20016 = 701016

5. And get the following reply (assuming that no alarms are active):

21 November 2006 — 12:10

2.4 Sample Worked Problems 9

0xFF Sync
0x01 Address
0x00 No active alarms
0xCC Checksum

The checksum is the checksum of the command that caused this response to be sent with the
alarm byte added in. I.e if alarm 1 was active the checksum would then be 0xCD.

6. At this point Camera #1 will move to point at Target #1. If an alarm occurs during the move,
then the camera will do as directed by the alarm action.

2.4.2 Point Camera #1 at Target #2

At Pelco all the buildings are two stories high. Target #2 is on the ground on the back side of building
#1 and may not be seen from Camera #1. The camera may point in that direction but may not actually
see the target. Solving this type of problem, hidden line problem, is beyond the scope of this note.

2.4.3 Point Camera #1 at Target #3

Again Pelco building #3 is blocking the view of the ground at the 9-11 memorial. However Camera #1
will be able to see the upper portion of the memorial flag pole because it is 100’ high and the building is
only 30’ high. To do the pointing proceed in the same way as in Section 2.4.1, page 8.

2.4.4 Point Camera #2 at Target #3

Proceed in the same way as in Section 2.4.1, page 8. Note that if two users want to move the same
camera to different places, it becomes a problem that is outside the scope of this short note.

21 November 2006 — 12:10

A-1

APPENDIX A

A Calculating Camera Bearings

When the location of your camera is known and you want to point the camera at a given location. Such as
might arise when a user “clicks” on a map. The angular direction from the camera must be calculated. This
is called the bearing angle from the camera to the target. Pelco cameras refer to the angle in azimuth as a
“pan” angle and it is valued in hundredths of a degree. I.e. to point at 37o North, the value sent to a Pelco
camera would be 3700.

Note

1. The various formulas have the following uses:

1.1. Eq. 1 is used to determine the distance in radians between the camera and the target.
To convert Dist to linear measure, one of the equations 6, 7 or 8 must be used.

1.2. Eq. 2 is used to determine the bearing in radians from the camera to the target. The
output of the equation is a value from 0 → 1 radian.
When the value of sin(DeltaLon) is negative, the correct range of the output should be
1 → 2 radian, to force the bearing angle into the correct range subtract CamAngle from
2π.
To convert from radians to degrees, use Eq. 4.

1.3. Eq. 3 is used to convert Degrees10 into radians. Math functions typically require that
their arguments be expressed as radians not degrees.

1.4. Eq. 4 is used to convert radians into Degrees10 for use with camera pointing commands.
1.5. Eq. 5 is used for converting from DDD MM SS.SS format into Degrees10 format.
1.6. Eq. 6, 7 and 8 are used to convert Dist10 into various types of linear distances. Note that

the output of these algorithms are in radians and it must be converted to Degrees10 prior
to using any of these equations.

2. Formula notes:

2.1. These formulas were taken from the 1982 ARRL antenna book and were copied/modified
from the formulas shown at: “http://www.ac6v.com/GreatCircle.htm”.

2.2. Longitude must be in the range of ±180o. (By convention longitude values in the Americas
will almost always be negative values.)

2.3. Latitude must be in the range of ±90o. (By convention latitude values north of the equator
are always positive. Southern latitudes are always negative.)

2.4. The resulting bearing will be in the range of 0 → 360o.
2.5. In the original write ups for these formulas, it is consistently indicated that the Latitude/-

Longitude values are in degrees. However when calling math functions, the arguments
must be expressed in radians.

5$Header: d:/Angles/RCS/Bearing.inc,v 1.2 2006-11-21 12:09:10-08 Hamilton Exp Hamilton $

21 November 2006 — 12:10

A-2 A CALCULATING CAMERA BEARINGS

Dist = arccos(sin(CamLat)× sin(TgtLat)) + (cos(CamLat)× cos(TgtLat)× cos(∆Lon))) (1)

CamAngle = arccos(
(sin(TgtLat)− (sin(CamLat)× cos(Dist)))

(cos(CamLat)× sin(Dist))
) (2)

Radians = Degrees10 × (
π

180
) (3)

Degrees10 = Radians× 180
π

(4)

Degrees10 = degree +
minutes

60
+

seconds

3600
(5)

Distmiles = Dist× 69.041 (6)

Distfeet = Dist× (69.041× 5280) (7)

Distkilometers = Dist× 111.111 (8)

Where:

1. Degrees10 = Latitude or Longitude expressed as dd.mmssss.

1.1. dd = full degrees

1.2. mm = minutes

1.3. ssss = seconds and hundredths of a second

2. CamLat = Camera’s location in latitude in radians.

3. TgtLat = latitude of the target in radians.

4. ∆Lon = Camera’s longitude, in radians, minus that of the other location. (Algebraic difference.)

5. Dist = Angular distance along path in radians.

6. CamAngle = True bearing from north if the value for sin∆Lon is positive. If sin ∆Lon is negative,
true bearing is 360o - CamAngle.

21 November 2006 — 12:10

A.1 Sample Algorithm Fragment A-3

A.1 Sample Algorithm Fragment

A sample program fragment to determine the bearing angle, in Basic, follows:

’ Convert Latitude/Longitude data from degrees to radians
CamLat = CamLat * (Pi/180)
CamLon = CamLon * (Pi/180)
TgtLat = TgtLat * (Pi/180)
TgtLon = TgtLon * (Pi/180)

’ Get difference in longitude values
DeltaLon = TgtLon - CamLon

’ First get the distance between the camera and the target
’ Use two temps to keep the line lengths short
Temp1 = (sin(CamLat) * sin(TgtLat))
Temp2 = (cos(CamLat) * cos(TgtLat) * cos(DeltaLon))
Dist = acos(Temp1 + Temp2)

’ Get the distance in feet
Dist_foot = Dist * (180/Pi) * (69.041*5280)

’ Now get the bearing angle of the target from the camera
’ Use two temps to keep the line lengths short
Temp1 = ((sin(TgtLat) - sin(CamLat) * cos(Dist)))
Temp2 = (cos(CamLat) * sin(Dist))
CamAngle = acos(Temp1/Temp2) * (180/Pi)

’ Compensate for values in the third and fourth quadrants
if sin(DeltaLon) < 0 then CamAngle = 360 - CamAngle

21 November 2006 — 12:10

B-1

APPENDIX B

B Converting Latitude and Longitude Locations to Radians

The first step is to change the format of Latitude/Longitude data into Degrees10 format. We then convert
the latitude/longitude values into radians. For camera C1 we have:

1. Latitude = 36o 47’ 15.94” N: 36 + 47
60 + 15.94

3600 = 36.787761111

36.787761111× π
180 = 0.64206755

2. Longitude = 119o 42’ 55.33” W: 119 + 42
60 + frac55.333600 = 119.71536944

119.71536944× π
180 = 2.089427361 Since this is a West longitude it is negative -2.089427361.

And for target T1 we have:

1. Latitude = 36o 47’ 17.94” N: 36 + 47
60 + 17.94

3600 = 36.7883166

36.7883166× π
180 = 0.64207725

2. Longitude = 119o 43’ 01.55” W: 119 + 43
60 + 1.55

3600 = 119.71709722

119.71709722× π
180 = 2.089457517

Since this is a West longitude it is negative -2.089457517.

If the supplied latitude/longitude pair are in other formats, they must be converted into radians before
continuing.

6$Header: d:/Angles/RCS/CvtLL.inc,v 1.1 2006-11-21 12:05:58-08 Hamilton Exp Hamilton $

21 November 2006 — 12:10

C-1

APPENDIX C

C Interpreting Pan and Tilt D Protocol Readout Replies

Pan and tilt angle values comes in in two bytes as degrees times 100 “hungrees”.

Position D reads out as Spectra displays as
90o up 27000 90o

45o up 31500 45o

Horizontal - 1o 35900 1o

Horizontal 000 0o

45o down 4500 -45o

90o down 9000 -90o

Position Pointing direction of the enclosure/camera

D reads out as D protocol returned value for this angle

Spectra displays as What is displayed on the Spectra screen

@@
315o

270o

Up

¡¡
225o

180o

@@ 135o

90o

Down

¡¡
45o

0o

Figure C-1. D Protocol Tilt Readout Positions

7$Header: d:/Angles/RCS/ReadOut.inc,v 1.3 2006-11-21 12:09:11-08 Hamilton Exp Hamilton $

21 November 2006 — 12:10

C-2 C INTERPRETING PAN AND TILT D PROTOCOL READOUT REPLIES

C.1 Sample Pan Angle Correction Software

In the below example several variables and functions are used:

1. Protocol Command Values:

1.1. SDcmnd1 and SDcmnd2, unsigned chars are used to hold commands to the Spectra.

2. Calculated Intermediate Values:

2.1. offset is a signed int which holds the results of asking the Spectra what the Azimuth offset
is.

2.2. temp is a signed long which holds the result of modifying the reported value from the
Spectra by the offset.

3. Macros/defines used:

3.1. EC EXTENDED REPLY LENGTH is the length of a D Protocol reply that contains Azimuth or
Elevation data. The reply is 7 (seven) bytes in length.

3.2. DREPLY DATA1 with an index value of 5 and

3.3. DREPLY DATA2 which has an index value of 6.

4. Arrays used:

4.1. Dreply is a 7 unsigned char to receive the Spectra reply into. The two positions used here
are:

4.1.1. DREPLY DATA1 with an index value of 5 and
4.1.2. DREPLY DATA2 which has an index value of 6.

5. Functions called:

5.1. SCheckSumD()

5.2. GetDReply()

6. The results are in two unsigned chars:

6.1. HpanU this is the upper half of the pan angle when modified by the Set Azimuth Zero value.

6.2. HpanL this is the lower half of the pan angle when modified by the Set Azimuth Zero value.

21 November 2006 — 12:10

C.1 Sample Pan Angle Correction Software C-3

// Get pan angle offset from zero
SDcmnd1 = ECS_EVEREST_AZIMUTH_ZERO_OFFSET_QRY;
SDcmnd2 = EC_EVEREST; // This is an Everest op-code
SCheckSumD(YES_REPLY);
GetDReply(EC_EXTENDED_REPLY_LENGTH); // Put it in the reply buffer
offset = ((DReply[DREPLY_DATA1]*256) + DReply[DREPLY_DATA2]);

// Get pan angle SDcmnd1, SDdata1 and SData2 don’t change anymore
SDcmnd1 = 0x00;
SDcmnd2 = EC_QUERY_PAN; // What is the current azimuth reading
SCheckSumD(YES_REPLY);
GetDReply(EC_EXTENDED_REPLY_LENGTH); // Put it in the reply buffer

// Pan angle comes in in two bytes as degrees times 100 "hungrees"
// Value has to be rounded (i.e. that is why there is a "+ 50" here)
//
// The pan angle reported by an EC_QUERY_PAN command is not
// offset by the EC_SET_ZERO command. But the on screen display
// is. So here we have to modify the reported output by the
// changed pan offset value.
//
// If EC_SET_ZERO has been used to set pan zero to 25 degrees,
// and the on-screen display is now reading 50 degrees in pan,
// then the reply from a EC_QUERY_PAN command will be 75 degrees.
// In general we should have the angle reported to the outside
// world match what is seen on the screen. Thus there is logic to
// request the actual offset value and to use that in modifying
// the reported value so that it matches the on-screen value.
//
temp = ((DReply[DREPLY_DATA1]*256) + DReply[DREPLY_DATA2]);

temp -= offset; // Get difference of real vs display
if (temp < 0) // Too small
{

temp += 36000; // Yep, let it wrap up
}
temp += 50; // Round
temp /= 100; // Convert from hungrees to decimal
HpanU = (unsigned char) (temp/256);
HpanL = temp & 0xFF;

21 November 2006 — 12:10

C-4 C INTERPRETING PAN AND TILT D PROTOCOL READOUT REPLIES

335o on screen
cal0o

¢¢

0o on screen
25o EC SET ZERO

50o on screen
75o EC QUERY PAN...

...............

Figure C-2. D Protocol Pan Readout Positions

21 November 2006 — 12:10

D-1

APPENDIX D

D Web References

All of the following web sites provided useful information for this short note. In general they have more
information that will probably be useful and it is recommended that the data they have available be examined
carefully. These web references are in alphabetical order.

1. http://jacq.istos.com.au/sundry/navcel.html

2. http://www.ac6v.com/GreatCircle.htm

3. http://www.gazza.co.nz

4. http://www.movable-type.co.uk/scripts/LatLong.html

5. http://www.movable-type.co.uk/scripts/GIS-FAQ-5.1.html

6. http://www.pilotsweb.com/navigate/dis_dir.htm

7. http://www.satsig.net/ssazran.htm

10$Header: d:/Angles/RCS/Refs.inc,v 1.2 2006-11-21 12:09:12-08 Hamilton Exp Hamilton $

21 November 2006 — 12:10

APPENDIX E

Index

0x00, 4
0x01, 4
0x49, 3, 8
0x4B, 4
0x4D, 4
0x4F, 4
0x51, 4
0x53, 4
0x55, 4
0x59, 4
0x5B, 4
0x5D, 4
0x5F, 4
0x61, 4
0x63, 4
0x75, 4

bearing angle, A-1

Coaxitron, 3, 4

D Protocol, 3, 4
Dreply, C-2
DREPLY DATA1, C-2
DREPLY DATA2, C-2

Earth, 5
EC EVEREST, 3–5
EC MAG RESP, 4
EC PAN RESP, 4
EC QUERY MAG, 4
EC QUERY PAN, 4
EC QUERY TILT, 4
EC QUERY ZOOM, 4
EC SET MAG, 4
EC SET PAN, 4, 5
EC SET TILT, 4
EC SET ZERO, 3, 5
EC SET ZOOM, 4
EC TILT RESP, 4
EC ZOOM RESP, 4

EC EXTENDED REPLY LENGTH, C-2
EC QUERY PAN, C-4
EC SET ZERO, 8, C-4
ECS EVEREST AZIMUTH ZERO QRY, 3–5
ECS EVEREST AZIMUTH ZERO RSP, 4
Esprit, 5
ExSite, 4, 5

GetDReply(), C-2
Google Earth, 5

HpanL, C-2
HpanU, C-2

offset, C-2

P Protocol, 4
Pelco, 3, 5, 9, A-1

RS-422, 3

SCheckSumD(), C-2
SDcmnd1, C-2
SDcmnd2, C-2
signed int, C-2
signed long, C-2

temp, C-2

unsigned char, C-2

E-1

